diff options
Diffstat (limited to 'src/pkg/encoding/gob/decode.go')
-rw-r--r-- | src/pkg/encoding/gob/decode.go | 1317 |
1 files changed, 0 insertions, 1317 deletions
diff --git a/src/pkg/encoding/gob/decode.go b/src/pkg/encoding/gob/decode.go deleted file mode 100644 index d8513148e..000000000 --- a/src/pkg/encoding/gob/decode.go +++ /dev/null @@ -1,1317 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package gob - -// TODO(rsc): When garbage collector changes, revisit -// the allocations in this file that use unsafe.Pointer. - -import ( - "bytes" - "encoding" - "errors" - "io" - "math" - "reflect" - "unsafe" -) - -var ( - errBadUint = errors.New("gob: encoded unsigned integer out of range") - errBadType = errors.New("gob: unknown type id or corrupted data") - errRange = errors.New("gob: bad data: field numbers out of bounds") -) - -// decoderState is the execution state of an instance of the decoder. A new state -// is created for nested objects. -type decoderState struct { - dec *Decoder - // The buffer is stored with an extra indirection because it may be replaced - // if we load a type during decode (when reading an interface value). - b *bytes.Buffer - fieldnum int // the last field number read. - buf []byte - next *decoderState // for free list -} - -// We pass the bytes.Buffer separately for easier testing of the infrastructure -// without requiring a full Decoder. -func (dec *Decoder) newDecoderState(buf *bytes.Buffer) *decoderState { - d := dec.freeList - if d == nil { - d = new(decoderState) - d.dec = dec - d.buf = make([]byte, uint64Size) - } else { - dec.freeList = d.next - } - d.b = buf - return d -} - -func (dec *Decoder) freeDecoderState(d *decoderState) { - d.next = dec.freeList - dec.freeList = d -} - -func overflow(name string) error { - return errors.New(`value for "` + name + `" out of range`) -} - -// decodeUintReader reads an encoded unsigned integer from an io.Reader. -// Used only by the Decoder to read the message length. -func decodeUintReader(r io.Reader, buf []byte) (x uint64, width int, err error) { - width = 1 - n, err := io.ReadFull(r, buf[0:width]) - if n == 0 { - return - } - b := buf[0] - if b <= 0x7f { - return uint64(b), width, nil - } - n = -int(int8(b)) - if n > uint64Size { - err = errBadUint - return - } - width, err = io.ReadFull(r, buf[0:n]) - if err != nil { - if err == io.EOF { - err = io.ErrUnexpectedEOF - } - return - } - // Could check that the high byte is zero but it's not worth it. - for _, b := range buf[0:width] { - x = x<<8 | uint64(b) - } - width++ // +1 for length byte - return -} - -// decodeUint reads an encoded unsigned integer from state.r. -// Does not check for overflow. -func (state *decoderState) decodeUint() (x uint64) { - b, err := state.b.ReadByte() - if err != nil { - error_(err) - } - if b <= 0x7f { - return uint64(b) - } - n := -int(int8(b)) - if n > uint64Size { - error_(errBadUint) - } - width, err := state.b.Read(state.buf[0:n]) - if err != nil { - error_(err) - } - // Don't need to check error; it's safe to loop regardless. - // Could check that the high byte is zero but it's not worth it. - for _, b := range state.buf[0:width] { - x = x<<8 | uint64(b) - } - return x -} - -// decodeInt reads an encoded signed integer from state.r. -// Does not check for overflow. -func (state *decoderState) decodeInt() int64 { - x := state.decodeUint() - if x&1 != 0 { - return ^int64(x >> 1) - } - return int64(x >> 1) -} - -// decOp is the signature of a decoding operator for a given type. -type decOp func(i *decInstr, state *decoderState, p unsafe.Pointer) - -// The 'instructions' of the decoding machine -type decInstr struct { - op decOp - field int // field number of the wire type - indir int // how many pointer indirections to reach the value in the struct - offset uintptr // offset in the structure of the field to encode - ovfl error // error message for overflow/underflow (for arrays, of the elements) -} - -// Since the encoder writes no zeros, if we arrive at a decoder we have -// a value to extract and store. The field number has already been read -// (it's how we knew to call this decoder). -// Each decoder is responsible for handling any indirections associated -// with the data structure. If any pointer so reached is nil, allocation must -// be done. - -// Walk the pointer hierarchy, allocating if we find a nil. Stop one before the end. -func decIndirect(p unsafe.Pointer, indir int) unsafe.Pointer { - for ; indir > 1; indir-- { - if *(*unsafe.Pointer)(p) == nil { - // Allocation required - *(*unsafe.Pointer)(p) = unsafe.Pointer(new(unsafe.Pointer)) - } - p = *(*unsafe.Pointer)(p) - } - return p -} - -// ignoreUint discards a uint value with no destination. -func ignoreUint(i *decInstr, state *decoderState, p unsafe.Pointer) { - state.decodeUint() -} - -// ignoreTwoUints discards a uint value with no destination. It's used to skip -// complex values. -func ignoreTwoUints(i *decInstr, state *decoderState, p unsafe.Pointer) { - state.decodeUint() - state.decodeUint() -} - -// decBool decodes a uint and stores it as a boolean through p. -func decBool(i *decInstr, state *decoderState, p unsafe.Pointer) { - if i.indir > 0 { - if *(*unsafe.Pointer)(p) == nil { - *(*unsafe.Pointer)(p) = unsafe.Pointer(new(bool)) - } - p = *(*unsafe.Pointer)(p) - } - *(*bool)(p) = state.decodeUint() != 0 -} - -// decInt8 decodes an integer and stores it as an int8 through p. -func decInt8(i *decInstr, state *decoderState, p unsafe.Pointer) { - if i.indir > 0 { - if *(*unsafe.Pointer)(p) == nil { - *(*unsafe.Pointer)(p) = unsafe.Pointer(new(int8)) - } - p = *(*unsafe.Pointer)(p) - } - v := state.decodeInt() - if v < math.MinInt8 || math.MaxInt8 < v { - error_(i.ovfl) - } else { - *(*int8)(p) = int8(v) - } -} - -// decUint8 decodes an unsigned integer and stores it as a uint8 through p. -func decUint8(i *decInstr, state *decoderState, p unsafe.Pointer) { - if i.indir > 0 { - if *(*unsafe.Pointer)(p) == nil { - *(*unsafe.Pointer)(p) = unsafe.Pointer(new(uint8)) - } - p = *(*unsafe.Pointer)(p) - } - v := state.decodeUint() - if math.MaxUint8 < v { - error_(i.ovfl) - } else { - *(*uint8)(p) = uint8(v) - } -} - -// decInt16 decodes an integer and stores it as an int16 through p. -func decInt16(i *decInstr, state *decoderState, p unsafe.Pointer) { - if i.indir > 0 { - if *(*unsafe.Pointer)(p) == nil { - *(*unsafe.Pointer)(p) = unsafe.Pointer(new(int16)) - } - p = *(*unsafe.Pointer)(p) - } - v := state.decodeInt() - if v < math.MinInt16 || math.MaxInt16 < v { - error_(i.ovfl) - } else { - *(*int16)(p) = int16(v) - } -} - -// decUint16 decodes an unsigned integer and stores it as a uint16 through p. -func decUint16(i *decInstr, state *decoderState, p unsafe.Pointer) { - if i.indir > 0 { - if *(*unsafe.Pointer)(p) == nil { - *(*unsafe.Pointer)(p) = unsafe.Pointer(new(uint16)) - } - p = *(*unsafe.Pointer)(p) - } - v := state.decodeUint() - if math.MaxUint16 < v { - error_(i.ovfl) - } else { - *(*uint16)(p) = uint16(v) - } -} - -// decInt32 decodes an integer and stores it as an int32 through p. -func decInt32(i *decInstr, state *decoderState, p unsafe.Pointer) { - if i.indir > 0 { - if *(*unsafe.Pointer)(p) == nil { - *(*unsafe.Pointer)(p) = unsafe.Pointer(new(int32)) - } - p = *(*unsafe.Pointer)(p) - } - v := state.decodeInt() - if v < math.MinInt32 || math.MaxInt32 < v { - error_(i.ovfl) - } else { - *(*int32)(p) = int32(v) - } -} - -// decUint32 decodes an unsigned integer and stores it as a uint32 through p. -func decUint32(i *decInstr, state *decoderState, p unsafe.Pointer) { - if i.indir > 0 { - if *(*unsafe.Pointer)(p) == nil { - *(*unsafe.Pointer)(p) = unsafe.Pointer(new(uint32)) - } - p = *(*unsafe.Pointer)(p) - } - v := state.decodeUint() - if math.MaxUint32 < v { - error_(i.ovfl) - } else { - *(*uint32)(p) = uint32(v) - } -} - -// decInt64 decodes an integer and stores it as an int64 through p. -func decInt64(i *decInstr, state *decoderState, p unsafe.Pointer) { - if i.indir > 0 { - if *(*unsafe.Pointer)(p) == nil { - *(*unsafe.Pointer)(p) = unsafe.Pointer(new(int64)) - } - p = *(*unsafe.Pointer)(p) - } - *(*int64)(p) = int64(state.decodeInt()) -} - -// decUint64 decodes an unsigned integer and stores it as a uint64 through p. -func decUint64(i *decInstr, state *decoderState, p unsafe.Pointer) { - if i.indir > 0 { - if *(*unsafe.Pointer)(p) == nil { - *(*unsafe.Pointer)(p) = unsafe.Pointer(new(uint64)) - } - p = *(*unsafe.Pointer)(p) - } - *(*uint64)(p) = uint64(state.decodeUint()) -} - -// Floating-point numbers are transmitted as uint64s holding the bits -// of the underlying representation. They are sent byte-reversed, with -// the exponent end coming out first, so integer floating point numbers -// (for example) transmit more compactly. This routine does the -// unswizzling. -func floatFromBits(u uint64) float64 { - var v uint64 - for i := 0; i < 8; i++ { - v <<= 8 - v |= u & 0xFF - u >>= 8 - } - return math.Float64frombits(v) -} - -// storeFloat32 decodes an unsigned integer, treats it as a 32-bit floating-point -// number, and stores it through p. It's a helper function for float32 and complex64. -func storeFloat32(i *decInstr, state *decoderState, p unsafe.Pointer) { - v := floatFromBits(state.decodeUint()) - av := v - if av < 0 { - av = -av - } - // +Inf is OK in both 32- and 64-bit floats. Underflow is always OK. - if math.MaxFloat32 < av && av <= math.MaxFloat64 { - error_(i.ovfl) - } else { - *(*float32)(p) = float32(v) - } -} - -// decFloat32 decodes an unsigned integer, treats it as a 32-bit floating-point -// number, and stores it through p. -func decFloat32(i *decInstr, state *decoderState, p unsafe.Pointer) { - if i.indir > 0 { - if *(*unsafe.Pointer)(p) == nil { - *(*unsafe.Pointer)(p) = unsafe.Pointer(new(float32)) - } - p = *(*unsafe.Pointer)(p) - } - storeFloat32(i, state, p) -} - -// decFloat64 decodes an unsigned integer, treats it as a 64-bit floating-point -// number, and stores it through p. -func decFloat64(i *decInstr, state *decoderState, p unsafe.Pointer) { - if i.indir > 0 { - if *(*unsafe.Pointer)(p) == nil { - *(*unsafe.Pointer)(p) = unsafe.Pointer(new(float64)) - } - p = *(*unsafe.Pointer)(p) - } - *(*float64)(p) = floatFromBits(uint64(state.decodeUint())) -} - -// decComplex64 decodes a pair of unsigned integers, treats them as a -// pair of floating point numbers, and stores them as a complex64 through p. -// The real part comes first. -func decComplex64(i *decInstr, state *decoderState, p unsafe.Pointer) { - if i.indir > 0 { - if *(*unsafe.Pointer)(p) == nil { - *(*unsafe.Pointer)(p) = unsafe.Pointer(new(complex64)) - } - p = *(*unsafe.Pointer)(p) - } - storeFloat32(i, state, p) - storeFloat32(i, state, unsafe.Pointer(uintptr(p)+unsafe.Sizeof(float32(0)))) -} - -// decComplex128 decodes a pair of unsigned integers, treats them as a -// pair of floating point numbers, and stores them as a complex128 through p. -// The real part comes first. -func decComplex128(i *decInstr, state *decoderState, p unsafe.Pointer) { - if i.indir > 0 { - if *(*unsafe.Pointer)(p) == nil { - *(*unsafe.Pointer)(p) = unsafe.Pointer(new(complex128)) - } - p = *(*unsafe.Pointer)(p) - } - real := floatFromBits(uint64(state.decodeUint())) - imag := floatFromBits(uint64(state.decodeUint())) - *(*complex128)(p) = complex(real, imag) -} - -// decUint8Slice decodes a byte slice and stores through p a slice header -// describing the data. -// uint8 slices are encoded as an unsigned count followed by the raw bytes. -func decUint8Slice(i *decInstr, state *decoderState, p unsafe.Pointer) { - if i.indir > 0 { - if *(*unsafe.Pointer)(p) == nil { - *(*unsafe.Pointer)(p) = unsafe.Pointer(new([]uint8)) - } - p = *(*unsafe.Pointer)(p) - } - n := state.decodeUint() - if n > uint64(state.b.Len()) { - errorf("length of []byte exceeds input size (%d bytes)", n) - } - slice := (*[]uint8)(p) - if uint64(cap(*slice)) < n { - *slice = make([]uint8, n) - } else { - *slice = (*slice)[0:n] - } - if _, err := state.b.Read(*slice); err != nil { - errorf("error decoding []byte: %s", err) - } -} - -// decString decodes byte array and stores through p a string header -// describing the data. -// Strings are encoded as an unsigned count followed by the raw bytes. -func decString(i *decInstr, state *decoderState, p unsafe.Pointer) { - if i.indir > 0 { - if *(*unsafe.Pointer)(p) == nil { - *(*unsafe.Pointer)(p) = unsafe.Pointer(new(string)) - } - p = *(*unsafe.Pointer)(p) - } - n := state.decodeUint() - if n > uint64(state.b.Len()) { - errorf("string length exceeds input size (%d bytes)", n) - } - b := make([]byte, n) - state.b.Read(b) - // It would be a shame to do the obvious thing here, - // *(*string)(p) = string(b) - // because we've already allocated the storage and this would - // allocate again and copy. So we do this ugly hack, which is even - // even more unsafe than it looks as it depends the memory - // representation of a string matching the beginning of the memory - // representation of a byte slice (a byte slice is longer). - *(*string)(p) = *(*string)(unsafe.Pointer(&b)) -} - -// ignoreUint8Array skips over the data for a byte slice value with no destination. -func ignoreUint8Array(i *decInstr, state *decoderState, p unsafe.Pointer) { - b := make([]byte, state.decodeUint()) - state.b.Read(b) -} - -// Execution engine - -// The encoder engine is an array of instructions indexed by field number of the incoming -// decoder. It is executed with random access according to field number. -type decEngine struct { - instr []decInstr - numInstr int // the number of active instructions -} - -// allocate makes sure storage is available for an object of underlying type rtyp -// that is indir levels of indirection through p. -func allocate(rtyp reflect.Type, p unsafe.Pointer, indir int) unsafe.Pointer { - if indir == 0 { - return p - } - up := p - if indir > 1 { - up = decIndirect(up, indir) - } - if *(*unsafe.Pointer)(up) == nil { - // Allocate object. - *(*unsafe.Pointer)(up) = unsafe.Pointer(reflect.New(rtyp).Pointer()) - } - return *(*unsafe.Pointer)(up) -} - -// decodeSingle decodes a top-level value that is not a struct and stores it through p. -// Such values are preceded by a zero, making them have the memory layout of a -// struct field (although with an illegal field number). -func (dec *Decoder) decodeSingle(engine *decEngine, ut *userTypeInfo, basep unsafe.Pointer) { - state := dec.newDecoderState(&dec.buf) - state.fieldnum = singletonField - delta := int(state.decodeUint()) - if delta != 0 { - errorf("decode: corrupted data: non-zero delta for singleton") - } - instr := &engine.instr[singletonField] - if instr.indir != ut.indir { - errorf("internal error: inconsistent indirection instr %d ut %d", instr.indir, ut.indir) - } - ptr := basep // offset will be zero - if instr.indir > 1 { - ptr = decIndirect(ptr, instr.indir) - } - instr.op(instr, state, ptr) - dec.freeDecoderState(state) -} - -// decodeStruct decodes a top-level struct and stores it through p. -// Indir is for the value, not the type. At the time of the call it may -// differ from ut.indir, which was computed when the engine was built. -// This state cannot arise for decodeSingle, which is called directly -// from the user's value, not from the innards of an engine. -func (dec *Decoder) decodeStruct(engine *decEngine, ut *userTypeInfo, p unsafe.Pointer, indir int) { - p = allocate(ut.base, p, indir) - state := dec.newDecoderState(&dec.buf) - state.fieldnum = -1 - basep := p - for state.b.Len() > 0 { - delta := int(state.decodeUint()) - if delta < 0 { - errorf("decode: corrupted data: negative delta") - } - if delta == 0 { // struct terminator is zero delta fieldnum - break - } - fieldnum := state.fieldnum + delta - if fieldnum >= len(engine.instr) { - error_(errRange) - break - } - instr := &engine.instr[fieldnum] - p := unsafe.Pointer(uintptr(basep) + instr.offset) - if instr.indir > 1 { - p = decIndirect(p, instr.indir) - } - instr.op(instr, state, p) - state.fieldnum = fieldnum - } - dec.freeDecoderState(state) -} - -// ignoreStruct discards the data for a struct with no destination. -func (dec *Decoder) ignoreStruct(engine *decEngine) { - state := dec.newDecoderState(&dec.buf) - state.fieldnum = -1 - for state.b.Len() > 0 { - delta := int(state.decodeUint()) - if delta < 0 { - errorf("ignore decode: corrupted data: negative delta") - } - if delta == 0 { // struct terminator is zero delta fieldnum - break - } - fieldnum := state.fieldnum + delta - if fieldnum >= len(engine.instr) { - error_(errRange) - } - instr := &engine.instr[fieldnum] - instr.op(instr, state, unsafe.Pointer(nil)) - state.fieldnum = fieldnum - } - dec.freeDecoderState(state) -} - -// ignoreSingle discards the data for a top-level non-struct value with no -// destination. It's used when calling Decode with a nil value. -func (dec *Decoder) ignoreSingle(engine *decEngine) { - state := dec.newDecoderState(&dec.buf) - state.fieldnum = singletonField - delta := int(state.decodeUint()) - if delta != 0 { - errorf("decode: corrupted data: non-zero delta for singleton") - } - instr := &engine.instr[singletonField] - instr.op(instr, state, unsafe.Pointer(nil)) - dec.freeDecoderState(state) -} - -// decodeArrayHelper does the work for decoding arrays and slices. -func (dec *Decoder) decodeArrayHelper(state *decoderState, p unsafe.Pointer, elemOp decOp, elemWid uintptr, length, elemIndir int, ovfl error) { - instr := &decInstr{elemOp, 0, elemIndir, 0, ovfl} - for i := 0; i < length; i++ { - if state.b.Len() == 0 { - errorf("decoding array or slice: length exceeds input size (%d elements)", length) - } - up := p - if elemIndir > 1 { - up = decIndirect(up, elemIndir) - } - elemOp(instr, state, up) - p = unsafe.Pointer(uintptr(p) + elemWid) - } -} - -// decodeArray decodes an array and stores it through p, that is, p points to the zeroth element. -// The length is an unsigned integer preceding the elements. Even though the length is redundant -// (it's part of the type), it's a useful check and is included in the encoding. -func (dec *Decoder) decodeArray(atyp reflect.Type, state *decoderState, p unsafe.Pointer, elemOp decOp, elemWid uintptr, length, indir, elemIndir int, ovfl error) { - if indir > 0 { - p = allocate(atyp, p, 1) // All but the last level has been allocated by dec.Indirect - } - if n := state.decodeUint(); n != uint64(length) { - errorf("length mismatch in decodeArray") - } - dec.decodeArrayHelper(state, p, elemOp, elemWid, length, elemIndir, ovfl) -} - -// decodeIntoValue is a helper for map decoding. Since maps are decoded using reflection, -// unlike the other items we can't use a pointer directly. -func decodeIntoValue(state *decoderState, op decOp, indir int, v reflect.Value, ovfl error) reflect.Value { - instr := &decInstr{op, 0, indir, 0, ovfl} - up := unsafeAddr(v) - if indir > 1 { - up = decIndirect(up, indir) - } - op(instr, state, up) - return v -} - -// decodeMap decodes a map and stores its header through p. -// Maps are encoded as a length followed by key:value pairs. -// Because the internals of maps are not visible to us, we must -// use reflection rather than pointer magic. -func (dec *Decoder) decodeMap(mtyp reflect.Type, state *decoderState, p unsafe.Pointer, keyOp, elemOp decOp, indir, keyIndir, elemIndir int, ovfl error) { - if indir > 0 { - p = allocate(mtyp, p, 1) // All but the last level has been allocated by dec.Indirect - } - up := unsafe.Pointer(p) - if *(*unsafe.Pointer)(up) == nil { // maps are represented as a pointer in the runtime - // Allocate map. - *(*unsafe.Pointer)(up) = unsafe.Pointer(reflect.MakeMap(mtyp).Pointer()) - } - // Maps cannot be accessed by moving addresses around the way - // that slices etc. can. We must recover a full reflection value for - // the iteration. - v := reflect.NewAt(mtyp, unsafe.Pointer(p)).Elem() - n := int(state.decodeUint()) - for i := 0; i < n; i++ { - key := decodeIntoValue(state, keyOp, keyIndir, allocValue(mtyp.Key()), ovfl) - elem := decodeIntoValue(state, elemOp, elemIndir, allocValue(mtyp.Elem()), ovfl) - v.SetMapIndex(key, elem) - } -} - -// ignoreArrayHelper does the work for discarding arrays and slices. -func (dec *Decoder) ignoreArrayHelper(state *decoderState, elemOp decOp, length int) { - instr := &decInstr{elemOp, 0, 0, 0, errors.New("no error")} - for i := 0; i < length; i++ { - elemOp(instr, state, nil) - } -} - -// ignoreArray discards the data for an array value with no destination. -func (dec *Decoder) ignoreArray(state *decoderState, elemOp decOp, length int) { - if n := state.decodeUint(); n != uint64(length) { - errorf("length mismatch in ignoreArray") - } - dec.ignoreArrayHelper(state, elemOp, length) -} - -// ignoreMap discards the data for a map value with no destination. -func (dec *Decoder) ignoreMap(state *decoderState, keyOp, elemOp decOp) { - n := int(state.decodeUint()) - keyInstr := &decInstr{keyOp, 0, 0, 0, errors.New("no error")} - elemInstr := &decInstr{elemOp, 0, 0, 0, errors.New("no error")} - for i := 0; i < n; i++ { - keyOp(keyInstr, state, nil) - elemOp(elemInstr, state, nil) - } -} - -// decodeSlice decodes a slice and stores the slice header through p. -// Slices are encoded as an unsigned length followed by the elements. -func (dec *Decoder) decodeSlice(atyp reflect.Type, state *decoderState, p unsafe.Pointer, elemOp decOp, elemWid uintptr, indir, elemIndir int, ovfl error) { - nr := state.decodeUint() - n := int(nr) - if indir > 0 { - if *(*unsafe.Pointer)(p) == nil { - // Allocate the slice header. - *(*unsafe.Pointer)(p) = unsafe.Pointer(new([]unsafe.Pointer)) - } - p = *(*unsafe.Pointer)(p) - } - // Allocate storage for the slice elements, that is, the underlying array, - // if the existing slice does not have the capacity. - // Always write a header at p. - hdrp := (*reflect.SliceHeader)(p) - if hdrp.Cap < n { - hdrp.Data = reflect.MakeSlice(atyp, n, n).Pointer() - hdrp.Cap = n - } - hdrp.Len = n - dec.decodeArrayHelper(state, unsafe.Pointer(hdrp.Data), elemOp, elemWid, n, elemIndir, ovfl) -} - -// ignoreSlice skips over the data for a slice value with no destination. -func (dec *Decoder) ignoreSlice(state *decoderState, elemOp decOp) { - dec.ignoreArrayHelper(state, elemOp, int(state.decodeUint())) -} - -// setInterfaceValue sets an interface value to a concrete value, -// but first it checks that the assignment will succeed. -func setInterfaceValue(ivalue reflect.Value, value reflect.Value) { - if !value.Type().AssignableTo(ivalue.Type()) { - errorf("%s is not assignable to type %s", value.Type(), ivalue.Type()) - } - ivalue.Set(value) -} - -// decodeInterface decodes an interface value and stores it through p. -// Interfaces are encoded as the name of a concrete type followed by a value. -// If the name is empty, the value is nil and no value is sent. -func (dec *Decoder) decodeInterface(ityp reflect.Type, state *decoderState, p unsafe.Pointer, indir int) { - // Create a writable interface reflect.Value. We need one even for the nil case. - ivalue := allocValue(ityp) - // Read the name of the concrete type. - nr := state.decodeUint() - if nr < 0 || nr > 1<<31 { // zero is permissible for anonymous types - errorf("invalid type name length %d", nr) - } - if nr > uint64(state.b.Len()) { - errorf("invalid type name length %d: exceeds input size", nr) - } - b := make([]byte, nr) - state.b.Read(b) - name := string(b) - if name == "" { - // Copy the representation of the nil interface value to the target. - // This is horribly unsafe and special. - if indir > 0 { - p = allocate(ityp, p, 1) // All but the last level has been allocated by dec.Indirect - } - *(*[2]uintptr)(unsafe.Pointer(p)) = ivalue.InterfaceData() - return - } - if len(name) > 1024 { - errorf("name too long (%d bytes): %.20q...", len(name), name) - } - // The concrete type must be registered. - registerLock.RLock() - typ, ok := nameToConcreteType[name] - registerLock.RUnlock() - if !ok { - errorf("name not registered for interface: %q", name) - } - // Read the type id of the concrete value. - concreteId := dec.decodeTypeSequence(true) - if concreteId < 0 { - error_(dec.err) - } - // Byte count of value is next; we don't care what it is (it's there - // in case we want to ignore the value by skipping it completely). - state.decodeUint() - // Read the concrete value. - value := allocValue(typ) - dec.decodeValue(concreteId, value) - if dec.err != nil { - error_(dec.err) - } - // Allocate the destination interface value. - if indir > 0 { - p = allocate(ityp, p, 1) // All but the last level has been allocated by dec.Indirect - } - // Assign the concrete value to the interface. - // Tread carefully; it might not satisfy the interface. - setInterfaceValue(ivalue, value) - // Copy the representation of the interface value to the target. - // This is horribly unsafe and special. - *(*[2]uintptr)(unsafe.Pointer(p)) = ivalue.InterfaceData() -} - -// ignoreInterface discards the data for an interface value with no destination. -func (dec *Decoder) ignoreInterface(state *decoderState) { - // Read the name of the concrete type. - b := make([]byte, state.decodeUint()) - _, err := state.b.Read(b) - if err != nil { - error_(err) - } - id := dec.decodeTypeSequence(true) - if id < 0 { - error_(dec.err) - } - // At this point, the decoder buffer contains a delimited value. Just toss it. - state.b.Next(int(state.decodeUint())) -} - -// decodeGobDecoder decodes something implementing the GobDecoder interface. -// The data is encoded as a byte slice. -func (dec *Decoder) decodeGobDecoder(ut *userTypeInfo, state *decoderState, v reflect.Value) { - // Read the bytes for the value. - b := make([]byte, state.decodeUint()) - _, err := state.b.Read(b) - if err != nil { - error_(err) - } - // We know it's one of these. - switch ut.externalDec { - case xGob: - err = v.Interface().(GobDecoder).GobDecode(b) - case xBinary: - err = v.Interface().(encoding.BinaryUnmarshaler).UnmarshalBinary(b) - case xText: - err = v.Interface().(encoding.TextUnmarshaler).UnmarshalText(b) - } - if err != nil { - error_(err) - } -} - -// ignoreGobDecoder discards the data for a GobDecoder value with no destination. -func (dec *Decoder) ignoreGobDecoder(state *decoderState) { - // Read the bytes for the value. - b := make([]byte, state.decodeUint()) - _, err := state.b.Read(b) - if err != nil { - error_(err) - } -} - -// Index by Go types. -var decOpTable = [...]decOp{ - reflect.Bool: decBool, - reflect.Int8: decInt8, - reflect.Int16: decInt16, - reflect.Int32: decInt32, - reflect.Int64: decInt64, - reflect.Uint8: decUint8, - reflect.Uint16: decUint16, - reflect.Uint32: decUint32, - reflect.Uint64: decUint64, - reflect.Float32: decFloat32, - reflect.Float64: decFloat64, - reflect.Complex64: decComplex64, - reflect.Complex128: decComplex128, - reflect.String: decString, -} - -// Indexed by gob types. tComplex will be added during type.init(). -var decIgnoreOpMap = map[typeId]decOp{ - tBool: ignoreUint, - tInt: ignoreUint, - tUint: ignoreUint, - tFloat: ignoreUint, - tBytes: ignoreUint8Array, - tString: ignoreUint8Array, - tComplex: ignoreTwoUints, -} - -// decOpFor returns the decoding op for the base type under rt and -// the indirection count to reach it. -func (dec *Decoder) decOpFor(wireId typeId, rt reflect.Type, name string, inProgress map[reflect.Type]*decOp) (*decOp, int) { - ut := userType(rt) - // If the type implements GobEncoder, we handle it without further processing. - if ut.externalDec != 0 { - return dec.gobDecodeOpFor(ut) - } - - // If this type is already in progress, it's a recursive type (e.g. map[string]*T). - // Return the pointer to the op we're already building. - if opPtr := inProgress[rt]; opPtr != nil { - return opPtr, ut.indir - } - typ := ut.base - indir := ut.indir - var op decOp - k := typ.Kind() - if int(k) < len(decOpTable) { - op = decOpTable[k] - } - if op == nil { - inProgress[rt] = &op - // Special cases - switch t := typ; t.Kind() { - case reflect.Array: - name = "element of " + name - elemId := dec.wireType[wireId].ArrayT.Elem - elemOp, elemIndir := dec.decOpFor(elemId, t.Elem(), name, inProgress) - ovfl := overflow(name) - op = func(i *decInstr, state *decoderState, p unsafe.Pointer) { - state.dec.decodeArray(t, state, p, *elemOp, t.Elem().Size(), t.Len(), i.indir, elemIndir, ovfl) - } - - case reflect.Map: - keyId := dec.wireType[wireId].MapT.Key - elemId := dec.wireType[wireId].MapT.Elem - keyOp, keyIndir := dec.decOpFor(keyId, t.Key(), "key of "+name, inProgress) - elemOp, elemIndir := dec.decOpFor(elemId, t.Elem(), "element of "+name, inProgress) - ovfl := overflow(name) - op = func(i *decInstr, state *decoderState, p unsafe.Pointer) { - state.dec.decodeMap(t, state, p, *keyOp, *elemOp, i.indir, keyIndir, elemIndir, ovfl) - } - - case reflect.Slice: - name = "element of " + name - if t.Elem().Kind() == reflect.Uint8 { - op = decUint8Slice - break - } - var elemId typeId - if tt, ok := builtinIdToType[wireId]; ok { - elemId = tt.(*sliceType).Elem - } else { - elemId = dec.wireType[wireId].SliceT.Elem - } - elemOp, elemIndir := dec.decOpFor(elemId, t.Elem(), name, inProgress) - ovfl := overflow(name) - op = func(i *decInstr, state *decoderState, p unsafe.Pointer) { - state.dec.decodeSlice(t, state, p, *elemOp, t.Elem().Size(), i.indir, elemIndir, ovfl) - } - - case reflect.Struct: - // Generate a closure that calls out to the engine for the nested type. - enginePtr, err := dec.getDecEnginePtr(wireId, userType(typ)) - if err != nil { - error_(err) - } - op = func(i *decInstr, state *decoderState, p unsafe.Pointer) { - // indirect through enginePtr to delay evaluation for recursive structs. - dec.decodeStruct(*enginePtr, userType(typ), p, i.indir) - } - case reflect.Interface: - op = func(i *decInstr, state *decoderState, p unsafe.Pointer) { - state.dec.decodeInterface(t, state, p, i.indir) - } - } - } - if op == nil { - errorf("decode can't handle type %s", rt) - } - return &op, indir -} - -// decIgnoreOpFor returns the decoding op for a field that has no destination. -func (dec *Decoder) decIgnoreOpFor(wireId typeId) decOp { - op, ok := decIgnoreOpMap[wireId] - if !ok { - if wireId == tInterface { - // Special case because it's a method: the ignored item might - // define types and we need to record their state in the decoder. - op = func(i *decInstr, state *decoderState, p unsafe.Pointer) { - state.dec.ignoreInterface(state) - } - return op - } - // Special cases - wire := dec.wireType[wireId] - switch { - case wire == nil: - errorf("bad data: undefined type %s", wireId.string()) - case wire.ArrayT != nil: - elemId := wire.ArrayT.Elem - elemOp := dec.decIgnoreOpFor(elemId) - op = func(i *decInstr, state *decoderState, p unsafe.Pointer) { - state.dec.ignoreArray(state, elemOp, wire.ArrayT.Len) - } - - case wire.MapT != nil: - keyId := dec.wireType[wireId].MapT.Key - elemId := dec.wireType[wireId].MapT.Elem - keyOp := dec.decIgnoreOpFor(keyId) - elemOp := dec.decIgnoreOpFor(elemId) - op = func(i *decInstr, state *decoderState, p unsafe.Pointer) { - state.dec.ignoreMap(state, keyOp, elemOp) - } - - case wire.SliceT != nil: - elemId := wire.SliceT.Elem - elemOp := dec.decIgnoreOpFor(elemId) - op = func(i *decInstr, state *decoderState, p unsafe.Pointer) { - state.dec.ignoreSlice(state, elemOp) - } - - case wire.StructT != nil: - // Generate a closure that calls out to the engine for the nested type. - enginePtr, err := dec.getIgnoreEnginePtr(wireId) - if err != nil { - error_(err) - } - op = func(i *decInstr, state *decoderState, p unsafe.Pointer) { - // indirect through enginePtr to delay evaluation for recursive structs - state.dec.ignoreStruct(*enginePtr) - } - - case wire.GobEncoderT != nil, wire.BinaryMarshalerT != nil, wire.TextMarshalerT != nil: - op = func(i *decInstr, state *decoderState, p unsafe.Pointer) { - state.dec.ignoreGobDecoder(state) - } - } - } - if op == nil { - errorf("bad data: ignore can't handle type %s", wireId.string()) - } - return op -} - -// gobDecodeOpFor returns the op for a type that is known to implement -// GobDecoder. -func (dec *Decoder) gobDecodeOpFor(ut *userTypeInfo) (*decOp, int) { - rcvrType := ut.user - if ut.decIndir == -1 { - rcvrType = reflect.PtrTo(rcvrType) - } else if ut.decIndir > 0 { - for i := int8(0); i < ut.decIndir; i++ { - rcvrType = rcvrType.Elem() - } - } - var op decOp - op = func(i *decInstr, state *decoderState, p unsafe.Pointer) { - // Caller has gotten us to within one indirection of our value. - if i.indir > 0 { - if *(*unsafe.Pointer)(p) == nil { - *(*unsafe.Pointer)(p) = unsafe.Pointer(reflect.New(ut.base).Pointer()) - } - } - // Now p is a pointer to the base type. Do we need to climb out to - // get to the receiver type? - var v reflect.Value - if ut.decIndir == -1 { - v = reflect.NewAt(rcvrType, unsafe.Pointer(&p)).Elem() - } else { - v = reflect.NewAt(rcvrType, p).Elem() - } - state.dec.decodeGobDecoder(ut, state, v) - } - return &op, int(ut.indir) - -} - -// compatibleType asks: Are these two gob Types compatible? -// Answers the question for basic types, arrays, maps and slices, plus -// GobEncoder/Decoder pairs. -// Structs are considered ok; fields will be checked later. -func (dec *Decoder) compatibleType(fr reflect.Type, fw typeId, inProgress map[reflect.Type]typeId) bool { - if rhs, ok := inProgress[fr]; ok { - return rhs == fw - } - inProgress[fr] = fw - ut := userType(fr) - wire, ok := dec.wireType[fw] - // If wire was encoded with an encoding method, fr must have that method. - // And if not, it must not. - // At most one of the booleans in ut is set. - // We could possibly relax this constraint in the future in order to - // choose the decoding method using the data in the wireType. - // The parentheses look odd but are correct. - if (ut.externalDec == xGob) != (ok && wire.GobEncoderT != nil) || - (ut.externalDec == xBinary) != (ok && wire.BinaryMarshalerT != nil) || - (ut.externalDec == xText) != (ok && wire.TextMarshalerT != nil) { - return false - } - if ut.externalDec != 0 { // This test trumps all others. - return true - } - switch t := ut.base; t.Kind() { - default: - // chan, etc: cannot handle. - return false - case reflect.Bool: - return fw == tBool - case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: - return fw == tInt - case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: - return fw == tUint - case reflect.Float32, reflect.Float64: - return fw == tFloat - case reflect.Complex64, reflect.Complex128: - return fw == tComplex - case reflect.String: - return fw == tString - case reflect.Interface: - return fw == tInterface - case reflect.Array: - if !ok || wire.ArrayT == nil { - return false - } - array := wire.ArrayT - return t.Len() == array.Len && dec.compatibleType(t.Elem(), array.Elem, inProgress) - case reflect.Map: - if !ok || wire.MapT == nil { - return false - } - MapType := wire.MapT - return dec.compatibleType(t.Key(), MapType.Key, inProgress) && dec.compatibleType(t.Elem(), MapType.Elem, inProgress) - case reflect.Slice: - // Is it an array of bytes? - if t.Elem().Kind() == reflect.Uint8 { - return fw == tBytes - } - // Extract and compare element types. - var sw *sliceType - if tt, ok := builtinIdToType[fw]; ok { - sw, _ = tt.(*sliceType) - } else if wire != nil { - sw = wire.SliceT - } - elem := userType(t.Elem()).base - return sw != nil && dec.compatibleType(elem, sw.Elem, inProgress) - case reflect.Struct: - return true - } -} - -// typeString returns a human-readable description of the type identified by remoteId. -func (dec *Decoder) typeString(remoteId typeId) string { - if t := idToType[remoteId]; t != nil { - // globally known type. - return t.string() - } - return dec.wireType[remoteId].string() -} - -// compileSingle compiles the decoder engine for a non-struct top-level value, including -// GobDecoders. -func (dec *Decoder) compileSingle(remoteId typeId, ut *userTypeInfo) (engine *decEngine, err error) { - rt := ut.user - engine = new(decEngine) - engine.instr = make([]decInstr, 1) // one item - name := rt.String() // best we can do - if !dec.compatibleType(rt, remoteId, make(map[reflect.Type]typeId)) { - remoteType := dec.typeString(remoteId) - // Common confusing case: local interface type, remote concrete type. - if ut.base.Kind() == reflect.Interface && remoteId != tInterface { - return nil, errors.New("gob: local interface type " + name + " can only be decoded from remote interface type; received concrete type " + remoteType) - } - return nil, errors.New("gob: decoding into local type " + name + ", received remote type " + remoteType) - } - op, indir := dec.decOpFor(remoteId, rt, name, make(map[reflect.Type]*decOp)) - ovfl := errors.New(`value for "` + name + `" out of range`) - engine.instr[singletonField] = decInstr{*op, singletonField, indir, 0, ovfl} - engine.numInstr = 1 - return -} - -// compileIgnoreSingle compiles the decoder engine for a non-struct top-level value that will be discarded. -func (dec *Decoder) compileIgnoreSingle(remoteId typeId) (engine *decEngine, err error) { - engine = new(decEngine) - engine.instr = make([]decInstr, 1) // one item - op := dec.decIgnoreOpFor(remoteId) - ovfl := overflow(dec.typeString(remoteId)) - engine.instr[0] = decInstr{op, 0, 0, 0, ovfl} - engine.numInstr = 1 - return -} - -// compileDec compiles the decoder engine for a value. If the value is not a struct, -// it calls out to compileSingle. -func (dec *Decoder) compileDec(remoteId typeId, ut *userTypeInfo) (engine *decEngine, err error) { - rt := ut.base - srt := rt - if srt.Kind() != reflect.Struct || ut.externalDec != 0 { - return dec.compileSingle(remoteId, ut) - } - var wireStruct *structType - // Builtin types can come from global pool; the rest must be defined by the decoder. - // Also we know we're decoding a struct now, so the client must have sent one. - if t, ok := builtinIdToType[remoteId]; ok { - wireStruct, _ = t.(*structType) - } else { - wire := dec.wireType[remoteId] - if wire == nil { - error_(errBadType) - } - wireStruct = wire.StructT - } - if wireStruct == nil { - errorf("type mismatch in decoder: want struct type %s; got non-struct", rt) - } - engine = new(decEngine) - engine.instr = make([]decInstr, len(wireStruct.Field)) - seen := make(map[reflect.Type]*decOp) - // Loop over the fields of the wire type. - for fieldnum := 0; fieldnum < len(wireStruct.Field); fieldnum++ { - wireField := wireStruct.Field[fieldnum] - if wireField.Name == "" { - errorf("empty name for remote field of type %s", wireStruct.Name) - } - ovfl := overflow(wireField.Name) - // Find the field of the local type with the same name. - localField, present := srt.FieldByName(wireField.Name) - // TODO(r): anonymous names - if !present || !isExported(wireField.Name) { - op := dec.decIgnoreOpFor(wireField.Id) - engine.instr[fieldnum] = decInstr{op, fieldnum, 0, 0, ovfl} - continue - } - if !dec.compatibleType(localField.Type, wireField.Id, make(map[reflect.Type]typeId)) { - errorf("wrong type (%s) for received field %s.%s", localField.Type, wireStruct.Name, wireField.Name) - } - op, indir := dec.decOpFor(wireField.Id, localField.Type, localField.Name, seen) - engine.instr[fieldnum] = decInstr{*op, fieldnum, indir, uintptr(localField.Offset), ovfl} - engine.numInstr++ - } - return -} - -// getDecEnginePtr returns the engine for the specified type. -func (dec *Decoder) getDecEnginePtr(remoteId typeId, ut *userTypeInfo) (enginePtr **decEngine, err error) { - rt := ut.user - decoderMap, ok := dec.decoderCache[rt] - if !ok { - decoderMap = make(map[typeId]**decEngine) - dec.decoderCache[rt] = decoderMap - } - if enginePtr, ok = decoderMap[remoteId]; !ok { - // To handle recursive types, mark this engine as underway before compiling. - enginePtr = new(*decEngine) - decoderMap[remoteId] = enginePtr - *enginePtr, err = dec.compileDec(remoteId, ut) - if err != nil { - delete(decoderMap, remoteId) - } - } - return -} - -// emptyStruct is the type we compile into when ignoring a struct value. -type emptyStruct struct{} - -var emptyStructType = reflect.TypeOf(emptyStruct{}) - -// getDecEnginePtr returns the engine for the specified type when the value is to be discarded. -func (dec *Decoder) getIgnoreEnginePtr(wireId typeId) (enginePtr **decEngine, err error) { - var ok bool - if enginePtr, ok = dec.ignorerCache[wireId]; !ok { - // To handle recursive types, mark this engine as underway before compiling. - enginePtr = new(*decEngine) - dec.ignorerCache[wireId] = enginePtr - wire := dec.wireType[wireId] - if wire != nil && wire.StructT != nil { - *enginePtr, err = dec.compileDec(wireId, userType(emptyStructType)) - } else { - *enginePtr, err = dec.compileIgnoreSingle(wireId) - } - if err != nil { - delete(dec.ignorerCache, wireId) - } - } - return -} - -// decodeValue decodes the data stream representing a value and stores it in val. -func (dec *Decoder) decodeValue(wireId typeId, val reflect.Value) { - defer catchError(&dec.err) - // If the value is nil, it means we should just ignore this item. - if !val.IsValid() { - dec.decodeIgnoredValue(wireId) - return - } - // Dereference down to the underlying type. - ut := userType(val.Type()) - base := ut.base - var enginePtr **decEngine - enginePtr, dec.err = dec.getDecEnginePtr(wireId, ut) - if dec.err != nil { - return - } - engine := *enginePtr - if st := base; st.Kind() == reflect.Struct && ut.externalDec == 0 { - if engine.numInstr == 0 && st.NumField() > 0 && - dec.wireType[wireId] != nil && len(dec.wireType[wireId].StructT.Field) > 0 { - name := base.Name() - errorf("type mismatch: no fields matched compiling decoder for %s", name) - } - dec.decodeStruct(engine, ut, unsafeAddr(val), ut.indir) - } else { - dec.decodeSingle(engine, ut, unsafeAddr(val)) - } -} - -// decodeIgnoredValue decodes the data stream representing a value of the specified type and discards it. -func (dec *Decoder) decodeIgnoredValue(wireId typeId) { - var enginePtr **decEngine - enginePtr, dec.err = dec.getIgnoreEnginePtr(wireId) - if dec.err != nil { - return - } - wire := dec.wireType[wireId] - if wire != nil && wire.StructT != nil { - dec.ignoreStruct(*enginePtr) - } else { - dec.ignoreSingle(*enginePtr) - } -} - -func init() { - var iop, uop decOp - switch reflect.TypeOf(int(0)).Bits() { - case 32: - iop = decInt32 - uop = decUint32 - case 64: - iop = decInt64 - uop = decUint64 - default: - panic("gob: unknown size of int/uint") - } - decOpTable[reflect.Int] = iop - decOpTable[reflect.Uint] = uop - - // Finally uintptr - switch reflect.TypeOf(uintptr(0)).Bits() { - case 32: - uop = decUint32 - case 64: - uop = decUint64 - default: - panic("gob: unknown size of uintptr") - } - decOpTable[reflect.Uintptr] = uop -} - -// Gob assumes it can call UnsafeAddr on any Value -// in order to get a pointer it can copy data from. -// Values that have just been created and do not point -// into existing structs or slices cannot be addressed, -// so simulate it by returning a pointer to a copy. -// Each call allocates once. -func unsafeAddr(v reflect.Value) unsafe.Pointer { - if v.CanAddr() { - return unsafe.Pointer(v.UnsafeAddr()) - } - x := reflect.New(v.Type()).Elem() - x.Set(v) - return unsafe.Pointer(x.UnsafeAddr()) -} - -// Gob depends on being able to take the address -// of zeroed Values it creates, so use this wrapper instead -// of the standard reflect.Zero. -// Each call allocates once. -func allocValue(t reflect.Type) reflect.Value { - return reflect.New(t).Elem() -} |