summaryrefslogtreecommitdiff
path: root/src/pkg/exp/template/exec.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/exp/template/exec.go')
-rw-r--r--src/pkg/exp/template/exec.go508
1 files changed, 508 insertions, 0 deletions
diff --git a/src/pkg/exp/template/exec.go b/src/pkg/exp/template/exec.go
new file mode 100644
index 000000000..fb0a9e621
--- /dev/null
+++ b/src/pkg/exp/template/exec.go
@@ -0,0 +1,508 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package template
+
+import (
+ "fmt"
+ "io"
+ "os"
+ "reflect"
+ "strings"
+ "unicode"
+ "utf8"
+)
+
+// state represents the state of an execution. It's not part of the
+// template so that multiple executions of the same template
+// can execute in parallel.
+type state struct {
+ tmpl *Template
+ wr io.Writer
+ set *Set
+ line int // line number for errors
+}
+
+// errorf formats the error and terminates processing.
+func (s *state) errorf(format string, args ...interface{}) {
+ format = fmt.Sprintf("template: %s:%d: %s", s.tmpl.name, s.line, format)
+ panic(fmt.Errorf(format, args...))
+}
+
+// error terminates processing.
+func (s *state) error(err os.Error) {
+ s.errorf("%s", err)
+}
+
+// Execute applies a parsed template to the specified data object,
+// writing the output to wr.
+func (t *Template) Execute(wr io.Writer, data interface{}) os.Error {
+ return t.ExecuteInSet(wr, data, nil)
+}
+
+// ExecuteInSet applies a parsed template to the specified data object,
+// writing the output to wr. Nested template invocations will be resolved
+// from the specified set.
+func (t *Template) ExecuteInSet(wr io.Writer, data interface{}, set *Set) (err os.Error) {
+ defer t.recover(&err)
+ state := &state{
+ tmpl: t,
+ wr: wr,
+ set: set,
+ line: 1,
+ }
+ if t.root == nil {
+ state.errorf("must be parsed before execution")
+ }
+ state.walk(reflect.ValueOf(data), t.root)
+ return
+}
+
+// Walk functions step through the major pieces of the template structure,
+// generating output as they go.
+func (s *state) walk(data reflect.Value, n node) {
+ switch n := n.(type) {
+ case *actionNode:
+ s.line = n.line
+ s.printValue(n, s.evalPipeline(data, n.pipeline))
+ case *listNode:
+ for _, node := range n.nodes {
+ s.walk(data, node)
+ }
+ case *ifNode:
+ s.line = n.line
+ s.walkIfOrWith(nodeIf, data, n.pipeline, n.list, n.elseList)
+ case *rangeNode:
+ s.line = n.line
+ s.walkRange(data, n)
+ case *textNode:
+ if _, err := s.wr.Write(n.text); err != nil {
+ s.error(err)
+ }
+ case *templateNode:
+ s.line = n.line
+ s.walkTemplate(data, n)
+ case *withNode:
+ s.line = n.line
+ s.walkIfOrWith(nodeWith, data, n.pipeline, n.list, n.elseList)
+ default:
+ s.errorf("unknown node: %s", n)
+ }
+}
+
+// walkIfOrWith walks an 'if' or 'with' node. The two control structures
+// are identical in behavior except that 'with' sets dot.
+func (s *state) walkIfOrWith(typ nodeType, data reflect.Value, pipe []*commandNode, list, elseList *listNode) {
+ val := s.evalPipeline(data, pipe)
+ truth, ok := isTrue(val)
+ if !ok {
+ s.errorf("if/with can't use value of type %T", val.Interface())
+ }
+ if truth {
+ if typ == nodeWith {
+ data = val
+ }
+ s.walk(data, list)
+ } else if elseList != nil {
+ s.walk(data, elseList)
+ }
+}
+
+// isTrue returns whether the value is 'true', in the sense of not the zero of its type,
+// and whether the value has a meaningful truth value.
+func isTrue(val reflect.Value) (truth, ok bool) {
+ switch val.Kind() {
+ case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
+ truth = val.Len() > 0
+ case reflect.Bool:
+ truth = val.Bool()
+ case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
+ truth = val.Int() != 0
+ case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
+ truth = val.Uint() != 0
+ case reflect.Float32, reflect.Float64:
+ truth = val.Float() != 0
+ case reflect.Complex64, reflect.Complex128:
+ truth = val.Complex() != 0
+ case reflect.Chan, reflect.Func, reflect.Ptr:
+ truth = !val.IsNil()
+ default:
+ return
+ }
+ return truth, true
+}
+
+func (s *state) walkRange(data reflect.Value, r *rangeNode) {
+ val := s.evalPipeline(data, r.pipeline)
+ switch val.Kind() {
+ case reflect.Array, reflect.Slice:
+ if val.Len() == 0 {
+ break
+ }
+ for i := 0; i < val.Len(); i++ {
+ s.walk(val.Index(i), r.list)
+ }
+ return
+ case reflect.Map:
+ if val.Len() == 0 {
+ break
+ }
+ for _, key := range val.MapKeys() {
+ s.walk(val.MapIndex(key), r.list)
+ }
+ return
+ default:
+ s.errorf("range can't iterate over value of type %T", val.Interface())
+ }
+ if r.elseList != nil {
+ s.walk(data, r.elseList)
+ }
+}
+
+func (s *state) walkTemplate(data reflect.Value, t *templateNode) {
+ name := s.evalArg(data, reflect.TypeOf("string"), t.name).String()
+ if s.set == nil {
+ s.errorf("no set defined in which to invoke template named %q", name)
+ }
+ tmpl := s.set.tmpl[name]
+ if tmpl == nil {
+ s.errorf("template %q not in set", name)
+ }
+ data = s.evalPipeline(data, t.pipeline)
+ newState := *s
+ newState.tmpl = tmpl
+ newState.walk(data, tmpl.root)
+}
+
+// Eval functions evaluate pipelines, commands, and their elements and extract
+// values from the data structure by examining fields, calling methods, and so on.
+// The printing of those values happens only through walk functions.
+
+func (s *state) evalPipeline(data reflect.Value, pipe []*commandNode) reflect.Value {
+ value := reflect.Value{}
+ for _, cmd := range pipe {
+ value = s.evalCommand(data, cmd, value) // previous value is this one's final arg.
+ // If the object has type interface{}, dig down one level to the thing inside.
+ if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 {
+ value = reflect.ValueOf(value.Interface()) // lovely!
+ }
+ }
+ return value
+}
+
+func (s *state) evalCommand(data reflect.Value, cmd *commandNode, final reflect.Value) reflect.Value {
+ firstWord := cmd.args[0]
+ switch n := firstWord.(type) {
+ case *fieldNode:
+ return s.evalFieldNode(data, n, cmd.args, final)
+ case *identifierNode:
+ return s.evalFieldOrCall(data, n.ident, cmd.args, final)
+ }
+ if len(cmd.args) > 1 || final.IsValid() {
+ s.errorf("can't give argument to non-function %s", cmd.args[0])
+ }
+ switch word := cmd.args[0].(type) {
+ case *dotNode:
+ return data
+ case *boolNode:
+ return reflect.ValueOf(word.true)
+ case *numberNode:
+ // These are ideal constants but we don't know the type
+ // and we have no context. (If it was a method argument,
+ // we'd know what we need.) The syntax guides us to some extent.
+ switch {
+ case word.isComplex:
+ return reflect.ValueOf(word.complex128) // incontrovertible.
+ case word.isFloat && strings.IndexAny(word.text, ".eE") >= 0:
+ return reflect.ValueOf(word.float64)
+ case word.isInt:
+ return reflect.ValueOf(word.int64)
+ case word.isUint:
+ return reflect.ValueOf(word.uint64)
+ }
+ case *stringNode:
+ return reflect.ValueOf(word.text)
+ }
+ s.errorf("can't handle command %q", firstWord)
+ panic("not reached")
+}
+
+func (s *state) evalFieldNode(data reflect.Value, field *fieldNode, args []node, final reflect.Value) reflect.Value {
+ // Up to the last entry, it must be a field.
+ n := len(field.ident)
+ for i := 0; i < n-1; i++ {
+ data = s.evalField(data, field.ident[i])
+ }
+ // Now it can be a field or method and if a method, gets arguments.
+ return s.evalFieldOrCall(data, field.ident[n-1], args, final)
+}
+
+// Is this an exported - upper case - name?
+func isExported(name string) bool {
+ rune, _ := utf8.DecodeRuneInString(name)
+ return unicode.IsUpper(rune)
+}
+
+func (s *state) evalField(data reflect.Value, fieldName string) reflect.Value {
+ var isNil bool
+ if data, isNil = indirect(data); isNil {
+ s.errorf("%s is nil pointer", fieldName)
+ }
+ switch data.Kind() {
+ case reflect.Struct:
+ // Is it a field?
+ field := data.FieldByName(fieldName)
+ // TODO: look higher up the tree if we can't find it here. Also unexported fields
+ // might succeed higher up, as map keys.
+ if field.IsValid() && isExported(fieldName) { // valid and exported
+ return field
+ }
+ s.errorf("%s has no exported field %q", data.Type(), fieldName)
+ default:
+ s.errorf("can't evaluate field %s of type %s", fieldName, data.Type())
+ }
+ panic("not reached")
+}
+
+func (s *state) evalFieldOrCall(data reflect.Value, fieldName string, args []node, final reflect.Value) reflect.Value {
+ // Is it a function?
+ if function, ok := findFunction(fieldName, s.tmpl, s.set); ok {
+ return s.evalCall(data, function, fieldName, false, args, final)
+ }
+ ptr := data
+ for data.Kind() == reflect.Ptr && !data.IsNil() {
+ ptr, data = data, reflect.Indirect(data)
+ }
+ // Is it a method? We use the pointer because it has value methods too.
+ if method, ok := methodByName(ptr.Type(), fieldName); ok {
+ return s.evalCall(ptr, method.Func, fieldName, true, args, final)
+ }
+ if len(args) > 1 || final.IsValid() {
+ s.errorf("%s is not a method but has arguments", fieldName)
+ }
+ switch data.Kind() {
+ case reflect.Struct:
+ return s.evalField(data, fieldName)
+ default:
+ s.errorf("can't handle evaluation of field %s of type %s", fieldName, data.Type())
+ }
+ panic("not reached")
+}
+
+// TODO: delete when reflect's own MethodByName is released.
+func methodByName(typ reflect.Type, name string) (reflect.Method, bool) {
+ for i := 0; i < typ.NumMethod(); i++ {
+ if typ.Method(i).Name == name {
+ return typ.Method(i), true
+ }
+ }
+ return reflect.Method{}, false
+}
+
+var (
+ osErrorType = reflect.TypeOf(new(os.Error)).Elem()
+)
+
+func (s *state) evalCall(v, fun reflect.Value, name string, isMethod bool, args []node, final reflect.Value) reflect.Value {
+ typ := fun.Type()
+ if !isMethod && len(args) > 0 { // Args will be nil if it's a niladic call in an argument list
+ args = args[1:] // first arg is name of function; not used in call.
+ }
+ numIn := len(args)
+ if final.IsValid() {
+ numIn++
+ }
+ numFixed := len(args)
+ if typ.IsVariadic() {
+ numFixed = typ.NumIn() - 1 // last arg is the variadic one.
+ if numIn < numFixed {
+ s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args))
+ }
+ } else if numIn < typ.NumIn()-1 || !typ.IsVariadic() && numIn != typ.NumIn() {
+ s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), len(args))
+ }
+ if !goodFunc(typ) {
+ s.errorf("can't handle multiple results from method/function %q", name)
+ }
+ // Build the arg list.
+ argv := make([]reflect.Value, numIn)
+ // First arg is the receiver.
+ i := 0
+ if isMethod {
+ argv[0] = v
+ i++
+ }
+ // Others must be evaluated. Fixed args first.
+ for ; i < numFixed; i++ {
+ argv[i] = s.evalArg(v, typ.In(i), args[i])
+ }
+ // And now the ... args.
+ if typ.IsVariadic() {
+ argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice.
+ for ; i < len(args); i++ {
+ argv[i] = s.evalArg(v, argType, args[i])
+ }
+ }
+ // Add final value if necessary.
+ if final.IsValid() {
+ argv[len(args)] = final
+ }
+ result := fun.Call(argv)
+ // If we have an os.Error that is not nil, stop execution and return that error to the caller.
+ if len(result) == 2 && !result[1].IsNil() {
+ s.error(result[1].Interface().(os.Error))
+ }
+ return result[0]
+}
+
+func (s *state) evalArg(data reflect.Value, typ reflect.Type, n node) reflect.Value {
+ if field, ok := n.(*fieldNode); ok {
+ value := s.evalFieldNode(data, field, []node{n}, reflect.Value{})
+ if !value.Type().AssignableTo(typ) {
+ s.errorf("wrong type for value; expected %s; got %s", typ, value.Type())
+ }
+ return value
+ }
+ switch typ.Kind() {
+ case reflect.Bool:
+ return s.evalBool(typ, n)
+ case reflect.String:
+ return s.evalString(typ, n)
+ case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
+ return s.evalInteger(typ, n)
+ case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
+ return s.evalUnsignedInteger(typ, n)
+ case reflect.Float32, reflect.Float64:
+ return s.evalFloat(typ, n)
+ case reflect.Complex64, reflect.Complex128:
+ return s.evalComplex(typ, n)
+ case reflect.Interface:
+ if typ.NumMethod() == 0 {
+ return s.evalEmptyInterface(data, typ, n)
+ }
+ }
+ s.errorf("can't handle %s for arg of type %s", n, typ)
+ panic("not reached")
+}
+
+func (s *state) evalBool(typ reflect.Type, n node) reflect.Value {
+ if n, ok := n.(*boolNode); ok {
+ value := reflect.New(typ).Elem()
+ value.SetBool(n.true)
+ return value
+ }
+ s.errorf("expected bool; found %s", n)
+ panic("not reached")
+}
+
+func (s *state) evalString(typ reflect.Type, n node) reflect.Value {
+ if n, ok := n.(*stringNode); ok {
+ value := reflect.New(typ).Elem()
+ value.SetString(n.text)
+ return value
+ }
+ s.errorf("expected string; found %s", n)
+ panic("not reached")
+}
+
+func (s *state) evalInteger(typ reflect.Type, n node) reflect.Value {
+ if n, ok := n.(*numberNode); ok && n.isInt {
+ value := reflect.New(typ).Elem()
+ value.SetInt(n.int64)
+ return value
+ }
+ s.errorf("expected integer; found %s", n)
+ panic("not reached")
+}
+
+func (s *state) evalUnsignedInteger(typ reflect.Type, n node) reflect.Value {
+ if n, ok := n.(*numberNode); ok && n.isUint {
+ value := reflect.New(typ).Elem()
+ value.SetUint(n.uint64)
+ return value
+ }
+ s.errorf("expected unsigned integer; found %s", n)
+ panic("not reached")
+}
+
+func (s *state) evalFloat(typ reflect.Type, n node) reflect.Value {
+ if n, ok := n.(*numberNode); ok && n.isFloat {
+ value := reflect.New(typ).Elem()
+ value.SetFloat(n.float64)
+ return value
+ }
+ s.errorf("expected float; found %s", n)
+ panic("not reached")
+}
+
+func (s *state) evalComplex(typ reflect.Type, n node) reflect.Value {
+ if n, ok := n.(*numberNode); ok && n.isComplex {
+ value := reflect.New(typ).Elem()
+ value.SetComplex(n.complex128)
+ return value
+ }
+ s.errorf("expected complex; found %s", n)
+ panic("not reached")
+}
+
+func (s *state) evalEmptyInterface(data reflect.Value, typ reflect.Type, n node) reflect.Value {
+ switch n := n.(type) {
+ case *boolNode:
+ return reflect.ValueOf(n.true)
+ case *dotNode:
+ return data
+ case *fieldNode:
+ return s.evalFieldNode(data, n, nil, reflect.Value{})
+ case *identifierNode:
+ return s.evalFieldOrCall(data, n.ident, nil, reflect.Value{})
+ case *numberNode:
+ if n.isComplex {
+ return reflect.ValueOf(n.complex128)
+ }
+ if n.isInt {
+ return reflect.ValueOf(n.int64)
+ }
+ if n.isUint {
+ return reflect.ValueOf(n.uint64)
+ }
+ if n.isFloat {
+ return reflect.ValueOf(n.float64)
+ }
+ case *stringNode:
+ return reflect.ValueOf(n.text)
+ }
+ s.errorf("can't handle assignment of %s to empty interface argument", n)
+ panic("not reached")
+}
+
+// indirect returns the item at the end of indirection, and a bool to indicate if it's nil.
+func indirect(v reflect.Value) (rv reflect.Value, isNil bool) {
+ for v.Kind() == reflect.Ptr {
+ if v.IsNil() {
+ return v, true
+ }
+ v = v.Elem()
+ }
+ return v, false
+}
+
+// printValue writes the textual representation of the value to the output of
+// the template.
+func (s *state) printValue(n node, v reflect.Value) {
+ if !v.IsValid() {
+ fmt.Fprint(s.wr, "<no value>")
+ return
+ }
+ switch v.Kind() {
+ case reflect.Ptr:
+ var isNil bool
+ if v, isNil = indirect(v); isNil {
+ fmt.Fprint(s.wr, "<nil>")
+ return
+ }
+ case reflect.Chan, reflect.Func, reflect.Interface:
+ s.errorf("can't print %s of type %s", n, v.Type())
+ }
+ fmt.Fprint(s.wr, v.Interface())
+}