summaryrefslogtreecommitdiff
path: root/src/pkg/exp/bignum/integer.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/exp/bignum/integer.go')
-rw-r--r--src/pkg/exp/bignum/integer.go520
1 files changed, 0 insertions, 520 deletions
diff --git a/src/pkg/exp/bignum/integer.go b/src/pkg/exp/bignum/integer.go
deleted file mode 100644
index a8d26829d..000000000
--- a/src/pkg/exp/bignum/integer.go
+++ /dev/null
@@ -1,520 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Integer numbers
-//
-// Integers are normalized if the mantissa is normalized and the sign is
-// false for mant == 0. Use MakeInt to create normalized Integers.
-
-package bignum
-
-import (
- "fmt"
-)
-
-// TODO(gri) Complete the set of in-place operations.
-
-// Integer represents a signed integer value of arbitrary precision.
-//
-type Integer struct {
- sign bool
- mant Natural
-}
-
-
-// MakeInt makes an integer given a sign and a mantissa.
-// The number is positive (>= 0) if sign is false or the
-// mantissa is zero; it is negative otherwise.
-//
-func MakeInt(sign bool, mant Natural) *Integer {
- if mant.IsZero() {
- sign = false // normalize
- }
- return &Integer{sign, mant}
-}
-
-
-// Int creates a small integer with value x.
-//
-func Int(x int64) *Integer {
- var ux uint64
- if x < 0 {
- // For the most negative x, -x == x, and
- // the bit pattern has the correct value.
- ux = uint64(-x)
- } else {
- ux = uint64(x)
- }
- return MakeInt(x < 0, Nat(ux))
-}
-
-
-// Value returns the value of x, if x fits into an int64;
-// otherwise the result is undefined.
-//
-func (x *Integer) Value() int64 {
- z := int64(x.mant.Value())
- if x.sign {
- z = -z
- }
- return z
-}
-
-
-// Abs returns the absolute value of x.
-//
-func (x *Integer) Abs() Natural { return x.mant }
-
-
-// Predicates
-
-// IsEven returns true iff x is divisible by 2.
-//
-func (x *Integer) IsEven() bool { return x.mant.IsEven() }
-
-
-// IsOdd returns true iff x is not divisible by 2.
-//
-func (x *Integer) IsOdd() bool { return x.mant.IsOdd() }
-
-
-// IsZero returns true iff x == 0.
-//
-func (x *Integer) IsZero() bool { return x.mant.IsZero() }
-
-
-// IsNeg returns true iff x < 0.
-//
-func (x *Integer) IsNeg() bool { return x.sign && !x.mant.IsZero() }
-
-
-// IsPos returns true iff x >= 0.
-//
-func (x *Integer) IsPos() bool { return !x.sign && !x.mant.IsZero() }
-
-
-// Operations
-
-// Neg returns the negated value of x.
-//
-func (x *Integer) Neg() *Integer { return MakeInt(!x.sign, x.mant) }
-
-
-// Iadd sets z to the sum x + y.
-// z must exist and may be x or y.
-//
-func Iadd(z, x, y *Integer) {
- if x.sign == y.sign {
- // x + y == x + y
- // (-x) + (-y) == -(x + y)
- z.sign = x.sign
- Nadd(&z.mant, x.mant, y.mant)
- } else {
- // x + (-y) == x - y == -(y - x)
- // (-x) + y == y - x == -(x - y)
- if x.mant.Cmp(y.mant) >= 0 {
- z.sign = x.sign
- Nsub(&z.mant, x.mant, y.mant)
- } else {
- z.sign = !x.sign
- Nsub(&z.mant, y.mant, x.mant)
- }
- }
-}
-
-
-// Add returns the sum x + y.
-//
-func (x *Integer) Add(y *Integer) *Integer {
- var z Integer
- Iadd(&z, x, y)
- return &z
-}
-
-
-func Isub(z, x, y *Integer) {
- if x.sign != y.sign {
- // x - (-y) == x + y
- // (-x) - y == -(x + y)
- z.sign = x.sign
- Nadd(&z.mant, x.mant, y.mant)
- } else {
- // x - y == x - y == -(y - x)
- // (-x) - (-y) == y - x == -(x - y)
- if x.mant.Cmp(y.mant) >= 0 {
- z.sign = x.sign
- Nsub(&z.mant, x.mant, y.mant)
- } else {
- z.sign = !x.sign
- Nsub(&z.mant, y.mant, x.mant)
- }
- }
-}
-
-
-// Sub returns the difference x - y.
-//
-func (x *Integer) Sub(y *Integer) *Integer {
- var z Integer
- Isub(&z, x, y)
- return &z
-}
-
-
-// Nscale sets *z to the scaled value (*z) * d.
-//
-func Iscale(z *Integer, d int64) {
- f := uint64(d)
- if d < 0 {
- f = uint64(-d)
- }
- z.sign = z.sign != (d < 0)
- Nscale(&z.mant, f)
-}
-
-
-// Mul1 returns the product x * d.
-//
-func (x *Integer) Mul1(d int64) *Integer {
- f := uint64(d)
- if d < 0 {
- f = uint64(-d)
- }
- return MakeInt(x.sign != (d < 0), x.mant.Mul1(f))
-}
-
-
-// Mul returns the product x * y.
-//
-func (x *Integer) Mul(y *Integer) *Integer {
- // x * y == x * y
- // x * (-y) == -(x * y)
- // (-x) * y == -(x * y)
- // (-x) * (-y) == x * y
- return MakeInt(x.sign != y.sign, x.mant.Mul(y.mant))
-}
-
-
-// MulNat returns the product x * y, where y is a (unsigned) natural number.
-//
-func (x *Integer) MulNat(y Natural) *Integer {
- // x * y == x * y
- // (-x) * y == -(x * y)
- return MakeInt(x.sign, x.mant.Mul(y))
-}
-
-
-// Quo returns the quotient q = x / y for y != 0.
-// If y == 0, a division-by-zero run-time error occurs.
-//
-// Quo and Rem implement T-division and modulus (like C99):
-//
-// q = x.Quo(y) = trunc(x/y) (truncation towards zero)
-// r = x.Rem(y) = x - y*q
-//
-// (Daan Leijen, ``Division and Modulus for Computer Scientists''.)
-//
-func (x *Integer) Quo(y *Integer) *Integer {
- // x / y == x / y
- // x / (-y) == -(x / y)
- // (-x) / y == -(x / y)
- // (-x) / (-y) == x / y
- return MakeInt(x.sign != y.sign, x.mant.Div(y.mant))
-}
-
-
-// Rem returns the remainder r of the division x / y for y != 0,
-// with r = x - y*x.Quo(y). Unless r is zero, its sign corresponds
-// to the sign of x.
-// If y == 0, a division-by-zero run-time error occurs.
-//
-func (x *Integer) Rem(y *Integer) *Integer {
- // x % y == x % y
- // x % (-y) == x % y
- // (-x) % y == -(x % y)
- // (-x) % (-y) == -(x % y)
- return MakeInt(x.sign, x.mant.Mod(y.mant))
-}
-
-
-// QuoRem returns the pair (x.Quo(y), x.Rem(y)) for y != 0.
-// If y == 0, a division-by-zero run-time error occurs.
-//
-func (x *Integer) QuoRem(y *Integer) (*Integer, *Integer) {
- q, r := x.mant.DivMod(y.mant)
- return MakeInt(x.sign != y.sign, q), MakeInt(x.sign, r)
-}
-
-
-// Div returns the quotient q = x / y for y != 0.
-// If y == 0, a division-by-zero run-time error occurs.
-//
-// Div and Mod implement Euclidian division and modulus:
-//
-// q = x.Div(y)
-// r = x.Mod(y) with: 0 <= r < |q| and: x = y*q + r
-//
-// (Raymond T. Boute, ``The Euclidian definition of the functions
-// div and mod''. ACM Transactions on Programming Languages and
-// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
-// ACM press.)
-//
-func (x *Integer) Div(y *Integer) *Integer {
- q, r := x.QuoRem(y)
- if r.IsNeg() {
- if y.IsPos() {
- q = q.Sub(Int(1))
- } else {
- q = q.Add(Int(1))
- }
- }
- return q
-}
-
-
-// Mod returns the modulus r of the division x / y for y != 0,
-// with r = x - y*x.Div(y). r is always positive.
-// If y == 0, a division-by-zero run-time error occurs.
-//
-func (x *Integer) Mod(y *Integer) *Integer {
- r := x.Rem(y)
- if r.IsNeg() {
- if y.IsPos() {
- r = r.Add(y)
- } else {
- r = r.Sub(y)
- }
- }
- return r
-}
-
-
-// DivMod returns the pair (x.Div(y), x.Mod(y)).
-//
-func (x *Integer) DivMod(y *Integer) (*Integer, *Integer) {
- q, r := x.QuoRem(y)
- if r.IsNeg() {
- if y.IsPos() {
- q = q.Sub(Int(1))
- r = r.Add(y)
- } else {
- q = q.Add(Int(1))
- r = r.Sub(y)
- }
- }
- return q, r
-}
-
-
-// Shl implements ``shift left'' x << s. It returns x * 2^s.
-//
-func (x *Integer) Shl(s uint) *Integer { return MakeInt(x.sign, x.mant.Shl(s)) }
-
-
-// The bitwise operations on integers are defined on the 2's-complement
-// representation of integers. From
-//
-// -x == ^x + 1 (1) 2's complement representation
-//
-// follows:
-//
-// -(x) == ^(x) + 1
-// -(-x) == ^(-x) + 1
-// x-1 == ^(-x)
-// ^(x-1) == -x (2)
-//
-// Using (1) and (2), operations on negative integers of the form -x are
-// converted to operations on negated positive integers of the form ~(x-1).
-
-
-// Shr implements ``shift right'' x >> s. It returns x / 2^s.
-//
-func (x *Integer) Shr(s uint) *Integer {
- if x.sign {
- // (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1)
- return MakeInt(true, x.mant.Sub(Nat(1)).Shr(s).Add(Nat(1)))
- }
-
- return MakeInt(false, x.mant.Shr(s))
-}
-
-
-// Not returns the ``bitwise not'' ^x for the 2's-complement representation of x.
-func (x *Integer) Not() *Integer {
- if x.sign {
- // ^(-x) == ^(^(x-1)) == x-1
- return MakeInt(false, x.mant.Sub(Nat(1)))
- }
-
- // ^x == -x-1 == -(x+1)
- return MakeInt(true, x.mant.Add(Nat(1)))
-}
-
-
-// And returns the ``bitwise and'' x & y for the 2's-complement representation of x and y.
-//
-func (x *Integer) And(y *Integer) *Integer {
- if x.sign == y.sign {
- if x.sign {
- // (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1)
- return MakeInt(true, x.mant.Sub(Nat(1)).Or(y.mant.Sub(Nat(1))).Add(Nat(1)))
- }
-
- // x & y == x & y
- return MakeInt(false, x.mant.And(y.mant))
- }
-
- // x.sign != y.sign
- if x.sign {
- x, y = y, x // & is symmetric
- }
-
- // x & (-y) == x & ^(y-1) == x &^ (y-1)
- return MakeInt(false, x.mant.AndNot(y.mant.Sub(Nat(1))))
-}
-
-
-// AndNot returns the ``bitwise clear'' x &^ y for the 2's-complement representation of x and y.
-//
-func (x *Integer) AndNot(y *Integer) *Integer {
- if x.sign == y.sign {
- if x.sign {
- // (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1)
- return MakeInt(false, y.mant.Sub(Nat(1)).AndNot(x.mant.Sub(Nat(1))))
- }
-
- // x &^ y == x &^ y
- return MakeInt(false, x.mant.AndNot(y.mant))
- }
-
- if x.sign {
- // (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1)
- return MakeInt(true, x.mant.Sub(Nat(1)).Or(y.mant).Add(Nat(1)))
- }
-
- // x &^ (-y) == x &^ ^(y-1) == x & (y-1)
- return MakeInt(false, x.mant.And(y.mant.Sub(Nat(1))))
-}
-
-
-// Or returns the ``bitwise or'' x | y for the 2's-complement representation of x and y.
-//
-func (x *Integer) Or(y *Integer) *Integer {
- if x.sign == y.sign {
- if x.sign {
- // (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1)
- return MakeInt(true, x.mant.Sub(Nat(1)).And(y.mant.Sub(Nat(1))).Add(Nat(1)))
- }
-
- // x | y == x | y
- return MakeInt(false, x.mant.Or(y.mant))
- }
-
- // x.sign != y.sign
- if x.sign {
- x, y = y, x // | or symmetric
- }
-
- // x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1)
- return MakeInt(true, y.mant.Sub(Nat(1)).AndNot(x.mant).Add(Nat(1)))
-}
-
-
-// Xor returns the ``bitwise xor'' x | y for the 2's-complement representation of x and y.
-//
-func (x *Integer) Xor(y *Integer) *Integer {
- if x.sign == y.sign {
- if x.sign {
- // (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1)
- return MakeInt(false, x.mant.Sub(Nat(1)).Xor(y.mant.Sub(Nat(1))))
- }
-
- // x ^ y == x ^ y
- return MakeInt(false, x.mant.Xor(y.mant))
- }
-
- // x.sign != y.sign
- if x.sign {
- x, y = y, x // ^ is symmetric
- }
-
- // x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1)
- return MakeInt(true, x.mant.Xor(y.mant.Sub(Nat(1))).Add(Nat(1)))
-}
-
-
-// Cmp compares x and y. The result is an int value that is
-//
-// < 0 if x < y
-// == 0 if x == y
-// > 0 if x > y
-//
-func (x *Integer) Cmp(y *Integer) int {
- // x cmp y == x cmp y
- // x cmp (-y) == x
- // (-x) cmp y == y
- // (-x) cmp (-y) == -(x cmp y)
- var r int
- switch {
- case x.sign == y.sign:
- r = x.mant.Cmp(y.mant)
- if x.sign {
- r = -r
- }
- case x.sign:
- r = -1
- case y.sign:
- r = 1
- }
- return r
-}
-
-
-// ToString converts x to a string for a given base, with 2 <= base <= 16.
-//
-func (x *Integer) ToString(base uint) string {
- if x.mant.IsZero() {
- return "0"
- }
- var s string
- if x.sign {
- s = "-"
- }
- return s + x.mant.ToString(base)
-}
-
-
-// String converts x to its decimal string representation.
-// x.String() is the same as x.ToString(10).
-//
-func (x *Integer) String() string { return x.ToString(10) }
-
-
-// Format is a support routine for fmt.Formatter. It accepts
-// the formats 'b' (binary), 'o' (octal), and 'x' (hexadecimal).
-//
-func (x *Integer) Format(h fmt.State, c int) { fmt.Fprintf(h, "%s", x.ToString(fmtbase(c))) }
-
-
-// IntFromString returns the integer corresponding to the
-// longest possible prefix of s representing an integer in a
-// given conversion base, the actual conversion base used, and
-// the prefix length. The syntax of integers follows the syntax
-// of signed integer literals in Go.
-//
-// If the base argument is 0, the string prefix determines the actual
-// conversion base. A prefix of ``0x'' or ``0X'' selects base 16; the
-// ``0'' prefix selects base 8. Otherwise the selected base is 10.
-//
-func IntFromString(s string, base uint) (*Integer, uint, int) {
- // skip sign, if any
- i0 := 0
- if len(s) > 0 && (s[0] == '-' || s[0] == '+') {
- i0 = 1
- }
-
- mant, base, slen := NatFromString(s[i0:], base)
-
- return MakeInt(i0 > 0 && s[0] == '-', mant), base, i0 + slen
-}