summaryrefslogtreecommitdiff
path: root/src/pkg/encoding/gob/encode.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/encoding/gob/encode.go')
-rw-r--r--src/pkg/encoding/gob/encode.go760
1 files changed, 0 insertions, 760 deletions
diff --git a/src/pkg/encoding/gob/encode.go b/src/pkg/encoding/gob/encode.go
deleted file mode 100644
index 7831c02d1..000000000
--- a/src/pkg/encoding/gob/encode.go
+++ /dev/null
@@ -1,760 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package gob
-
-import (
- "bytes"
- "encoding"
- "math"
- "reflect"
- "unsafe"
-)
-
-const uint64Size = int(unsafe.Sizeof(uint64(0)))
-
-// encoderState is the global execution state of an instance of the encoder.
-// Field numbers are delta encoded and always increase. The field
-// number is initialized to -1 so 0 comes out as delta(1). A delta of
-// 0 terminates the structure.
-type encoderState struct {
- enc *Encoder
- b *bytes.Buffer
- sendZero bool // encoding an array element or map key/value pair; send zero values
- fieldnum int // the last field number written.
- buf [1 + uint64Size]byte // buffer used by the encoder; here to avoid allocation.
- next *encoderState // for free list
-}
-
-func (enc *Encoder) newEncoderState(b *bytes.Buffer) *encoderState {
- e := enc.freeList
- if e == nil {
- e = new(encoderState)
- e.enc = enc
- } else {
- enc.freeList = e.next
- }
- e.sendZero = false
- e.fieldnum = 0
- e.b = b
- return e
-}
-
-func (enc *Encoder) freeEncoderState(e *encoderState) {
- e.next = enc.freeList
- enc.freeList = e
-}
-
-// Unsigned integers have a two-state encoding. If the number is less
-// than 128 (0 through 0x7F), its value is written directly.
-// Otherwise the value is written in big-endian byte order preceded
-// by the byte length, negated.
-
-// encodeUint writes an encoded unsigned integer to state.b.
-func (state *encoderState) encodeUint(x uint64) {
- if x <= 0x7F {
- err := state.b.WriteByte(uint8(x))
- if err != nil {
- error_(err)
- }
- return
- }
- i := uint64Size
- for x > 0 {
- state.buf[i] = uint8(x)
- x >>= 8
- i--
- }
- state.buf[i] = uint8(i - uint64Size) // = loop count, negated
- _, err := state.b.Write(state.buf[i : uint64Size+1])
- if err != nil {
- error_(err)
- }
-}
-
-// encodeInt writes an encoded signed integer to state.w.
-// The low bit of the encoding says whether to bit complement the (other bits of the)
-// uint to recover the int.
-func (state *encoderState) encodeInt(i int64) {
- var x uint64
- if i < 0 {
- x = uint64(^i<<1) | 1
- } else {
- x = uint64(i << 1)
- }
- state.encodeUint(uint64(x))
-}
-
-// encOp is the signature of an encoding operator for a given type.
-type encOp func(i *encInstr, state *encoderState, p unsafe.Pointer)
-
-// The 'instructions' of the encoding machine
-type encInstr struct {
- op encOp
- field int // field number
- indir int // how many pointer indirections to reach the value in the struct
- offset uintptr // offset in the structure of the field to encode
-}
-
-// update emits a field number and updates the state to record its value for delta encoding.
-// If the instruction pointer is nil, it does nothing
-func (state *encoderState) update(instr *encInstr) {
- if instr != nil {
- state.encodeUint(uint64(instr.field - state.fieldnum))
- state.fieldnum = instr.field
- }
-}
-
-// Each encoder for a composite is responsible for handling any
-// indirections associated with the elements of the data structure.
-// If any pointer so reached is nil, no bytes are written. If the
-// data item is zero, no bytes are written. Single values - ints,
-// strings etc. - are indirected before calling their encoders.
-// Otherwise, the output (for a scalar) is the field number, as an
-// encoded integer, followed by the field data in its appropriate
-// format.
-
-// encIndirect dereferences p indir times and returns the result.
-func encIndirect(p unsafe.Pointer, indir int) unsafe.Pointer {
- for ; indir > 0; indir-- {
- p = *(*unsafe.Pointer)(p)
- if p == nil {
- return unsafe.Pointer(nil)
- }
- }
- return p
-}
-
-// encBool encodes the bool with address p as an unsigned 0 or 1.
-func encBool(i *encInstr, state *encoderState, p unsafe.Pointer) {
- b := *(*bool)(p)
- if b || state.sendZero {
- state.update(i)
- if b {
- state.encodeUint(1)
- } else {
- state.encodeUint(0)
- }
- }
-}
-
-// encInt encodes the int with address p.
-func encInt(i *encInstr, state *encoderState, p unsafe.Pointer) {
- v := int64(*(*int)(p))
- if v != 0 || state.sendZero {
- state.update(i)
- state.encodeInt(v)
- }
-}
-
-// encUint encodes the uint with address p.
-func encUint(i *encInstr, state *encoderState, p unsafe.Pointer) {
- v := uint64(*(*uint)(p))
- if v != 0 || state.sendZero {
- state.update(i)
- state.encodeUint(v)
- }
-}
-
-// encInt8 encodes the int8 with address p.
-func encInt8(i *encInstr, state *encoderState, p unsafe.Pointer) {
- v := int64(*(*int8)(p))
- if v != 0 || state.sendZero {
- state.update(i)
- state.encodeInt(v)
- }
-}
-
-// encUint8 encodes the uint8 with address p.
-func encUint8(i *encInstr, state *encoderState, p unsafe.Pointer) {
- v := uint64(*(*uint8)(p))
- if v != 0 || state.sendZero {
- state.update(i)
- state.encodeUint(v)
- }
-}
-
-// encInt16 encodes the int16 with address p.
-func encInt16(i *encInstr, state *encoderState, p unsafe.Pointer) {
- v := int64(*(*int16)(p))
- if v != 0 || state.sendZero {
- state.update(i)
- state.encodeInt(v)
- }
-}
-
-// encUint16 encodes the uint16 with address p.
-func encUint16(i *encInstr, state *encoderState, p unsafe.Pointer) {
- v := uint64(*(*uint16)(p))
- if v != 0 || state.sendZero {
- state.update(i)
- state.encodeUint(v)
- }
-}
-
-// encInt32 encodes the int32 with address p.
-func encInt32(i *encInstr, state *encoderState, p unsafe.Pointer) {
- v := int64(*(*int32)(p))
- if v != 0 || state.sendZero {
- state.update(i)
- state.encodeInt(v)
- }
-}
-
-// encUint encodes the uint32 with address p.
-func encUint32(i *encInstr, state *encoderState, p unsafe.Pointer) {
- v := uint64(*(*uint32)(p))
- if v != 0 || state.sendZero {
- state.update(i)
- state.encodeUint(v)
- }
-}
-
-// encInt64 encodes the int64 with address p.
-func encInt64(i *encInstr, state *encoderState, p unsafe.Pointer) {
- v := *(*int64)(p)
- if v != 0 || state.sendZero {
- state.update(i)
- state.encodeInt(v)
- }
-}
-
-// encInt64 encodes the uint64 with address p.
-func encUint64(i *encInstr, state *encoderState, p unsafe.Pointer) {
- v := *(*uint64)(p)
- if v != 0 || state.sendZero {
- state.update(i)
- state.encodeUint(v)
- }
-}
-
-// encUintptr encodes the uintptr with address p.
-func encUintptr(i *encInstr, state *encoderState, p unsafe.Pointer) {
- v := uint64(*(*uintptr)(p))
- if v != 0 || state.sendZero {
- state.update(i)
- state.encodeUint(v)
- }
-}
-
-// floatBits returns a uint64 holding the bits of a floating-point number.
-// Floating-point numbers are transmitted as uint64s holding the bits
-// of the underlying representation. They are sent byte-reversed, with
-// the exponent end coming out first, so integer floating point numbers
-// (for example) transmit more compactly. This routine does the
-// swizzling.
-func floatBits(f float64) uint64 {
- u := math.Float64bits(f)
- var v uint64
- for i := 0; i < 8; i++ {
- v <<= 8
- v |= u & 0xFF
- u >>= 8
- }
- return v
-}
-
-// encFloat32 encodes the float32 with address p.
-func encFloat32(i *encInstr, state *encoderState, p unsafe.Pointer) {
- f := *(*float32)(p)
- if f != 0 || state.sendZero {
- v := floatBits(float64(f))
- state.update(i)
- state.encodeUint(v)
- }
-}
-
-// encFloat64 encodes the float64 with address p.
-func encFloat64(i *encInstr, state *encoderState, p unsafe.Pointer) {
- f := *(*float64)(p)
- if f != 0 || state.sendZero {
- state.update(i)
- v := floatBits(f)
- state.encodeUint(v)
- }
-}
-
-// encComplex64 encodes the complex64 with address p.
-// Complex numbers are just a pair of floating-point numbers, real part first.
-func encComplex64(i *encInstr, state *encoderState, p unsafe.Pointer) {
- c := *(*complex64)(p)
- if c != 0+0i || state.sendZero {
- rpart := floatBits(float64(real(c)))
- ipart := floatBits(float64(imag(c)))
- state.update(i)
- state.encodeUint(rpart)
- state.encodeUint(ipart)
- }
-}
-
-// encComplex128 encodes the complex128 with address p.
-func encComplex128(i *encInstr, state *encoderState, p unsafe.Pointer) {
- c := *(*complex128)(p)
- if c != 0+0i || state.sendZero {
- rpart := floatBits(real(c))
- ipart := floatBits(imag(c))
- state.update(i)
- state.encodeUint(rpart)
- state.encodeUint(ipart)
- }
-}
-
-// encUint8Array encodes the byte slice whose header has address p.
-// Byte arrays are encoded as an unsigned count followed by the raw bytes.
-func encUint8Array(i *encInstr, state *encoderState, p unsafe.Pointer) {
- b := *(*[]byte)(p)
- if len(b) > 0 || state.sendZero {
- state.update(i)
- state.encodeUint(uint64(len(b)))
- state.b.Write(b)
- }
-}
-
-// encString encodes the string whose header has address p.
-// Strings are encoded as an unsigned count followed by the raw bytes.
-func encString(i *encInstr, state *encoderState, p unsafe.Pointer) {
- s := *(*string)(p)
- if len(s) > 0 || state.sendZero {
- state.update(i)
- state.encodeUint(uint64(len(s)))
- state.b.WriteString(s)
- }
-}
-
-// encStructTerminator encodes the end of an encoded struct
-// as delta field number of 0.
-func encStructTerminator(i *encInstr, state *encoderState, p unsafe.Pointer) {
- state.encodeUint(0)
-}
-
-// Execution engine
-
-// encEngine an array of instructions indexed by field number of the encoding
-// data, typically a struct. It is executed top to bottom, walking the struct.
-type encEngine struct {
- instr []encInstr
-}
-
-const singletonField = 0
-
-// encodeSingle encodes a single top-level non-struct value.
-func (enc *Encoder) encodeSingle(b *bytes.Buffer, engine *encEngine, basep unsafe.Pointer) {
- state := enc.newEncoderState(b)
- state.fieldnum = singletonField
- // There is no surrounding struct to frame the transmission, so we must
- // generate data even if the item is zero. To do this, set sendZero.
- state.sendZero = true
- instr := &engine.instr[singletonField]
- p := basep // offset will be zero
- if instr.indir > 0 {
- if p = encIndirect(p, instr.indir); p == nil {
- return
- }
- }
- instr.op(instr, state, p)
- enc.freeEncoderState(state)
-}
-
-// encodeStruct encodes a single struct value.
-func (enc *Encoder) encodeStruct(b *bytes.Buffer, engine *encEngine, basep unsafe.Pointer) {
- state := enc.newEncoderState(b)
- state.fieldnum = -1
- for i := 0; i < len(engine.instr); i++ {
- instr := &engine.instr[i]
- p := unsafe.Pointer(uintptr(basep) + instr.offset)
- if instr.indir > 0 {
- if p = encIndirect(p, instr.indir); p == nil {
- continue
- }
- }
- instr.op(instr, state, p)
- }
- enc.freeEncoderState(state)
-}
-
-// encodeArray encodes the array whose 0th element is at p.
-func (enc *Encoder) encodeArray(b *bytes.Buffer, p unsafe.Pointer, op encOp, elemWid uintptr, elemIndir int, length int) {
- state := enc.newEncoderState(b)
- state.fieldnum = -1
- state.sendZero = true
- state.encodeUint(uint64(length))
- for i := 0; i < length; i++ {
- elemp := p
- if elemIndir > 0 {
- up := encIndirect(elemp, elemIndir)
- if up == nil {
- errorf("encodeArray: nil element")
- }
- elemp = up
- }
- op(nil, state, elemp)
- p = unsafe.Pointer(uintptr(p) + elemWid)
- }
- enc.freeEncoderState(state)
-}
-
-// encodeReflectValue is a helper for maps. It encodes the value v.
-func encodeReflectValue(state *encoderState, v reflect.Value, op encOp, indir int) {
- for i := 0; i < indir && v.IsValid(); i++ {
- v = reflect.Indirect(v)
- }
- if !v.IsValid() {
- errorf("encodeReflectValue: nil element")
- }
- op(nil, state, unsafeAddr(v))
-}
-
-// encodeMap encodes a map as unsigned count followed by key:value pairs.
-// Because map internals are not exposed, we must use reflection rather than
-// addresses.
-func (enc *Encoder) encodeMap(b *bytes.Buffer, mv reflect.Value, keyOp, elemOp encOp, keyIndir, elemIndir int) {
- state := enc.newEncoderState(b)
- state.fieldnum = -1
- state.sendZero = true
- keys := mv.MapKeys()
- state.encodeUint(uint64(len(keys)))
- for _, key := range keys {
- encodeReflectValue(state, key, keyOp, keyIndir)
- encodeReflectValue(state, mv.MapIndex(key), elemOp, elemIndir)
- }
- enc.freeEncoderState(state)
-}
-
-// encodeInterface encodes the interface value iv.
-// To send an interface, we send a string identifying the concrete type, followed
-// by the type identifier (which might require defining that type right now), followed
-// by the concrete value. A nil value gets sent as the empty string for the name,
-// followed by no value.
-func (enc *Encoder) encodeInterface(b *bytes.Buffer, iv reflect.Value) {
- // Gobs can encode nil interface values but not typed interface
- // values holding nil pointers, since nil pointers point to no value.
- elem := iv.Elem()
- if elem.Kind() == reflect.Ptr && elem.IsNil() {
- errorf("gob: cannot encode nil pointer of type %s inside interface", iv.Elem().Type())
- }
- state := enc.newEncoderState(b)
- state.fieldnum = -1
- state.sendZero = true
- if iv.IsNil() {
- state.encodeUint(0)
- return
- }
-
- ut := userType(iv.Elem().Type())
- registerLock.RLock()
- name, ok := concreteTypeToName[ut.base]
- registerLock.RUnlock()
- if !ok {
- errorf("type not registered for interface: %s", ut.base)
- }
- // Send the name.
- state.encodeUint(uint64(len(name)))
- _, err := state.b.WriteString(name)
- if err != nil {
- error_(err)
- }
- // Define the type id if necessary.
- enc.sendTypeDescriptor(enc.writer(), state, ut)
- // Send the type id.
- enc.sendTypeId(state, ut)
- // Encode the value into a new buffer. Any nested type definitions
- // should be written to b, before the encoded value.
- enc.pushWriter(b)
- data := new(bytes.Buffer)
- data.Write(spaceForLength)
- enc.encode(data, elem, ut)
- if enc.err != nil {
- error_(enc.err)
- }
- enc.popWriter()
- enc.writeMessage(b, data)
- if enc.err != nil {
- error_(err)
- }
- enc.freeEncoderState(state)
-}
-
-// isZero reports whether the value is the zero of its type.
-func isZero(val reflect.Value) bool {
- switch val.Kind() {
- case reflect.Array:
- for i := 0; i < val.Len(); i++ {
- if !isZero(val.Index(i)) {
- return false
- }
- }
- return true
- case reflect.Map, reflect.Slice, reflect.String:
- return val.Len() == 0
- case reflect.Bool:
- return !val.Bool()
- case reflect.Complex64, reflect.Complex128:
- return val.Complex() == 0
- case reflect.Chan, reflect.Func, reflect.Interface, reflect.Ptr:
- return val.IsNil()
- case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
- return val.Int() == 0
- case reflect.Float32, reflect.Float64:
- return val.Float() == 0
- case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
- return val.Uint() == 0
- case reflect.Struct:
- for i := 0; i < val.NumField(); i++ {
- if !isZero(val.Field(i)) {
- return false
- }
- }
- return true
- }
- panic("unknown type in isZero " + val.Type().String())
-}
-
-// encGobEncoder encodes a value that implements the GobEncoder interface.
-// The data is sent as a byte array.
-func (enc *Encoder) encodeGobEncoder(b *bytes.Buffer, ut *userTypeInfo, v reflect.Value) {
- // TODO: should we catch panics from the called method?
-
- var data []byte
- var err error
- // We know it's one of these.
- switch ut.externalEnc {
- case xGob:
- data, err = v.Interface().(GobEncoder).GobEncode()
- case xBinary:
- data, err = v.Interface().(encoding.BinaryMarshaler).MarshalBinary()
- case xText:
- data, err = v.Interface().(encoding.TextMarshaler).MarshalText()
- }
- if err != nil {
- error_(err)
- }
- state := enc.newEncoderState(b)
- state.fieldnum = -1
- state.encodeUint(uint64(len(data)))
- state.b.Write(data)
- enc.freeEncoderState(state)
-}
-
-var encOpTable = [...]encOp{
- reflect.Bool: encBool,
- reflect.Int: encInt,
- reflect.Int8: encInt8,
- reflect.Int16: encInt16,
- reflect.Int32: encInt32,
- reflect.Int64: encInt64,
- reflect.Uint: encUint,
- reflect.Uint8: encUint8,
- reflect.Uint16: encUint16,
- reflect.Uint32: encUint32,
- reflect.Uint64: encUint64,
- reflect.Uintptr: encUintptr,
- reflect.Float32: encFloat32,
- reflect.Float64: encFloat64,
- reflect.Complex64: encComplex64,
- reflect.Complex128: encComplex128,
- reflect.String: encString,
-}
-
-// encOpFor returns (a pointer to) the encoding op for the base type under rt and
-// the indirection count to reach it.
-func (enc *Encoder) encOpFor(rt reflect.Type, inProgress map[reflect.Type]*encOp) (*encOp, int) {
- ut := userType(rt)
- // If the type implements GobEncoder, we handle it without further processing.
- if ut.externalEnc != 0 {
- return enc.gobEncodeOpFor(ut)
- }
- // If this type is already in progress, it's a recursive type (e.g. map[string]*T).
- // Return the pointer to the op we're already building.
- if opPtr := inProgress[rt]; opPtr != nil {
- return opPtr, ut.indir
- }
- typ := ut.base
- indir := ut.indir
- k := typ.Kind()
- var op encOp
- if int(k) < len(encOpTable) {
- op = encOpTable[k]
- }
- if op == nil {
- inProgress[rt] = &op
- // Special cases
- switch t := typ; t.Kind() {
- case reflect.Slice:
- if t.Elem().Kind() == reflect.Uint8 {
- op = encUint8Array
- break
- }
- // Slices have a header; we decode it to find the underlying array.
- elemOp, elemIndir := enc.encOpFor(t.Elem(), inProgress)
- op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
- slice := (*reflect.SliceHeader)(p)
- if !state.sendZero && slice.Len == 0 {
- return
- }
- state.update(i)
- state.enc.encodeArray(state.b, unsafe.Pointer(slice.Data), *elemOp, t.Elem().Size(), elemIndir, int(slice.Len))
- }
- case reflect.Array:
- // True arrays have size in the type.
- elemOp, elemIndir := enc.encOpFor(t.Elem(), inProgress)
- op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
- state.update(i)
- state.enc.encodeArray(state.b, p, *elemOp, t.Elem().Size(), elemIndir, t.Len())
- }
- case reflect.Map:
- keyOp, keyIndir := enc.encOpFor(t.Key(), inProgress)
- elemOp, elemIndir := enc.encOpFor(t.Elem(), inProgress)
- op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
- // Maps cannot be accessed by moving addresses around the way
- // that slices etc. can. We must recover a full reflection value for
- // the iteration.
- v := reflect.NewAt(t, unsafe.Pointer(p)).Elem()
- mv := reflect.Indirect(v)
- // We send zero-length (but non-nil) maps because the
- // receiver might want to use the map. (Maps don't use append.)
- if !state.sendZero && mv.IsNil() {
- return
- }
- state.update(i)
- state.enc.encodeMap(state.b, mv, *keyOp, *elemOp, keyIndir, elemIndir)
- }
- case reflect.Struct:
- // Generate a closure that calls out to the engine for the nested type.
- enc.getEncEngine(userType(typ))
- info := mustGetTypeInfo(typ)
- op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
- state.update(i)
- // indirect through info to delay evaluation for recursive structs
- state.enc.encodeStruct(state.b, info.encoder, p)
- }
- case reflect.Interface:
- op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
- // Interfaces transmit the name and contents of the concrete
- // value they contain.
- v := reflect.NewAt(t, unsafe.Pointer(p)).Elem()
- iv := reflect.Indirect(v)
- if !state.sendZero && (!iv.IsValid() || iv.IsNil()) {
- return
- }
- state.update(i)
- state.enc.encodeInterface(state.b, iv)
- }
- }
- }
- if op == nil {
- errorf("can't happen: encode type %s", rt)
- }
- return &op, indir
-}
-
-// gobEncodeOpFor returns the op for a type that is known to implement
-// GobEncoder.
-func (enc *Encoder) gobEncodeOpFor(ut *userTypeInfo) (*encOp, int) {
- rt := ut.user
- if ut.encIndir == -1 {
- rt = reflect.PtrTo(rt)
- } else if ut.encIndir > 0 {
- for i := int8(0); i < ut.encIndir; i++ {
- rt = rt.Elem()
- }
- }
- var op encOp
- op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
- var v reflect.Value
- if ut.encIndir == -1 {
- // Need to climb up one level to turn value into pointer.
- v = reflect.NewAt(rt, unsafe.Pointer(&p)).Elem()
- } else {
- v = reflect.NewAt(rt, p).Elem()
- }
- if !state.sendZero && isZero(v) {
- return
- }
- state.update(i)
- state.enc.encodeGobEncoder(state.b, ut, v)
- }
- return &op, int(ut.encIndir) // encIndir: op will get called with p == address of receiver.
-}
-
-// compileEnc returns the engine to compile the type.
-func (enc *Encoder) compileEnc(ut *userTypeInfo) *encEngine {
- srt := ut.base
- engine := new(encEngine)
- seen := make(map[reflect.Type]*encOp)
- rt := ut.base
- if ut.externalEnc != 0 {
- rt = ut.user
- }
- if ut.externalEnc == 0 && srt.Kind() == reflect.Struct {
- for fieldNum, wireFieldNum := 0, 0; fieldNum < srt.NumField(); fieldNum++ {
- f := srt.Field(fieldNum)
- if !isSent(&f) {
- continue
- }
- op, indir := enc.encOpFor(f.Type, seen)
- engine.instr = append(engine.instr, encInstr{*op, wireFieldNum, indir, uintptr(f.Offset)})
- wireFieldNum++
- }
- if srt.NumField() > 0 && len(engine.instr) == 0 {
- errorf("type %s has no exported fields", rt)
- }
- engine.instr = append(engine.instr, encInstr{encStructTerminator, 0, 0, 0})
- } else {
- engine.instr = make([]encInstr, 1)
- op, indir := enc.encOpFor(rt, seen)
- engine.instr[0] = encInstr{*op, singletonField, indir, 0} // offset is zero
- }
- return engine
-}
-
-// getEncEngine returns the engine to compile the type.
-// typeLock must be held (or we're in initialization and guaranteed single-threaded).
-func (enc *Encoder) getEncEngine(ut *userTypeInfo) *encEngine {
- info, err1 := getTypeInfo(ut)
- if err1 != nil {
- error_(err1)
- }
- if info.encoder == nil {
- // Assign the encEngine now, so recursive types work correctly. But...
- info.encoder = new(encEngine)
- // ... if we fail to complete building the engine, don't cache the half-built machine.
- // Doing this here means we won't cache a type that is itself OK but
- // that contains a nested type that won't compile. The result is consistent
- // error behavior when Encode is called multiple times on the top-level type.
- ok := false
- defer func() {
- if !ok {
- info.encoder = nil
- }
- }()
- info.encoder = enc.compileEnc(ut)
- ok = true
- }
- return info.encoder
-}
-
-// lockAndGetEncEngine is a function that locks and compiles.
-// This lets us hold the lock only while compiling, not when encoding.
-func (enc *Encoder) lockAndGetEncEngine(ut *userTypeInfo) *encEngine {
- typeLock.Lock()
- defer typeLock.Unlock()
- return enc.getEncEngine(ut)
-}
-
-func (enc *Encoder) encode(b *bytes.Buffer, value reflect.Value, ut *userTypeInfo) {
- defer catchError(&enc.err)
- engine := enc.lockAndGetEncEngine(ut)
- indir := ut.indir
- if ut.externalEnc != 0 {
- indir = int(ut.encIndir)
- }
- for i := 0; i < indir; i++ {
- value = reflect.Indirect(value)
- }
- if ut.externalEnc == 0 && value.Type().Kind() == reflect.Struct {
- enc.encodeStruct(b, engine, unsafeAddr(value))
- } else {
- enc.encodeSingle(b, engine, unsafeAddr(value))
- }
-}