diff options
Diffstat (limited to 'src/pkg/encoding/gob/encode.go')
-rw-r--r-- | src/pkg/encoding/gob/encode.go | 760 |
1 files changed, 0 insertions, 760 deletions
diff --git a/src/pkg/encoding/gob/encode.go b/src/pkg/encoding/gob/encode.go deleted file mode 100644 index 7831c02d1..000000000 --- a/src/pkg/encoding/gob/encode.go +++ /dev/null @@ -1,760 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package gob - -import ( - "bytes" - "encoding" - "math" - "reflect" - "unsafe" -) - -const uint64Size = int(unsafe.Sizeof(uint64(0))) - -// encoderState is the global execution state of an instance of the encoder. -// Field numbers are delta encoded and always increase. The field -// number is initialized to -1 so 0 comes out as delta(1). A delta of -// 0 terminates the structure. -type encoderState struct { - enc *Encoder - b *bytes.Buffer - sendZero bool // encoding an array element or map key/value pair; send zero values - fieldnum int // the last field number written. - buf [1 + uint64Size]byte // buffer used by the encoder; here to avoid allocation. - next *encoderState // for free list -} - -func (enc *Encoder) newEncoderState(b *bytes.Buffer) *encoderState { - e := enc.freeList - if e == nil { - e = new(encoderState) - e.enc = enc - } else { - enc.freeList = e.next - } - e.sendZero = false - e.fieldnum = 0 - e.b = b - return e -} - -func (enc *Encoder) freeEncoderState(e *encoderState) { - e.next = enc.freeList - enc.freeList = e -} - -// Unsigned integers have a two-state encoding. If the number is less -// than 128 (0 through 0x7F), its value is written directly. -// Otherwise the value is written in big-endian byte order preceded -// by the byte length, negated. - -// encodeUint writes an encoded unsigned integer to state.b. -func (state *encoderState) encodeUint(x uint64) { - if x <= 0x7F { - err := state.b.WriteByte(uint8(x)) - if err != nil { - error_(err) - } - return - } - i := uint64Size - for x > 0 { - state.buf[i] = uint8(x) - x >>= 8 - i-- - } - state.buf[i] = uint8(i - uint64Size) // = loop count, negated - _, err := state.b.Write(state.buf[i : uint64Size+1]) - if err != nil { - error_(err) - } -} - -// encodeInt writes an encoded signed integer to state.w. -// The low bit of the encoding says whether to bit complement the (other bits of the) -// uint to recover the int. -func (state *encoderState) encodeInt(i int64) { - var x uint64 - if i < 0 { - x = uint64(^i<<1) | 1 - } else { - x = uint64(i << 1) - } - state.encodeUint(uint64(x)) -} - -// encOp is the signature of an encoding operator for a given type. -type encOp func(i *encInstr, state *encoderState, p unsafe.Pointer) - -// The 'instructions' of the encoding machine -type encInstr struct { - op encOp - field int // field number - indir int // how many pointer indirections to reach the value in the struct - offset uintptr // offset in the structure of the field to encode -} - -// update emits a field number and updates the state to record its value for delta encoding. -// If the instruction pointer is nil, it does nothing -func (state *encoderState) update(instr *encInstr) { - if instr != nil { - state.encodeUint(uint64(instr.field - state.fieldnum)) - state.fieldnum = instr.field - } -} - -// Each encoder for a composite is responsible for handling any -// indirections associated with the elements of the data structure. -// If any pointer so reached is nil, no bytes are written. If the -// data item is zero, no bytes are written. Single values - ints, -// strings etc. - are indirected before calling their encoders. -// Otherwise, the output (for a scalar) is the field number, as an -// encoded integer, followed by the field data in its appropriate -// format. - -// encIndirect dereferences p indir times and returns the result. -func encIndirect(p unsafe.Pointer, indir int) unsafe.Pointer { - for ; indir > 0; indir-- { - p = *(*unsafe.Pointer)(p) - if p == nil { - return unsafe.Pointer(nil) - } - } - return p -} - -// encBool encodes the bool with address p as an unsigned 0 or 1. -func encBool(i *encInstr, state *encoderState, p unsafe.Pointer) { - b := *(*bool)(p) - if b || state.sendZero { - state.update(i) - if b { - state.encodeUint(1) - } else { - state.encodeUint(0) - } - } -} - -// encInt encodes the int with address p. -func encInt(i *encInstr, state *encoderState, p unsafe.Pointer) { - v := int64(*(*int)(p)) - if v != 0 || state.sendZero { - state.update(i) - state.encodeInt(v) - } -} - -// encUint encodes the uint with address p. -func encUint(i *encInstr, state *encoderState, p unsafe.Pointer) { - v := uint64(*(*uint)(p)) - if v != 0 || state.sendZero { - state.update(i) - state.encodeUint(v) - } -} - -// encInt8 encodes the int8 with address p. -func encInt8(i *encInstr, state *encoderState, p unsafe.Pointer) { - v := int64(*(*int8)(p)) - if v != 0 || state.sendZero { - state.update(i) - state.encodeInt(v) - } -} - -// encUint8 encodes the uint8 with address p. -func encUint8(i *encInstr, state *encoderState, p unsafe.Pointer) { - v := uint64(*(*uint8)(p)) - if v != 0 || state.sendZero { - state.update(i) - state.encodeUint(v) - } -} - -// encInt16 encodes the int16 with address p. -func encInt16(i *encInstr, state *encoderState, p unsafe.Pointer) { - v := int64(*(*int16)(p)) - if v != 0 || state.sendZero { - state.update(i) - state.encodeInt(v) - } -} - -// encUint16 encodes the uint16 with address p. -func encUint16(i *encInstr, state *encoderState, p unsafe.Pointer) { - v := uint64(*(*uint16)(p)) - if v != 0 || state.sendZero { - state.update(i) - state.encodeUint(v) - } -} - -// encInt32 encodes the int32 with address p. -func encInt32(i *encInstr, state *encoderState, p unsafe.Pointer) { - v := int64(*(*int32)(p)) - if v != 0 || state.sendZero { - state.update(i) - state.encodeInt(v) - } -} - -// encUint encodes the uint32 with address p. -func encUint32(i *encInstr, state *encoderState, p unsafe.Pointer) { - v := uint64(*(*uint32)(p)) - if v != 0 || state.sendZero { - state.update(i) - state.encodeUint(v) - } -} - -// encInt64 encodes the int64 with address p. -func encInt64(i *encInstr, state *encoderState, p unsafe.Pointer) { - v := *(*int64)(p) - if v != 0 || state.sendZero { - state.update(i) - state.encodeInt(v) - } -} - -// encInt64 encodes the uint64 with address p. -func encUint64(i *encInstr, state *encoderState, p unsafe.Pointer) { - v := *(*uint64)(p) - if v != 0 || state.sendZero { - state.update(i) - state.encodeUint(v) - } -} - -// encUintptr encodes the uintptr with address p. -func encUintptr(i *encInstr, state *encoderState, p unsafe.Pointer) { - v := uint64(*(*uintptr)(p)) - if v != 0 || state.sendZero { - state.update(i) - state.encodeUint(v) - } -} - -// floatBits returns a uint64 holding the bits of a floating-point number. -// Floating-point numbers are transmitted as uint64s holding the bits -// of the underlying representation. They are sent byte-reversed, with -// the exponent end coming out first, so integer floating point numbers -// (for example) transmit more compactly. This routine does the -// swizzling. -func floatBits(f float64) uint64 { - u := math.Float64bits(f) - var v uint64 - for i := 0; i < 8; i++ { - v <<= 8 - v |= u & 0xFF - u >>= 8 - } - return v -} - -// encFloat32 encodes the float32 with address p. -func encFloat32(i *encInstr, state *encoderState, p unsafe.Pointer) { - f := *(*float32)(p) - if f != 0 || state.sendZero { - v := floatBits(float64(f)) - state.update(i) - state.encodeUint(v) - } -} - -// encFloat64 encodes the float64 with address p. -func encFloat64(i *encInstr, state *encoderState, p unsafe.Pointer) { - f := *(*float64)(p) - if f != 0 || state.sendZero { - state.update(i) - v := floatBits(f) - state.encodeUint(v) - } -} - -// encComplex64 encodes the complex64 with address p. -// Complex numbers are just a pair of floating-point numbers, real part first. -func encComplex64(i *encInstr, state *encoderState, p unsafe.Pointer) { - c := *(*complex64)(p) - if c != 0+0i || state.sendZero { - rpart := floatBits(float64(real(c))) - ipart := floatBits(float64(imag(c))) - state.update(i) - state.encodeUint(rpart) - state.encodeUint(ipart) - } -} - -// encComplex128 encodes the complex128 with address p. -func encComplex128(i *encInstr, state *encoderState, p unsafe.Pointer) { - c := *(*complex128)(p) - if c != 0+0i || state.sendZero { - rpart := floatBits(real(c)) - ipart := floatBits(imag(c)) - state.update(i) - state.encodeUint(rpart) - state.encodeUint(ipart) - } -} - -// encUint8Array encodes the byte slice whose header has address p. -// Byte arrays are encoded as an unsigned count followed by the raw bytes. -func encUint8Array(i *encInstr, state *encoderState, p unsafe.Pointer) { - b := *(*[]byte)(p) - if len(b) > 0 || state.sendZero { - state.update(i) - state.encodeUint(uint64(len(b))) - state.b.Write(b) - } -} - -// encString encodes the string whose header has address p. -// Strings are encoded as an unsigned count followed by the raw bytes. -func encString(i *encInstr, state *encoderState, p unsafe.Pointer) { - s := *(*string)(p) - if len(s) > 0 || state.sendZero { - state.update(i) - state.encodeUint(uint64(len(s))) - state.b.WriteString(s) - } -} - -// encStructTerminator encodes the end of an encoded struct -// as delta field number of 0. -func encStructTerminator(i *encInstr, state *encoderState, p unsafe.Pointer) { - state.encodeUint(0) -} - -// Execution engine - -// encEngine an array of instructions indexed by field number of the encoding -// data, typically a struct. It is executed top to bottom, walking the struct. -type encEngine struct { - instr []encInstr -} - -const singletonField = 0 - -// encodeSingle encodes a single top-level non-struct value. -func (enc *Encoder) encodeSingle(b *bytes.Buffer, engine *encEngine, basep unsafe.Pointer) { - state := enc.newEncoderState(b) - state.fieldnum = singletonField - // There is no surrounding struct to frame the transmission, so we must - // generate data even if the item is zero. To do this, set sendZero. - state.sendZero = true - instr := &engine.instr[singletonField] - p := basep // offset will be zero - if instr.indir > 0 { - if p = encIndirect(p, instr.indir); p == nil { - return - } - } - instr.op(instr, state, p) - enc.freeEncoderState(state) -} - -// encodeStruct encodes a single struct value. -func (enc *Encoder) encodeStruct(b *bytes.Buffer, engine *encEngine, basep unsafe.Pointer) { - state := enc.newEncoderState(b) - state.fieldnum = -1 - for i := 0; i < len(engine.instr); i++ { - instr := &engine.instr[i] - p := unsafe.Pointer(uintptr(basep) + instr.offset) - if instr.indir > 0 { - if p = encIndirect(p, instr.indir); p == nil { - continue - } - } - instr.op(instr, state, p) - } - enc.freeEncoderState(state) -} - -// encodeArray encodes the array whose 0th element is at p. -func (enc *Encoder) encodeArray(b *bytes.Buffer, p unsafe.Pointer, op encOp, elemWid uintptr, elemIndir int, length int) { - state := enc.newEncoderState(b) - state.fieldnum = -1 - state.sendZero = true - state.encodeUint(uint64(length)) - for i := 0; i < length; i++ { - elemp := p - if elemIndir > 0 { - up := encIndirect(elemp, elemIndir) - if up == nil { - errorf("encodeArray: nil element") - } - elemp = up - } - op(nil, state, elemp) - p = unsafe.Pointer(uintptr(p) + elemWid) - } - enc.freeEncoderState(state) -} - -// encodeReflectValue is a helper for maps. It encodes the value v. -func encodeReflectValue(state *encoderState, v reflect.Value, op encOp, indir int) { - for i := 0; i < indir && v.IsValid(); i++ { - v = reflect.Indirect(v) - } - if !v.IsValid() { - errorf("encodeReflectValue: nil element") - } - op(nil, state, unsafeAddr(v)) -} - -// encodeMap encodes a map as unsigned count followed by key:value pairs. -// Because map internals are not exposed, we must use reflection rather than -// addresses. -func (enc *Encoder) encodeMap(b *bytes.Buffer, mv reflect.Value, keyOp, elemOp encOp, keyIndir, elemIndir int) { - state := enc.newEncoderState(b) - state.fieldnum = -1 - state.sendZero = true - keys := mv.MapKeys() - state.encodeUint(uint64(len(keys))) - for _, key := range keys { - encodeReflectValue(state, key, keyOp, keyIndir) - encodeReflectValue(state, mv.MapIndex(key), elemOp, elemIndir) - } - enc.freeEncoderState(state) -} - -// encodeInterface encodes the interface value iv. -// To send an interface, we send a string identifying the concrete type, followed -// by the type identifier (which might require defining that type right now), followed -// by the concrete value. A nil value gets sent as the empty string for the name, -// followed by no value. -func (enc *Encoder) encodeInterface(b *bytes.Buffer, iv reflect.Value) { - // Gobs can encode nil interface values but not typed interface - // values holding nil pointers, since nil pointers point to no value. - elem := iv.Elem() - if elem.Kind() == reflect.Ptr && elem.IsNil() { - errorf("gob: cannot encode nil pointer of type %s inside interface", iv.Elem().Type()) - } - state := enc.newEncoderState(b) - state.fieldnum = -1 - state.sendZero = true - if iv.IsNil() { - state.encodeUint(0) - return - } - - ut := userType(iv.Elem().Type()) - registerLock.RLock() - name, ok := concreteTypeToName[ut.base] - registerLock.RUnlock() - if !ok { - errorf("type not registered for interface: %s", ut.base) - } - // Send the name. - state.encodeUint(uint64(len(name))) - _, err := state.b.WriteString(name) - if err != nil { - error_(err) - } - // Define the type id if necessary. - enc.sendTypeDescriptor(enc.writer(), state, ut) - // Send the type id. - enc.sendTypeId(state, ut) - // Encode the value into a new buffer. Any nested type definitions - // should be written to b, before the encoded value. - enc.pushWriter(b) - data := new(bytes.Buffer) - data.Write(spaceForLength) - enc.encode(data, elem, ut) - if enc.err != nil { - error_(enc.err) - } - enc.popWriter() - enc.writeMessage(b, data) - if enc.err != nil { - error_(err) - } - enc.freeEncoderState(state) -} - -// isZero reports whether the value is the zero of its type. -func isZero(val reflect.Value) bool { - switch val.Kind() { - case reflect.Array: - for i := 0; i < val.Len(); i++ { - if !isZero(val.Index(i)) { - return false - } - } - return true - case reflect.Map, reflect.Slice, reflect.String: - return val.Len() == 0 - case reflect.Bool: - return !val.Bool() - case reflect.Complex64, reflect.Complex128: - return val.Complex() == 0 - case reflect.Chan, reflect.Func, reflect.Interface, reflect.Ptr: - return val.IsNil() - case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: - return val.Int() == 0 - case reflect.Float32, reflect.Float64: - return val.Float() == 0 - case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: - return val.Uint() == 0 - case reflect.Struct: - for i := 0; i < val.NumField(); i++ { - if !isZero(val.Field(i)) { - return false - } - } - return true - } - panic("unknown type in isZero " + val.Type().String()) -} - -// encGobEncoder encodes a value that implements the GobEncoder interface. -// The data is sent as a byte array. -func (enc *Encoder) encodeGobEncoder(b *bytes.Buffer, ut *userTypeInfo, v reflect.Value) { - // TODO: should we catch panics from the called method? - - var data []byte - var err error - // We know it's one of these. - switch ut.externalEnc { - case xGob: - data, err = v.Interface().(GobEncoder).GobEncode() - case xBinary: - data, err = v.Interface().(encoding.BinaryMarshaler).MarshalBinary() - case xText: - data, err = v.Interface().(encoding.TextMarshaler).MarshalText() - } - if err != nil { - error_(err) - } - state := enc.newEncoderState(b) - state.fieldnum = -1 - state.encodeUint(uint64(len(data))) - state.b.Write(data) - enc.freeEncoderState(state) -} - -var encOpTable = [...]encOp{ - reflect.Bool: encBool, - reflect.Int: encInt, - reflect.Int8: encInt8, - reflect.Int16: encInt16, - reflect.Int32: encInt32, - reflect.Int64: encInt64, - reflect.Uint: encUint, - reflect.Uint8: encUint8, - reflect.Uint16: encUint16, - reflect.Uint32: encUint32, - reflect.Uint64: encUint64, - reflect.Uintptr: encUintptr, - reflect.Float32: encFloat32, - reflect.Float64: encFloat64, - reflect.Complex64: encComplex64, - reflect.Complex128: encComplex128, - reflect.String: encString, -} - -// encOpFor returns (a pointer to) the encoding op for the base type under rt and -// the indirection count to reach it. -func (enc *Encoder) encOpFor(rt reflect.Type, inProgress map[reflect.Type]*encOp) (*encOp, int) { - ut := userType(rt) - // If the type implements GobEncoder, we handle it without further processing. - if ut.externalEnc != 0 { - return enc.gobEncodeOpFor(ut) - } - // If this type is already in progress, it's a recursive type (e.g. map[string]*T). - // Return the pointer to the op we're already building. - if opPtr := inProgress[rt]; opPtr != nil { - return opPtr, ut.indir - } - typ := ut.base - indir := ut.indir - k := typ.Kind() - var op encOp - if int(k) < len(encOpTable) { - op = encOpTable[k] - } - if op == nil { - inProgress[rt] = &op - // Special cases - switch t := typ; t.Kind() { - case reflect.Slice: - if t.Elem().Kind() == reflect.Uint8 { - op = encUint8Array - break - } - // Slices have a header; we decode it to find the underlying array. - elemOp, elemIndir := enc.encOpFor(t.Elem(), inProgress) - op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { - slice := (*reflect.SliceHeader)(p) - if !state.sendZero && slice.Len == 0 { - return - } - state.update(i) - state.enc.encodeArray(state.b, unsafe.Pointer(slice.Data), *elemOp, t.Elem().Size(), elemIndir, int(slice.Len)) - } - case reflect.Array: - // True arrays have size in the type. - elemOp, elemIndir := enc.encOpFor(t.Elem(), inProgress) - op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { - state.update(i) - state.enc.encodeArray(state.b, p, *elemOp, t.Elem().Size(), elemIndir, t.Len()) - } - case reflect.Map: - keyOp, keyIndir := enc.encOpFor(t.Key(), inProgress) - elemOp, elemIndir := enc.encOpFor(t.Elem(), inProgress) - op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { - // Maps cannot be accessed by moving addresses around the way - // that slices etc. can. We must recover a full reflection value for - // the iteration. - v := reflect.NewAt(t, unsafe.Pointer(p)).Elem() - mv := reflect.Indirect(v) - // We send zero-length (but non-nil) maps because the - // receiver might want to use the map. (Maps don't use append.) - if !state.sendZero && mv.IsNil() { - return - } - state.update(i) - state.enc.encodeMap(state.b, mv, *keyOp, *elemOp, keyIndir, elemIndir) - } - case reflect.Struct: - // Generate a closure that calls out to the engine for the nested type. - enc.getEncEngine(userType(typ)) - info := mustGetTypeInfo(typ) - op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { - state.update(i) - // indirect through info to delay evaluation for recursive structs - state.enc.encodeStruct(state.b, info.encoder, p) - } - case reflect.Interface: - op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { - // Interfaces transmit the name and contents of the concrete - // value they contain. - v := reflect.NewAt(t, unsafe.Pointer(p)).Elem() - iv := reflect.Indirect(v) - if !state.sendZero && (!iv.IsValid() || iv.IsNil()) { - return - } - state.update(i) - state.enc.encodeInterface(state.b, iv) - } - } - } - if op == nil { - errorf("can't happen: encode type %s", rt) - } - return &op, indir -} - -// gobEncodeOpFor returns the op for a type that is known to implement -// GobEncoder. -func (enc *Encoder) gobEncodeOpFor(ut *userTypeInfo) (*encOp, int) { - rt := ut.user - if ut.encIndir == -1 { - rt = reflect.PtrTo(rt) - } else if ut.encIndir > 0 { - for i := int8(0); i < ut.encIndir; i++ { - rt = rt.Elem() - } - } - var op encOp - op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { - var v reflect.Value - if ut.encIndir == -1 { - // Need to climb up one level to turn value into pointer. - v = reflect.NewAt(rt, unsafe.Pointer(&p)).Elem() - } else { - v = reflect.NewAt(rt, p).Elem() - } - if !state.sendZero && isZero(v) { - return - } - state.update(i) - state.enc.encodeGobEncoder(state.b, ut, v) - } - return &op, int(ut.encIndir) // encIndir: op will get called with p == address of receiver. -} - -// compileEnc returns the engine to compile the type. -func (enc *Encoder) compileEnc(ut *userTypeInfo) *encEngine { - srt := ut.base - engine := new(encEngine) - seen := make(map[reflect.Type]*encOp) - rt := ut.base - if ut.externalEnc != 0 { - rt = ut.user - } - if ut.externalEnc == 0 && srt.Kind() == reflect.Struct { - for fieldNum, wireFieldNum := 0, 0; fieldNum < srt.NumField(); fieldNum++ { - f := srt.Field(fieldNum) - if !isSent(&f) { - continue - } - op, indir := enc.encOpFor(f.Type, seen) - engine.instr = append(engine.instr, encInstr{*op, wireFieldNum, indir, uintptr(f.Offset)}) - wireFieldNum++ - } - if srt.NumField() > 0 && len(engine.instr) == 0 { - errorf("type %s has no exported fields", rt) - } - engine.instr = append(engine.instr, encInstr{encStructTerminator, 0, 0, 0}) - } else { - engine.instr = make([]encInstr, 1) - op, indir := enc.encOpFor(rt, seen) - engine.instr[0] = encInstr{*op, singletonField, indir, 0} // offset is zero - } - return engine -} - -// getEncEngine returns the engine to compile the type. -// typeLock must be held (or we're in initialization and guaranteed single-threaded). -func (enc *Encoder) getEncEngine(ut *userTypeInfo) *encEngine { - info, err1 := getTypeInfo(ut) - if err1 != nil { - error_(err1) - } - if info.encoder == nil { - // Assign the encEngine now, so recursive types work correctly. But... - info.encoder = new(encEngine) - // ... if we fail to complete building the engine, don't cache the half-built machine. - // Doing this here means we won't cache a type that is itself OK but - // that contains a nested type that won't compile. The result is consistent - // error behavior when Encode is called multiple times on the top-level type. - ok := false - defer func() { - if !ok { - info.encoder = nil - } - }() - info.encoder = enc.compileEnc(ut) - ok = true - } - return info.encoder -} - -// lockAndGetEncEngine is a function that locks and compiles. -// This lets us hold the lock only while compiling, not when encoding. -func (enc *Encoder) lockAndGetEncEngine(ut *userTypeInfo) *encEngine { - typeLock.Lock() - defer typeLock.Unlock() - return enc.getEncEngine(ut) -} - -func (enc *Encoder) encode(b *bytes.Buffer, value reflect.Value, ut *userTypeInfo) { - defer catchError(&enc.err) - engine := enc.lockAndGetEncEngine(ut) - indir := ut.indir - if ut.externalEnc != 0 { - indir = int(ut.encIndir) - } - for i := 0; i < indir; i++ { - value = reflect.Indirect(value) - } - if ut.externalEnc == 0 && value.Type().Kind() == reflect.Struct { - enc.encodeStruct(b, engine, unsafeAddr(value)) - } else { - enc.encodeSingle(b, engine, unsafeAddr(value)) - } -} |