diff options
Diffstat (limited to 'src/pkg/exp/template/exec.go')
-rw-r--r-- | src/pkg/exp/template/exec.go | 508 |
1 files changed, 0 insertions, 508 deletions
diff --git a/src/pkg/exp/template/exec.go b/src/pkg/exp/template/exec.go deleted file mode 100644 index fb0a9e621..000000000 --- a/src/pkg/exp/template/exec.go +++ /dev/null @@ -1,508 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package template - -import ( - "fmt" - "io" - "os" - "reflect" - "strings" - "unicode" - "utf8" -) - -// state represents the state of an execution. It's not part of the -// template so that multiple executions of the same template -// can execute in parallel. -type state struct { - tmpl *Template - wr io.Writer - set *Set - line int // line number for errors -} - -// errorf formats the error and terminates processing. -func (s *state) errorf(format string, args ...interface{}) { - format = fmt.Sprintf("template: %s:%d: %s", s.tmpl.name, s.line, format) - panic(fmt.Errorf(format, args...)) -} - -// error terminates processing. -func (s *state) error(err os.Error) { - s.errorf("%s", err) -} - -// Execute applies a parsed template to the specified data object, -// writing the output to wr. -func (t *Template) Execute(wr io.Writer, data interface{}) os.Error { - return t.ExecuteInSet(wr, data, nil) -} - -// ExecuteInSet applies a parsed template to the specified data object, -// writing the output to wr. Nested template invocations will be resolved -// from the specified set. -func (t *Template) ExecuteInSet(wr io.Writer, data interface{}, set *Set) (err os.Error) { - defer t.recover(&err) - state := &state{ - tmpl: t, - wr: wr, - set: set, - line: 1, - } - if t.root == nil { - state.errorf("must be parsed before execution") - } - state.walk(reflect.ValueOf(data), t.root) - return -} - -// Walk functions step through the major pieces of the template structure, -// generating output as they go. -func (s *state) walk(data reflect.Value, n node) { - switch n := n.(type) { - case *actionNode: - s.line = n.line - s.printValue(n, s.evalPipeline(data, n.pipeline)) - case *listNode: - for _, node := range n.nodes { - s.walk(data, node) - } - case *ifNode: - s.line = n.line - s.walkIfOrWith(nodeIf, data, n.pipeline, n.list, n.elseList) - case *rangeNode: - s.line = n.line - s.walkRange(data, n) - case *textNode: - if _, err := s.wr.Write(n.text); err != nil { - s.error(err) - } - case *templateNode: - s.line = n.line - s.walkTemplate(data, n) - case *withNode: - s.line = n.line - s.walkIfOrWith(nodeWith, data, n.pipeline, n.list, n.elseList) - default: - s.errorf("unknown node: %s", n) - } -} - -// walkIfOrWith walks an 'if' or 'with' node. The two control structures -// are identical in behavior except that 'with' sets dot. -func (s *state) walkIfOrWith(typ nodeType, data reflect.Value, pipe []*commandNode, list, elseList *listNode) { - val := s.evalPipeline(data, pipe) - truth, ok := isTrue(val) - if !ok { - s.errorf("if/with can't use value of type %T", val.Interface()) - } - if truth { - if typ == nodeWith { - data = val - } - s.walk(data, list) - } else if elseList != nil { - s.walk(data, elseList) - } -} - -// isTrue returns whether the value is 'true', in the sense of not the zero of its type, -// and whether the value has a meaningful truth value. -func isTrue(val reflect.Value) (truth, ok bool) { - switch val.Kind() { - case reflect.Array, reflect.Map, reflect.Slice, reflect.String: - truth = val.Len() > 0 - case reflect.Bool: - truth = val.Bool() - case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: - truth = val.Int() != 0 - case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: - truth = val.Uint() != 0 - case reflect.Float32, reflect.Float64: - truth = val.Float() != 0 - case reflect.Complex64, reflect.Complex128: - truth = val.Complex() != 0 - case reflect.Chan, reflect.Func, reflect.Ptr: - truth = !val.IsNil() - default: - return - } - return truth, true -} - -func (s *state) walkRange(data reflect.Value, r *rangeNode) { - val := s.evalPipeline(data, r.pipeline) - switch val.Kind() { - case reflect.Array, reflect.Slice: - if val.Len() == 0 { - break - } - for i := 0; i < val.Len(); i++ { - s.walk(val.Index(i), r.list) - } - return - case reflect.Map: - if val.Len() == 0 { - break - } - for _, key := range val.MapKeys() { - s.walk(val.MapIndex(key), r.list) - } - return - default: - s.errorf("range can't iterate over value of type %T", val.Interface()) - } - if r.elseList != nil { - s.walk(data, r.elseList) - } -} - -func (s *state) walkTemplate(data reflect.Value, t *templateNode) { - name := s.evalArg(data, reflect.TypeOf("string"), t.name).String() - if s.set == nil { - s.errorf("no set defined in which to invoke template named %q", name) - } - tmpl := s.set.tmpl[name] - if tmpl == nil { - s.errorf("template %q not in set", name) - } - data = s.evalPipeline(data, t.pipeline) - newState := *s - newState.tmpl = tmpl - newState.walk(data, tmpl.root) -} - -// Eval functions evaluate pipelines, commands, and their elements and extract -// values from the data structure by examining fields, calling methods, and so on. -// The printing of those values happens only through walk functions. - -func (s *state) evalPipeline(data reflect.Value, pipe []*commandNode) reflect.Value { - value := reflect.Value{} - for _, cmd := range pipe { - value = s.evalCommand(data, cmd, value) // previous value is this one's final arg. - // If the object has type interface{}, dig down one level to the thing inside. - if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 { - value = reflect.ValueOf(value.Interface()) // lovely! - } - } - return value -} - -func (s *state) evalCommand(data reflect.Value, cmd *commandNode, final reflect.Value) reflect.Value { - firstWord := cmd.args[0] - switch n := firstWord.(type) { - case *fieldNode: - return s.evalFieldNode(data, n, cmd.args, final) - case *identifierNode: - return s.evalFieldOrCall(data, n.ident, cmd.args, final) - } - if len(cmd.args) > 1 || final.IsValid() { - s.errorf("can't give argument to non-function %s", cmd.args[0]) - } - switch word := cmd.args[0].(type) { - case *dotNode: - return data - case *boolNode: - return reflect.ValueOf(word.true) - case *numberNode: - // These are ideal constants but we don't know the type - // and we have no context. (If it was a method argument, - // we'd know what we need.) The syntax guides us to some extent. - switch { - case word.isComplex: - return reflect.ValueOf(word.complex128) // incontrovertible. - case word.isFloat && strings.IndexAny(word.text, ".eE") >= 0: - return reflect.ValueOf(word.float64) - case word.isInt: - return reflect.ValueOf(word.int64) - case word.isUint: - return reflect.ValueOf(word.uint64) - } - case *stringNode: - return reflect.ValueOf(word.text) - } - s.errorf("can't handle command %q", firstWord) - panic("not reached") -} - -func (s *state) evalFieldNode(data reflect.Value, field *fieldNode, args []node, final reflect.Value) reflect.Value { - // Up to the last entry, it must be a field. - n := len(field.ident) - for i := 0; i < n-1; i++ { - data = s.evalField(data, field.ident[i]) - } - // Now it can be a field or method and if a method, gets arguments. - return s.evalFieldOrCall(data, field.ident[n-1], args, final) -} - -// Is this an exported - upper case - name? -func isExported(name string) bool { - rune, _ := utf8.DecodeRuneInString(name) - return unicode.IsUpper(rune) -} - -func (s *state) evalField(data reflect.Value, fieldName string) reflect.Value { - var isNil bool - if data, isNil = indirect(data); isNil { - s.errorf("%s is nil pointer", fieldName) - } - switch data.Kind() { - case reflect.Struct: - // Is it a field? - field := data.FieldByName(fieldName) - // TODO: look higher up the tree if we can't find it here. Also unexported fields - // might succeed higher up, as map keys. - if field.IsValid() && isExported(fieldName) { // valid and exported - return field - } - s.errorf("%s has no exported field %q", data.Type(), fieldName) - default: - s.errorf("can't evaluate field %s of type %s", fieldName, data.Type()) - } - panic("not reached") -} - -func (s *state) evalFieldOrCall(data reflect.Value, fieldName string, args []node, final reflect.Value) reflect.Value { - // Is it a function? - if function, ok := findFunction(fieldName, s.tmpl, s.set); ok { - return s.evalCall(data, function, fieldName, false, args, final) - } - ptr := data - for data.Kind() == reflect.Ptr && !data.IsNil() { - ptr, data = data, reflect.Indirect(data) - } - // Is it a method? We use the pointer because it has value methods too. - if method, ok := methodByName(ptr.Type(), fieldName); ok { - return s.evalCall(ptr, method.Func, fieldName, true, args, final) - } - if len(args) > 1 || final.IsValid() { - s.errorf("%s is not a method but has arguments", fieldName) - } - switch data.Kind() { - case reflect.Struct: - return s.evalField(data, fieldName) - default: - s.errorf("can't handle evaluation of field %s of type %s", fieldName, data.Type()) - } - panic("not reached") -} - -// TODO: delete when reflect's own MethodByName is released. -func methodByName(typ reflect.Type, name string) (reflect.Method, bool) { - for i := 0; i < typ.NumMethod(); i++ { - if typ.Method(i).Name == name { - return typ.Method(i), true - } - } - return reflect.Method{}, false -} - -var ( - osErrorType = reflect.TypeOf(new(os.Error)).Elem() -) - -func (s *state) evalCall(v, fun reflect.Value, name string, isMethod bool, args []node, final reflect.Value) reflect.Value { - typ := fun.Type() - if !isMethod && len(args) > 0 { // Args will be nil if it's a niladic call in an argument list - args = args[1:] // first arg is name of function; not used in call. - } - numIn := len(args) - if final.IsValid() { - numIn++ - } - numFixed := len(args) - if typ.IsVariadic() { - numFixed = typ.NumIn() - 1 // last arg is the variadic one. - if numIn < numFixed { - s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args)) - } - } else if numIn < typ.NumIn()-1 || !typ.IsVariadic() && numIn != typ.NumIn() { - s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), len(args)) - } - if !goodFunc(typ) { - s.errorf("can't handle multiple results from method/function %q", name) - } - // Build the arg list. - argv := make([]reflect.Value, numIn) - // First arg is the receiver. - i := 0 - if isMethod { - argv[0] = v - i++ - } - // Others must be evaluated. Fixed args first. - for ; i < numFixed; i++ { - argv[i] = s.evalArg(v, typ.In(i), args[i]) - } - // And now the ... args. - if typ.IsVariadic() { - argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice. - for ; i < len(args); i++ { - argv[i] = s.evalArg(v, argType, args[i]) - } - } - // Add final value if necessary. - if final.IsValid() { - argv[len(args)] = final - } - result := fun.Call(argv) - // If we have an os.Error that is not nil, stop execution and return that error to the caller. - if len(result) == 2 && !result[1].IsNil() { - s.error(result[1].Interface().(os.Error)) - } - return result[0] -} - -func (s *state) evalArg(data reflect.Value, typ reflect.Type, n node) reflect.Value { - if field, ok := n.(*fieldNode); ok { - value := s.evalFieldNode(data, field, []node{n}, reflect.Value{}) - if !value.Type().AssignableTo(typ) { - s.errorf("wrong type for value; expected %s; got %s", typ, value.Type()) - } - return value - } - switch typ.Kind() { - case reflect.Bool: - return s.evalBool(typ, n) - case reflect.String: - return s.evalString(typ, n) - case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: - return s.evalInteger(typ, n) - case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: - return s.evalUnsignedInteger(typ, n) - case reflect.Float32, reflect.Float64: - return s.evalFloat(typ, n) - case reflect.Complex64, reflect.Complex128: - return s.evalComplex(typ, n) - case reflect.Interface: - if typ.NumMethod() == 0 { - return s.evalEmptyInterface(data, typ, n) - } - } - s.errorf("can't handle %s for arg of type %s", n, typ) - panic("not reached") -} - -func (s *state) evalBool(typ reflect.Type, n node) reflect.Value { - if n, ok := n.(*boolNode); ok { - value := reflect.New(typ).Elem() - value.SetBool(n.true) - return value - } - s.errorf("expected bool; found %s", n) - panic("not reached") -} - -func (s *state) evalString(typ reflect.Type, n node) reflect.Value { - if n, ok := n.(*stringNode); ok { - value := reflect.New(typ).Elem() - value.SetString(n.text) - return value - } - s.errorf("expected string; found %s", n) - panic("not reached") -} - -func (s *state) evalInteger(typ reflect.Type, n node) reflect.Value { - if n, ok := n.(*numberNode); ok && n.isInt { - value := reflect.New(typ).Elem() - value.SetInt(n.int64) - return value - } - s.errorf("expected integer; found %s", n) - panic("not reached") -} - -func (s *state) evalUnsignedInteger(typ reflect.Type, n node) reflect.Value { - if n, ok := n.(*numberNode); ok && n.isUint { - value := reflect.New(typ).Elem() - value.SetUint(n.uint64) - return value - } - s.errorf("expected unsigned integer; found %s", n) - panic("not reached") -} - -func (s *state) evalFloat(typ reflect.Type, n node) reflect.Value { - if n, ok := n.(*numberNode); ok && n.isFloat { - value := reflect.New(typ).Elem() - value.SetFloat(n.float64) - return value - } - s.errorf("expected float; found %s", n) - panic("not reached") -} - -func (s *state) evalComplex(typ reflect.Type, n node) reflect.Value { - if n, ok := n.(*numberNode); ok && n.isComplex { - value := reflect.New(typ).Elem() - value.SetComplex(n.complex128) - return value - } - s.errorf("expected complex; found %s", n) - panic("not reached") -} - -func (s *state) evalEmptyInterface(data reflect.Value, typ reflect.Type, n node) reflect.Value { - switch n := n.(type) { - case *boolNode: - return reflect.ValueOf(n.true) - case *dotNode: - return data - case *fieldNode: - return s.evalFieldNode(data, n, nil, reflect.Value{}) - case *identifierNode: - return s.evalFieldOrCall(data, n.ident, nil, reflect.Value{}) - case *numberNode: - if n.isComplex { - return reflect.ValueOf(n.complex128) - } - if n.isInt { - return reflect.ValueOf(n.int64) - } - if n.isUint { - return reflect.ValueOf(n.uint64) - } - if n.isFloat { - return reflect.ValueOf(n.float64) - } - case *stringNode: - return reflect.ValueOf(n.text) - } - s.errorf("can't handle assignment of %s to empty interface argument", n) - panic("not reached") -} - -// indirect returns the item at the end of indirection, and a bool to indicate if it's nil. -func indirect(v reflect.Value) (rv reflect.Value, isNil bool) { - for v.Kind() == reflect.Ptr { - if v.IsNil() { - return v, true - } - v = v.Elem() - } - return v, false -} - -// printValue writes the textual representation of the value to the output of -// the template. -func (s *state) printValue(n node, v reflect.Value) { - if !v.IsValid() { - fmt.Fprint(s.wr, "<no value>") - return - } - switch v.Kind() { - case reflect.Ptr: - var isNil bool - if v, isNil = indirect(v); isNil { - fmt.Fprint(s.wr, "<nil>") - return - } - case reflect.Chan, reflect.Func, reflect.Interface: - s.errorf("can't print %s of type %s", n, v.Type()) - } - fmt.Fprint(s.wr, v.Interface()) -} |