diff options
Diffstat (limited to 'src/pkg/fmt/print.go')
| -rw-r--r-- | src/pkg/fmt/print.go | 1199 |
1 files changed, 0 insertions, 1199 deletions
diff --git a/src/pkg/fmt/print.go b/src/pkg/fmt/print.go deleted file mode 100644 index 302661f4c..000000000 --- a/src/pkg/fmt/print.go +++ /dev/null @@ -1,1199 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package fmt - -import ( - "errors" - "io" - "os" - "reflect" - "sync" - "unicode/utf8" -) - -// Some constants in the form of bytes, to avoid string overhead. -// Needlessly fastidious, I suppose. -var ( - commaSpaceBytes = []byte(", ") - nilAngleBytes = []byte("<nil>") - nilParenBytes = []byte("(nil)") - nilBytes = []byte("nil") - mapBytes = []byte("map[") - percentBangBytes = []byte("%!") - missingBytes = []byte("(MISSING)") - badIndexBytes = []byte("(BADINDEX)") - panicBytes = []byte("(PANIC=") - extraBytes = []byte("%!(EXTRA ") - irparenBytes = []byte("i)") - bytesBytes = []byte("[]byte{") - badWidthBytes = []byte("%!(BADWIDTH)") - badPrecBytes = []byte("%!(BADPREC)") - noVerbBytes = []byte("%!(NOVERB)") -) - -// State represents the printer state passed to custom formatters. -// It provides access to the io.Writer interface plus information about -// the flags and options for the operand's format specifier. -type State interface { - // Write is the function to call to emit formatted output to be printed. - Write(b []byte) (ret int, err error) - // Width returns the value of the width option and whether it has been set. - Width() (wid int, ok bool) - // Precision returns the value of the precision option and whether it has been set. - Precision() (prec int, ok bool) - - // Flag reports whether the flag c, a character, has been set. - Flag(c int) bool -} - -// Formatter is the interface implemented by values with a custom formatter. -// The implementation of Format may call Sprint(f) or Fprint(f) etc. -// to generate its output. -type Formatter interface { - Format(f State, c rune) -} - -// Stringer is implemented by any value that has a String method, -// which defines the ``native'' format for that value. -// The String method is used to print values passed as an operand -// to any format that accepts a string or to an unformatted printer -// such as Print. -type Stringer interface { - String() string -} - -// GoStringer is implemented by any value that has a GoString method, -// which defines the Go syntax for that value. -// The GoString method is used to print values passed as an operand -// to a %#v format. -type GoStringer interface { - GoString() string -} - -// Use simple []byte instead of bytes.Buffer to avoid large dependency. -type buffer []byte - -func (b *buffer) Write(p []byte) (n int, err error) { - *b = append(*b, p...) - return len(p), nil -} - -func (b *buffer) WriteString(s string) (n int, err error) { - *b = append(*b, s...) - return len(s), nil -} - -func (b *buffer) WriteByte(c byte) error { - *b = append(*b, c) - return nil -} - -func (bp *buffer) WriteRune(r rune) error { - if r < utf8.RuneSelf { - *bp = append(*bp, byte(r)) - return nil - } - - b := *bp - n := len(b) - for n+utf8.UTFMax > cap(b) { - b = append(b, 0) - } - w := utf8.EncodeRune(b[n:n+utf8.UTFMax], r) - *bp = b[:n+w] - return nil -} - -type pp struct { - n int - panicking bool - erroring bool // printing an error condition - buf buffer - // arg holds the current item, as an interface{}. - arg interface{} - // value holds the current item, as a reflect.Value, and will be - // the zero Value if the item has not been reflected. - value reflect.Value - // reordered records whether the format string used argument reordering. - reordered bool - // goodArgNum records whether the most recent reordering directive was valid. - goodArgNum bool - runeBuf [utf8.UTFMax]byte - fmt fmt -} - -var ppFree = sync.Pool{ - New: func() interface{} { return new(pp) }, -} - -// newPrinter allocates a new pp struct or grab a cached one. -func newPrinter() *pp { - p := ppFree.Get().(*pp) - p.panicking = false - p.erroring = false - p.fmt.init(&p.buf) - return p -} - -// free saves used pp structs in ppFree; avoids an allocation per invocation. -func (p *pp) free() { - // Don't hold on to pp structs with large buffers. - if cap(p.buf) > 1024 { - return - } - p.buf = p.buf[:0] - p.arg = nil - p.value = reflect.Value{} - ppFree.Put(p) -} - -func (p *pp) Width() (wid int, ok bool) { return p.fmt.wid, p.fmt.widPresent } - -func (p *pp) Precision() (prec int, ok bool) { return p.fmt.prec, p.fmt.precPresent } - -func (p *pp) Flag(b int) bool { - switch b { - case '-': - return p.fmt.minus - case '+': - return p.fmt.plus - case '#': - return p.fmt.sharp - case ' ': - return p.fmt.space - case '0': - return p.fmt.zero - } - return false -} - -func (p *pp) add(c rune) { - p.buf.WriteRune(c) -} - -// Implement Write so we can call Fprintf on a pp (through State), for -// recursive use in custom verbs. -func (p *pp) Write(b []byte) (ret int, err error) { - return p.buf.Write(b) -} - -// These routines end in 'f' and take a format string. - -// Fprintf formats according to a format specifier and writes to w. -// It returns the number of bytes written and any write error encountered. -func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) { - p := newPrinter() - p.doPrintf(format, a) - n, err = w.Write(p.buf) - p.free() - return -} - -// Printf formats according to a format specifier and writes to standard output. -// It returns the number of bytes written and any write error encountered. -func Printf(format string, a ...interface{}) (n int, err error) { - return Fprintf(os.Stdout, format, a...) -} - -// Sprintf formats according to a format specifier and returns the resulting string. -func Sprintf(format string, a ...interface{}) string { - p := newPrinter() - p.doPrintf(format, a) - s := string(p.buf) - p.free() - return s -} - -// Errorf formats according to a format specifier and returns the string -// as a value that satisfies error. -func Errorf(format string, a ...interface{}) error { - return errors.New(Sprintf(format, a...)) -} - -// These routines do not take a format string - -// Fprint formats using the default formats for its operands and writes to w. -// Spaces are added between operands when neither is a string. -// It returns the number of bytes written and any write error encountered. -func Fprint(w io.Writer, a ...interface{}) (n int, err error) { - p := newPrinter() - p.doPrint(a, false, false) - n, err = w.Write(p.buf) - p.free() - return -} - -// Print formats using the default formats for its operands and writes to standard output. -// Spaces are added between operands when neither is a string. -// It returns the number of bytes written and any write error encountered. -func Print(a ...interface{}) (n int, err error) { - return Fprint(os.Stdout, a...) -} - -// Sprint formats using the default formats for its operands and returns the resulting string. -// Spaces are added between operands when neither is a string. -func Sprint(a ...interface{}) string { - p := newPrinter() - p.doPrint(a, false, false) - s := string(p.buf) - p.free() - return s -} - -// These routines end in 'ln', do not take a format string, -// always add spaces between operands, and add a newline -// after the last operand. - -// Fprintln formats using the default formats for its operands and writes to w. -// Spaces are always added between operands and a newline is appended. -// It returns the number of bytes written and any write error encountered. -func Fprintln(w io.Writer, a ...interface{}) (n int, err error) { - p := newPrinter() - p.doPrint(a, true, true) - n, err = w.Write(p.buf) - p.free() - return -} - -// Println formats using the default formats for its operands and writes to standard output. -// Spaces are always added between operands and a newline is appended. -// It returns the number of bytes written and any write error encountered. -func Println(a ...interface{}) (n int, err error) { - return Fprintln(os.Stdout, a...) -} - -// Sprintln formats using the default formats for its operands and returns the resulting string. -// Spaces are always added between operands and a newline is appended. -func Sprintln(a ...interface{}) string { - p := newPrinter() - p.doPrint(a, true, true) - s := string(p.buf) - p.free() - return s -} - -// getField gets the i'th field of the struct value. -// If the field is itself is an interface, return a value for -// the thing inside the interface, not the interface itself. -func getField(v reflect.Value, i int) reflect.Value { - val := v.Field(i) - if val.Kind() == reflect.Interface && !val.IsNil() { - val = val.Elem() - } - return val -} - -// parsenum converts ASCII to integer. num is 0 (and isnum is false) if no number present. -func parsenum(s string, start, end int) (num int, isnum bool, newi int) { - if start >= end { - return 0, false, end - } - for newi = start; newi < end && '0' <= s[newi] && s[newi] <= '9'; newi++ { - num = num*10 + int(s[newi]-'0') - isnum = true - } - return -} - -func (p *pp) unknownType(v interface{}) { - if v == nil { - p.buf.Write(nilAngleBytes) - return - } - p.buf.WriteByte('?') - p.buf.WriteString(reflect.TypeOf(v).String()) - p.buf.WriteByte('?') -} - -func (p *pp) badVerb(verb rune) { - p.erroring = true - p.add('%') - p.add('!') - p.add(verb) - p.add('(') - switch { - case p.arg != nil: - p.buf.WriteString(reflect.TypeOf(p.arg).String()) - p.add('=') - p.printArg(p.arg, 'v', false, false, 0) - case p.value.IsValid(): - p.buf.WriteString(p.value.Type().String()) - p.add('=') - p.printValue(p.value, 'v', false, false, 0) - default: - p.buf.Write(nilAngleBytes) - } - p.add(')') - p.erroring = false -} - -func (p *pp) fmtBool(v bool, verb rune) { - switch verb { - case 't', 'v': - p.fmt.fmt_boolean(v) - default: - p.badVerb(verb) - } -} - -// fmtC formats a rune for the 'c' format. -func (p *pp) fmtC(c int64) { - r := rune(c) // Check for overflow. - if int64(r) != c { - r = utf8.RuneError - } - w := utf8.EncodeRune(p.runeBuf[0:utf8.UTFMax], r) - p.fmt.pad(p.runeBuf[0:w]) -} - -func (p *pp) fmtInt64(v int64, verb rune) { - switch verb { - case 'b': - p.fmt.integer(v, 2, signed, ldigits) - case 'c': - p.fmtC(v) - case 'd', 'v': - p.fmt.integer(v, 10, signed, ldigits) - case 'o': - p.fmt.integer(v, 8, signed, ldigits) - case 'q': - if 0 <= v && v <= utf8.MaxRune { - p.fmt.fmt_qc(v) - } else { - p.badVerb(verb) - } - case 'x': - p.fmt.integer(v, 16, signed, ldigits) - case 'U': - p.fmtUnicode(v) - case 'X': - p.fmt.integer(v, 16, signed, udigits) - default: - p.badVerb(verb) - } -} - -// fmt0x64 formats a uint64 in hexadecimal and prefixes it with 0x or -// not, as requested, by temporarily setting the sharp flag. -func (p *pp) fmt0x64(v uint64, leading0x bool) { - sharp := p.fmt.sharp - p.fmt.sharp = leading0x - p.fmt.integer(int64(v), 16, unsigned, ldigits) - p.fmt.sharp = sharp -} - -// fmtUnicode formats a uint64 in U+1234 form by -// temporarily turning on the unicode flag and tweaking the precision. -func (p *pp) fmtUnicode(v int64) { - precPresent := p.fmt.precPresent - sharp := p.fmt.sharp - p.fmt.sharp = false - prec := p.fmt.prec - if !precPresent { - // If prec is already set, leave it alone; otherwise 4 is minimum. - p.fmt.prec = 4 - p.fmt.precPresent = true - } - p.fmt.unicode = true // turn on U+ - p.fmt.uniQuote = sharp - p.fmt.integer(int64(v), 16, unsigned, udigits) - p.fmt.unicode = false - p.fmt.uniQuote = false - p.fmt.prec = prec - p.fmt.precPresent = precPresent - p.fmt.sharp = sharp -} - -func (p *pp) fmtUint64(v uint64, verb rune, goSyntax bool) { - switch verb { - case 'b': - p.fmt.integer(int64(v), 2, unsigned, ldigits) - case 'c': - p.fmtC(int64(v)) - case 'd': - p.fmt.integer(int64(v), 10, unsigned, ldigits) - case 'v': - if goSyntax { - p.fmt0x64(v, true) - } else { - p.fmt.integer(int64(v), 10, unsigned, ldigits) - } - case 'o': - p.fmt.integer(int64(v), 8, unsigned, ldigits) - case 'q': - if 0 <= v && v <= utf8.MaxRune { - p.fmt.fmt_qc(int64(v)) - } else { - p.badVerb(verb) - } - case 'x': - p.fmt.integer(int64(v), 16, unsigned, ldigits) - case 'X': - p.fmt.integer(int64(v), 16, unsigned, udigits) - case 'U': - p.fmtUnicode(int64(v)) - default: - p.badVerb(verb) - } -} - -func (p *pp) fmtFloat32(v float32, verb rune) { - switch verb { - case 'b': - p.fmt.fmt_fb32(v) - case 'e': - p.fmt.fmt_e32(v) - case 'E': - p.fmt.fmt_E32(v) - case 'f', 'F': - p.fmt.fmt_f32(v) - case 'g', 'v': - p.fmt.fmt_g32(v) - case 'G': - p.fmt.fmt_G32(v) - default: - p.badVerb(verb) - } -} - -func (p *pp) fmtFloat64(v float64, verb rune) { - switch verb { - case 'b': - p.fmt.fmt_fb64(v) - case 'e': - p.fmt.fmt_e64(v) - case 'E': - p.fmt.fmt_E64(v) - case 'f', 'F': - p.fmt.fmt_f64(v) - case 'g', 'v': - p.fmt.fmt_g64(v) - case 'G': - p.fmt.fmt_G64(v) - default: - p.badVerb(verb) - } -} - -func (p *pp) fmtComplex64(v complex64, verb rune) { - switch verb { - case 'b', 'e', 'E', 'f', 'F', 'g', 'G': - p.fmt.fmt_c64(v, verb) - case 'v': - p.fmt.fmt_c64(v, 'g') - default: - p.badVerb(verb) - } -} - -func (p *pp) fmtComplex128(v complex128, verb rune) { - switch verb { - case 'b', 'e', 'E', 'f', 'F', 'g', 'G': - p.fmt.fmt_c128(v, verb) - case 'v': - p.fmt.fmt_c128(v, 'g') - default: - p.badVerb(verb) - } -} - -func (p *pp) fmtString(v string, verb rune, goSyntax bool) { - switch verb { - case 'v': - if goSyntax { - p.fmt.fmt_q(v) - } else { - p.fmt.fmt_s(v) - } - case 's': - p.fmt.fmt_s(v) - case 'x': - p.fmt.fmt_sx(v, ldigits) - case 'X': - p.fmt.fmt_sx(v, udigits) - case 'q': - p.fmt.fmt_q(v) - default: - p.badVerb(verb) - } -} - -func (p *pp) fmtBytes(v []byte, verb rune, goSyntax bool, typ reflect.Type, depth int) { - if verb == 'v' || verb == 'd' { - if goSyntax { - if v == nil { - if typ == nil { - p.buf.WriteString("[]byte(nil)") - } else { - p.buf.WriteString(typ.String()) - p.buf.Write(nilParenBytes) - } - return - } - if typ == nil { - p.buf.Write(bytesBytes) - } else { - p.buf.WriteString(typ.String()) - p.buf.WriteByte('{') - } - } else { - p.buf.WriteByte('[') - } - for i, c := range v { - if i > 0 { - if goSyntax { - p.buf.Write(commaSpaceBytes) - } else { - p.buf.WriteByte(' ') - } - } - p.printArg(c, 'v', p.fmt.plus, goSyntax, depth+1) - } - if goSyntax { - p.buf.WriteByte('}') - } else { - p.buf.WriteByte(']') - } - return - } - switch verb { - case 's': - p.fmt.fmt_s(string(v)) - case 'x': - p.fmt.fmt_bx(v, ldigits) - case 'X': - p.fmt.fmt_bx(v, udigits) - case 'q': - p.fmt.fmt_q(string(v)) - default: - p.badVerb(verb) - } -} - -func (p *pp) fmtPointer(value reflect.Value, verb rune, goSyntax bool) { - use0x64 := true - switch verb { - case 'p', 'v': - // ok - case 'b', 'd', 'o', 'x', 'X': - use0x64 = false - // ok - default: - p.badVerb(verb) - return - } - - var u uintptr - switch value.Kind() { - case reflect.Chan, reflect.Func, reflect.Map, reflect.Ptr, reflect.Slice, reflect.UnsafePointer: - u = value.Pointer() - default: - p.badVerb(verb) - return - } - - if goSyntax { - p.add('(') - p.buf.WriteString(value.Type().String()) - p.add(')') - p.add('(') - if u == 0 { - p.buf.Write(nilBytes) - } else { - p.fmt0x64(uint64(u), true) - } - p.add(')') - } else if verb == 'v' && u == 0 { - p.buf.Write(nilAngleBytes) - } else { - if use0x64 { - p.fmt0x64(uint64(u), !p.fmt.sharp) - } else { - p.fmtUint64(uint64(u), verb, false) - } - } -} - -var ( - intBits = reflect.TypeOf(0).Bits() - uintptrBits = reflect.TypeOf(uintptr(0)).Bits() -) - -func (p *pp) catchPanic(arg interface{}, verb rune) { - if err := recover(); err != nil { - // If it's a nil pointer, just say "<nil>". The likeliest causes are a - // Stringer that fails to guard against nil or a nil pointer for a - // value receiver, and in either case, "<nil>" is a nice result. - if v := reflect.ValueOf(arg); v.Kind() == reflect.Ptr && v.IsNil() { - p.buf.Write(nilAngleBytes) - return - } - // Otherwise print a concise panic message. Most of the time the panic - // value will print itself nicely. - if p.panicking { - // Nested panics; the recursion in printArg cannot succeed. - panic(err) - } - p.buf.Write(percentBangBytes) - p.add(verb) - p.buf.Write(panicBytes) - p.panicking = true - p.printArg(err, 'v', false, false, 0) - p.panicking = false - p.buf.WriteByte(')') - } -} - -func (p *pp) handleMethods(verb rune, plus, goSyntax bool, depth int) (wasString, handled bool) { - if p.erroring { - return - } - // Is it a Formatter? - if formatter, ok := p.arg.(Formatter); ok { - handled = true - wasString = false - defer p.catchPanic(p.arg, verb) - formatter.Format(p, verb) - return - } - // Must not touch flags before Formatter looks at them. - if plus { - p.fmt.plus = false - } - - // If we're doing Go syntax and the argument knows how to supply it, take care of it now. - if goSyntax { - p.fmt.sharp = false - if stringer, ok := p.arg.(GoStringer); ok { - wasString = false - handled = true - defer p.catchPanic(p.arg, verb) - // Print the result of GoString unadorned. - p.fmtString(stringer.GoString(), 's', false) - return - } - } else { - // If a string is acceptable according to the format, see if - // the value satisfies one of the string-valued interfaces. - // Println etc. set verb to %v, which is "stringable". - switch verb { - case 'v', 's', 'x', 'X', 'q': - // Is it an error or Stringer? - // The duplication in the bodies is necessary: - // setting wasString and handled, and deferring catchPanic, - // must happen before calling the method. - switch v := p.arg.(type) { - case error: - wasString = false - handled = true - defer p.catchPanic(p.arg, verb) - p.printArg(v.Error(), verb, plus, false, depth) - return - - case Stringer: - wasString = false - handled = true - defer p.catchPanic(p.arg, verb) - p.printArg(v.String(), verb, plus, false, depth) - return - } - } - } - handled = false - return -} - -func (p *pp) printArg(arg interface{}, verb rune, plus, goSyntax bool, depth int) (wasString bool) { - p.arg = arg - p.value = reflect.Value{} - - if arg == nil { - if verb == 'T' || verb == 'v' { - p.fmt.pad(nilAngleBytes) - } else { - p.badVerb(verb) - } - return false - } - - // Special processing considerations. - // %T (the value's type) and %p (its address) are special; we always do them first. - switch verb { - case 'T': - p.printArg(reflect.TypeOf(arg).String(), 's', false, false, 0) - return false - case 'p': - p.fmtPointer(reflect.ValueOf(arg), verb, goSyntax) - return false - } - - // Clear flags for base formatters. - // handleMethods needs them, so we must restore them later. - // We could call handleMethods here and avoid this work, but - // handleMethods is expensive enough to be worth delaying. - oldPlus := p.fmt.plus - oldSharp := p.fmt.sharp - if plus { - p.fmt.plus = false - } - if goSyntax { - p.fmt.sharp = false - } - - // Some types can be done without reflection. - switch f := arg.(type) { - case bool: - p.fmtBool(f, verb) - case float32: - p.fmtFloat32(f, verb) - case float64: - p.fmtFloat64(f, verb) - case complex64: - p.fmtComplex64(f, verb) - case complex128: - p.fmtComplex128(f, verb) - case int: - p.fmtInt64(int64(f), verb) - case int8: - p.fmtInt64(int64(f), verb) - case int16: - p.fmtInt64(int64(f), verb) - case int32: - p.fmtInt64(int64(f), verb) - case int64: - p.fmtInt64(f, verb) - case uint: - p.fmtUint64(uint64(f), verb, goSyntax) - case uint8: - p.fmtUint64(uint64(f), verb, goSyntax) - case uint16: - p.fmtUint64(uint64(f), verb, goSyntax) - case uint32: - p.fmtUint64(uint64(f), verb, goSyntax) - case uint64: - p.fmtUint64(f, verb, goSyntax) - case uintptr: - p.fmtUint64(uint64(f), verb, goSyntax) - case string: - p.fmtString(f, verb, goSyntax) - wasString = verb == 's' || verb == 'v' - case []byte: - p.fmtBytes(f, verb, goSyntax, nil, depth) - wasString = verb == 's' - default: - // Restore flags in case handleMethods finds a Formatter. - p.fmt.plus = oldPlus - p.fmt.sharp = oldSharp - // If the type is not simple, it might have methods. - if isString, handled := p.handleMethods(verb, plus, goSyntax, depth); handled { - return isString - } - // Need to use reflection - return p.printReflectValue(reflect.ValueOf(arg), verb, plus, goSyntax, depth) - } - p.arg = nil - return -} - -// printValue is like printArg but starts with a reflect value, not an interface{} value. -func (p *pp) printValue(value reflect.Value, verb rune, plus, goSyntax bool, depth int) (wasString bool) { - if !value.IsValid() { - if verb == 'T' || verb == 'v' { - p.buf.Write(nilAngleBytes) - } else { - p.badVerb(verb) - } - return false - } - - // Special processing considerations. - // %T (the value's type) and %p (its address) are special; we always do them first. - switch verb { - case 'T': - p.printArg(value.Type().String(), 's', false, false, 0) - return false - case 'p': - p.fmtPointer(value, verb, goSyntax) - return false - } - - // Handle values with special methods. - // Call always, even when arg == nil, because handleMethods clears p.fmt.plus for us. - p.arg = nil // Make sure it's cleared, for safety. - if value.CanInterface() { - p.arg = value.Interface() - } - if isString, handled := p.handleMethods(verb, plus, goSyntax, depth); handled { - return isString - } - - return p.printReflectValue(value, verb, plus, goSyntax, depth) -} - -// printReflectValue is the fallback for both printArg and printValue. -// It uses reflect to print the value. -func (p *pp) printReflectValue(value reflect.Value, verb rune, plus, goSyntax bool, depth int) (wasString bool) { - oldValue := p.value - p.value = value -BigSwitch: - switch f := value; f.Kind() { - case reflect.Bool: - p.fmtBool(f.Bool(), verb) - case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: - p.fmtInt64(f.Int(), verb) - case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: - p.fmtUint64(f.Uint(), verb, goSyntax) - case reflect.Float32, reflect.Float64: - if f.Type().Size() == 4 { - p.fmtFloat32(float32(f.Float()), verb) - } else { - p.fmtFloat64(f.Float(), verb) - } - case reflect.Complex64, reflect.Complex128: - if f.Type().Size() == 8 { - p.fmtComplex64(complex64(f.Complex()), verb) - } else { - p.fmtComplex128(f.Complex(), verb) - } - case reflect.String: - p.fmtString(f.String(), verb, goSyntax) - case reflect.Map: - if goSyntax { - p.buf.WriteString(f.Type().String()) - if f.IsNil() { - p.buf.WriteString("(nil)") - break - } - p.buf.WriteByte('{') - } else { - p.buf.Write(mapBytes) - } - keys := f.MapKeys() - for i, key := range keys { - if i > 0 { - if goSyntax { - p.buf.Write(commaSpaceBytes) - } else { - p.buf.WriteByte(' ') - } - } - p.printValue(key, verb, plus, goSyntax, depth+1) - p.buf.WriteByte(':') - p.printValue(f.MapIndex(key), verb, plus, goSyntax, depth+1) - } - if goSyntax { - p.buf.WriteByte('}') - } else { - p.buf.WriteByte(']') - } - case reflect.Struct: - if goSyntax { - p.buf.WriteString(value.Type().String()) - } - p.add('{') - v := f - t := v.Type() - for i := 0; i < v.NumField(); i++ { - if i > 0 { - if goSyntax { - p.buf.Write(commaSpaceBytes) - } else { - p.buf.WriteByte(' ') - } - } - if plus || goSyntax { - if f := t.Field(i); f.Name != "" { - p.buf.WriteString(f.Name) - p.buf.WriteByte(':') - } - } - p.printValue(getField(v, i), verb, plus, goSyntax, depth+1) - } - p.buf.WriteByte('}') - case reflect.Interface: - value := f.Elem() - if !value.IsValid() { - if goSyntax { - p.buf.WriteString(f.Type().String()) - p.buf.Write(nilParenBytes) - } else { - p.buf.Write(nilAngleBytes) - } - } else { - wasString = p.printValue(value, verb, plus, goSyntax, depth+1) - } - case reflect.Array, reflect.Slice: - // Byte slices are special. - if typ := f.Type(); typ.Elem().Kind() == reflect.Uint8 { - var bytes []byte - if f.Kind() == reflect.Slice { - bytes = f.Bytes() - } else if f.CanAddr() { - bytes = f.Slice(0, f.Len()).Bytes() - } else { - // We have an array, but we cannot Slice() a non-addressable array, - // so we build a slice by hand. This is a rare case but it would be nice - // if reflection could help a little more. - bytes = make([]byte, f.Len()) - for i := range bytes { - bytes[i] = byte(f.Index(i).Uint()) - } - } - p.fmtBytes(bytes, verb, goSyntax, typ, depth) - wasString = verb == 's' - break - } - if goSyntax { - p.buf.WriteString(value.Type().String()) - if f.Kind() == reflect.Slice && f.IsNil() { - p.buf.WriteString("(nil)") - break - } - p.buf.WriteByte('{') - } else { - p.buf.WriteByte('[') - } - for i := 0; i < f.Len(); i++ { - if i > 0 { - if goSyntax { - p.buf.Write(commaSpaceBytes) - } else { - p.buf.WriteByte(' ') - } - } - p.printValue(f.Index(i), verb, plus, goSyntax, depth+1) - } - if goSyntax { - p.buf.WriteByte('}') - } else { - p.buf.WriteByte(']') - } - case reflect.Ptr: - v := f.Pointer() - // pointer to array or slice or struct? ok at top level - // but not embedded (avoid loops) - if v != 0 && depth == 0 { - switch a := f.Elem(); a.Kind() { - case reflect.Array, reflect.Slice: - p.buf.WriteByte('&') - p.printValue(a, verb, plus, goSyntax, depth+1) - break BigSwitch - case reflect.Struct: - p.buf.WriteByte('&') - p.printValue(a, verb, plus, goSyntax, depth+1) - break BigSwitch - } - } - fallthrough - case reflect.Chan, reflect.Func, reflect.UnsafePointer: - p.fmtPointer(value, verb, goSyntax) - default: - p.unknownType(f) - } - p.value = oldValue - return wasString -} - -// intFromArg gets the argNumth element of a. On return, isInt reports whether the argument has type int. -func intFromArg(a []interface{}, argNum int) (num int, isInt bool, newArgNum int) { - newArgNum = argNum - if argNum < len(a) { - num, isInt = a[argNum].(int) - newArgNum = argNum + 1 - } - return -} - -// parseArgNumber returns the value of the bracketed number, minus 1 -// (explicit argument numbers are one-indexed but we want zero-indexed). -// The opening bracket is known to be present at format[0]. -// The returned values are the index, the number of bytes to consume -// up to the closing paren, if present, and whether the number parsed -// ok. The bytes to consume will be 1 if no closing paren is present. -func parseArgNumber(format string) (index int, wid int, ok bool) { - // Find closing bracket. - for i := 1; i < len(format); i++ { - if format[i] == ']' { - width, ok, newi := parsenum(format, 1, i) - if !ok || newi != i { - return 0, i + 1, false - } - return width - 1, i + 1, true // arg numbers are one-indexed and skip paren. - } - } - return 0, 1, false -} - -// argNumber returns the next argument to evaluate, which is either the value of the passed-in -// argNum or the value of the bracketed integer that begins format[i:]. It also returns -// the new value of i, that is, the index of the next byte of the format to process. -func (p *pp) argNumber(argNum int, format string, i int, numArgs int) (newArgNum, newi int, found bool) { - if len(format) <= i || format[i] != '[' { - return argNum, i, false - } - p.reordered = true - index, wid, ok := parseArgNumber(format[i:]) - if ok && 0 <= index && index < numArgs { - return index, i + wid, true - } - p.goodArgNum = false - return argNum, i + wid, true -} - -func (p *pp) doPrintf(format string, a []interface{}) { - end := len(format) - argNum := 0 // we process one argument per non-trivial format - afterIndex := false // previous item in format was an index like [3]. - p.reordered = false - for i := 0; i < end; { - p.goodArgNum = true - lasti := i - for i < end && format[i] != '%' { - i++ - } - if i > lasti { - p.buf.WriteString(format[lasti:i]) - } - if i >= end { - // done processing format string - break - } - - // Process one verb - i++ - - // Do we have flags? - p.fmt.clearflags() - F: - for ; i < end; i++ { - switch format[i] { - case '#': - p.fmt.sharp = true - case '0': - p.fmt.zero = true - case '+': - p.fmt.plus = true - case '-': - p.fmt.minus = true - case ' ': - p.fmt.space = true - default: - break F - } - } - - // Do we have an explicit argument index? - argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a)) - - // Do we have width? - if i < end && format[i] == '*' { - i++ - p.fmt.wid, p.fmt.widPresent, argNum = intFromArg(a, argNum) - if !p.fmt.widPresent { - p.buf.Write(badWidthBytes) - } - afterIndex = false - } else { - p.fmt.wid, p.fmt.widPresent, i = parsenum(format, i, end) - if afterIndex && p.fmt.widPresent { // "%[3]2d" - p.goodArgNum = false - } - } - - // Do we have precision? - if i+1 < end && format[i] == '.' { - i++ - if afterIndex { // "%[3].2d" - p.goodArgNum = false - } - argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a)) - if format[i] == '*' { - i++ - p.fmt.prec, p.fmt.precPresent, argNum = intFromArg(a, argNum) - if !p.fmt.precPresent { - p.buf.Write(badPrecBytes) - } - afterIndex = false - } else { - p.fmt.prec, p.fmt.precPresent, i = parsenum(format, i, end) - if !p.fmt.precPresent { - p.fmt.prec = 0 - p.fmt.precPresent = true - } - } - } - - if !afterIndex { - argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a)) - } - - if i >= end { - p.buf.Write(noVerbBytes) - continue - } - c, w := utf8.DecodeRuneInString(format[i:]) - i += w - // percent is special - absorbs no operand - if c == '%' { - p.buf.WriteByte('%') // We ignore width and prec. - continue - } - if !p.goodArgNum { - p.buf.Write(percentBangBytes) - p.add(c) - p.buf.Write(badIndexBytes) - continue - } else if argNum >= len(a) { // out of operands - p.buf.Write(percentBangBytes) - p.add(c) - p.buf.Write(missingBytes) - continue - } - arg := a[argNum] - argNum++ - - goSyntax := c == 'v' && p.fmt.sharp - plus := c == 'v' && p.fmt.plus - p.printArg(arg, c, plus, goSyntax, 0) - } - - // Check for extra arguments unless the call accessed the arguments - // out of order, in which case it's too expensive to detect if they've all - // been used and arguably OK if they're not. - if !p.reordered && argNum < len(a) { - p.buf.Write(extraBytes) - for ; argNum < len(a); argNum++ { - arg := a[argNum] - if arg != nil { - p.buf.WriteString(reflect.TypeOf(arg).String()) - p.buf.WriteByte('=') - } - p.printArg(arg, 'v', false, false, 0) - if argNum+1 < len(a) { - p.buf.Write(commaSpaceBytes) - } - } - p.buf.WriteByte(')') - } -} - -func (p *pp) doPrint(a []interface{}, addspace, addnewline bool) { - prevString := false - for argNum := 0; argNum < len(a); argNum++ { - p.fmt.clearflags() - // always add spaces if we're doing Println - arg := a[argNum] - if argNum > 0 { - isString := arg != nil && reflect.TypeOf(arg).Kind() == reflect.String - if addspace || !isString && !prevString { - p.buf.WriteByte(' ') - } - } - prevString = p.printArg(arg, 'v', false, false, 0) - } - if addnewline { - p.buf.WriteByte('\n') - } -} |
