summaryrefslogtreecommitdiff
path: root/src/pkg/fmt/print.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/fmt/print.go')
-rw-r--r--src/pkg/fmt/print.go1199
1 files changed, 0 insertions, 1199 deletions
diff --git a/src/pkg/fmt/print.go b/src/pkg/fmt/print.go
deleted file mode 100644
index 302661f4c..000000000
--- a/src/pkg/fmt/print.go
+++ /dev/null
@@ -1,1199 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package fmt
-
-import (
- "errors"
- "io"
- "os"
- "reflect"
- "sync"
- "unicode/utf8"
-)
-
-// Some constants in the form of bytes, to avoid string overhead.
-// Needlessly fastidious, I suppose.
-var (
- commaSpaceBytes = []byte(", ")
- nilAngleBytes = []byte("<nil>")
- nilParenBytes = []byte("(nil)")
- nilBytes = []byte("nil")
- mapBytes = []byte("map[")
- percentBangBytes = []byte("%!")
- missingBytes = []byte("(MISSING)")
- badIndexBytes = []byte("(BADINDEX)")
- panicBytes = []byte("(PANIC=")
- extraBytes = []byte("%!(EXTRA ")
- irparenBytes = []byte("i)")
- bytesBytes = []byte("[]byte{")
- badWidthBytes = []byte("%!(BADWIDTH)")
- badPrecBytes = []byte("%!(BADPREC)")
- noVerbBytes = []byte("%!(NOVERB)")
-)
-
-// State represents the printer state passed to custom formatters.
-// It provides access to the io.Writer interface plus information about
-// the flags and options for the operand's format specifier.
-type State interface {
- // Write is the function to call to emit formatted output to be printed.
- Write(b []byte) (ret int, err error)
- // Width returns the value of the width option and whether it has been set.
- Width() (wid int, ok bool)
- // Precision returns the value of the precision option and whether it has been set.
- Precision() (prec int, ok bool)
-
- // Flag reports whether the flag c, a character, has been set.
- Flag(c int) bool
-}
-
-// Formatter is the interface implemented by values with a custom formatter.
-// The implementation of Format may call Sprint(f) or Fprint(f) etc.
-// to generate its output.
-type Formatter interface {
- Format(f State, c rune)
-}
-
-// Stringer is implemented by any value that has a String method,
-// which defines the ``native'' format for that value.
-// The String method is used to print values passed as an operand
-// to any format that accepts a string or to an unformatted printer
-// such as Print.
-type Stringer interface {
- String() string
-}
-
-// GoStringer is implemented by any value that has a GoString method,
-// which defines the Go syntax for that value.
-// The GoString method is used to print values passed as an operand
-// to a %#v format.
-type GoStringer interface {
- GoString() string
-}
-
-// Use simple []byte instead of bytes.Buffer to avoid large dependency.
-type buffer []byte
-
-func (b *buffer) Write(p []byte) (n int, err error) {
- *b = append(*b, p...)
- return len(p), nil
-}
-
-func (b *buffer) WriteString(s string) (n int, err error) {
- *b = append(*b, s...)
- return len(s), nil
-}
-
-func (b *buffer) WriteByte(c byte) error {
- *b = append(*b, c)
- return nil
-}
-
-func (bp *buffer) WriteRune(r rune) error {
- if r < utf8.RuneSelf {
- *bp = append(*bp, byte(r))
- return nil
- }
-
- b := *bp
- n := len(b)
- for n+utf8.UTFMax > cap(b) {
- b = append(b, 0)
- }
- w := utf8.EncodeRune(b[n:n+utf8.UTFMax], r)
- *bp = b[:n+w]
- return nil
-}
-
-type pp struct {
- n int
- panicking bool
- erroring bool // printing an error condition
- buf buffer
- // arg holds the current item, as an interface{}.
- arg interface{}
- // value holds the current item, as a reflect.Value, and will be
- // the zero Value if the item has not been reflected.
- value reflect.Value
- // reordered records whether the format string used argument reordering.
- reordered bool
- // goodArgNum records whether the most recent reordering directive was valid.
- goodArgNum bool
- runeBuf [utf8.UTFMax]byte
- fmt fmt
-}
-
-var ppFree = sync.Pool{
- New: func() interface{} { return new(pp) },
-}
-
-// newPrinter allocates a new pp struct or grab a cached one.
-func newPrinter() *pp {
- p := ppFree.Get().(*pp)
- p.panicking = false
- p.erroring = false
- p.fmt.init(&p.buf)
- return p
-}
-
-// free saves used pp structs in ppFree; avoids an allocation per invocation.
-func (p *pp) free() {
- // Don't hold on to pp structs with large buffers.
- if cap(p.buf) > 1024 {
- return
- }
- p.buf = p.buf[:0]
- p.arg = nil
- p.value = reflect.Value{}
- ppFree.Put(p)
-}
-
-func (p *pp) Width() (wid int, ok bool) { return p.fmt.wid, p.fmt.widPresent }
-
-func (p *pp) Precision() (prec int, ok bool) { return p.fmt.prec, p.fmt.precPresent }
-
-func (p *pp) Flag(b int) bool {
- switch b {
- case '-':
- return p.fmt.minus
- case '+':
- return p.fmt.plus
- case '#':
- return p.fmt.sharp
- case ' ':
- return p.fmt.space
- case '0':
- return p.fmt.zero
- }
- return false
-}
-
-func (p *pp) add(c rune) {
- p.buf.WriteRune(c)
-}
-
-// Implement Write so we can call Fprintf on a pp (through State), for
-// recursive use in custom verbs.
-func (p *pp) Write(b []byte) (ret int, err error) {
- return p.buf.Write(b)
-}
-
-// These routines end in 'f' and take a format string.
-
-// Fprintf formats according to a format specifier and writes to w.
-// It returns the number of bytes written and any write error encountered.
-func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) {
- p := newPrinter()
- p.doPrintf(format, a)
- n, err = w.Write(p.buf)
- p.free()
- return
-}
-
-// Printf formats according to a format specifier and writes to standard output.
-// It returns the number of bytes written and any write error encountered.
-func Printf(format string, a ...interface{}) (n int, err error) {
- return Fprintf(os.Stdout, format, a...)
-}
-
-// Sprintf formats according to a format specifier and returns the resulting string.
-func Sprintf(format string, a ...interface{}) string {
- p := newPrinter()
- p.doPrintf(format, a)
- s := string(p.buf)
- p.free()
- return s
-}
-
-// Errorf formats according to a format specifier and returns the string
-// as a value that satisfies error.
-func Errorf(format string, a ...interface{}) error {
- return errors.New(Sprintf(format, a...))
-}
-
-// These routines do not take a format string
-
-// Fprint formats using the default formats for its operands and writes to w.
-// Spaces are added between operands when neither is a string.
-// It returns the number of bytes written and any write error encountered.
-func Fprint(w io.Writer, a ...interface{}) (n int, err error) {
- p := newPrinter()
- p.doPrint(a, false, false)
- n, err = w.Write(p.buf)
- p.free()
- return
-}
-
-// Print formats using the default formats for its operands and writes to standard output.
-// Spaces are added between operands when neither is a string.
-// It returns the number of bytes written and any write error encountered.
-func Print(a ...interface{}) (n int, err error) {
- return Fprint(os.Stdout, a...)
-}
-
-// Sprint formats using the default formats for its operands and returns the resulting string.
-// Spaces are added between operands when neither is a string.
-func Sprint(a ...interface{}) string {
- p := newPrinter()
- p.doPrint(a, false, false)
- s := string(p.buf)
- p.free()
- return s
-}
-
-// These routines end in 'ln', do not take a format string,
-// always add spaces between operands, and add a newline
-// after the last operand.
-
-// Fprintln formats using the default formats for its operands and writes to w.
-// Spaces are always added between operands and a newline is appended.
-// It returns the number of bytes written and any write error encountered.
-func Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
- p := newPrinter()
- p.doPrint(a, true, true)
- n, err = w.Write(p.buf)
- p.free()
- return
-}
-
-// Println formats using the default formats for its operands and writes to standard output.
-// Spaces are always added between operands and a newline is appended.
-// It returns the number of bytes written and any write error encountered.
-func Println(a ...interface{}) (n int, err error) {
- return Fprintln(os.Stdout, a...)
-}
-
-// Sprintln formats using the default formats for its operands and returns the resulting string.
-// Spaces are always added between operands and a newline is appended.
-func Sprintln(a ...interface{}) string {
- p := newPrinter()
- p.doPrint(a, true, true)
- s := string(p.buf)
- p.free()
- return s
-}
-
-// getField gets the i'th field of the struct value.
-// If the field is itself is an interface, return a value for
-// the thing inside the interface, not the interface itself.
-func getField(v reflect.Value, i int) reflect.Value {
- val := v.Field(i)
- if val.Kind() == reflect.Interface && !val.IsNil() {
- val = val.Elem()
- }
- return val
-}
-
-// parsenum converts ASCII to integer. num is 0 (and isnum is false) if no number present.
-func parsenum(s string, start, end int) (num int, isnum bool, newi int) {
- if start >= end {
- return 0, false, end
- }
- for newi = start; newi < end && '0' <= s[newi] && s[newi] <= '9'; newi++ {
- num = num*10 + int(s[newi]-'0')
- isnum = true
- }
- return
-}
-
-func (p *pp) unknownType(v interface{}) {
- if v == nil {
- p.buf.Write(nilAngleBytes)
- return
- }
- p.buf.WriteByte('?')
- p.buf.WriteString(reflect.TypeOf(v).String())
- p.buf.WriteByte('?')
-}
-
-func (p *pp) badVerb(verb rune) {
- p.erroring = true
- p.add('%')
- p.add('!')
- p.add(verb)
- p.add('(')
- switch {
- case p.arg != nil:
- p.buf.WriteString(reflect.TypeOf(p.arg).String())
- p.add('=')
- p.printArg(p.arg, 'v', false, false, 0)
- case p.value.IsValid():
- p.buf.WriteString(p.value.Type().String())
- p.add('=')
- p.printValue(p.value, 'v', false, false, 0)
- default:
- p.buf.Write(nilAngleBytes)
- }
- p.add(')')
- p.erroring = false
-}
-
-func (p *pp) fmtBool(v bool, verb rune) {
- switch verb {
- case 't', 'v':
- p.fmt.fmt_boolean(v)
- default:
- p.badVerb(verb)
- }
-}
-
-// fmtC formats a rune for the 'c' format.
-func (p *pp) fmtC(c int64) {
- r := rune(c) // Check for overflow.
- if int64(r) != c {
- r = utf8.RuneError
- }
- w := utf8.EncodeRune(p.runeBuf[0:utf8.UTFMax], r)
- p.fmt.pad(p.runeBuf[0:w])
-}
-
-func (p *pp) fmtInt64(v int64, verb rune) {
- switch verb {
- case 'b':
- p.fmt.integer(v, 2, signed, ldigits)
- case 'c':
- p.fmtC(v)
- case 'd', 'v':
- p.fmt.integer(v, 10, signed, ldigits)
- case 'o':
- p.fmt.integer(v, 8, signed, ldigits)
- case 'q':
- if 0 <= v && v <= utf8.MaxRune {
- p.fmt.fmt_qc(v)
- } else {
- p.badVerb(verb)
- }
- case 'x':
- p.fmt.integer(v, 16, signed, ldigits)
- case 'U':
- p.fmtUnicode(v)
- case 'X':
- p.fmt.integer(v, 16, signed, udigits)
- default:
- p.badVerb(verb)
- }
-}
-
-// fmt0x64 formats a uint64 in hexadecimal and prefixes it with 0x or
-// not, as requested, by temporarily setting the sharp flag.
-func (p *pp) fmt0x64(v uint64, leading0x bool) {
- sharp := p.fmt.sharp
- p.fmt.sharp = leading0x
- p.fmt.integer(int64(v), 16, unsigned, ldigits)
- p.fmt.sharp = sharp
-}
-
-// fmtUnicode formats a uint64 in U+1234 form by
-// temporarily turning on the unicode flag and tweaking the precision.
-func (p *pp) fmtUnicode(v int64) {
- precPresent := p.fmt.precPresent
- sharp := p.fmt.sharp
- p.fmt.sharp = false
- prec := p.fmt.prec
- if !precPresent {
- // If prec is already set, leave it alone; otherwise 4 is minimum.
- p.fmt.prec = 4
- p.fmt.precPresent = true
- }
- p.fmt.unicode = true // turn on U+
- p.fmt.uniQuote = sharp
- p.fmt.integer(int64(v), 16, unsigned, udigits)
- p.fmt.unicode = false
- p.fmt.uniQuote = false
- p.fmt.prec = prec
- p.fmt.precPresent = precPresent
- p.fmt.sharp = sharp
-}
-
-func (p *pp) fmtUint64(v uint64, verb rune, goSyntax bool) {
- switch verb {
- case 'b':
- p.fmt.integer(int64(v), 2, unsigned, ldigits)
- case 'c':
- p.fmtC(int64(v))
- case 'd':
- p.fmt.integer(int64(v), 10, unsigned, ldigits)
- case 'v':
- if goSyntax {
- p.fmt0x64(v, true)
- } else {
- p.fmt.integer(int64(v), 10, unsigned, ldigits)
- }
- case 'o':
- p.fmt.integer(int64(v), 8, unsigned, ldigits)
- case 'q':
- if 0 <= v && v <= utf8.MaxRune {
- p.fmt.fmt_qc(int64(v))
- } else {
- p.badVerb(verb)
- }
- case 'x':
- p.fmt.integer(int64(v), 16, unsigned, ldigits)
- case 'X':
- p.fmt.integer(int64(v), 16, unsigned, udigits)
- case 'U':
- p.fmtUnicode(int64(v))
- default:
- p.badVerb(verb)
- }
-}
-
-func (p *pp) fmtFloat32(v float32, verb rune) {
- switch verb {
- case 'b':
- p.fmt.fmt_fb32(v)
- case 'e':
- p.fmt.fmt_e32(v)
- case 'E':
- p.fmt.fmt_E32(v)
- case 'f', 'F':
- p.fmt.fmt_f32(v)
- case 'g', 'v':
- p.fmt.fmt_g32(v)
- case 'G':
- p.fmt.fmt_G32(v)
- default:
- p.badVerb(verb)
- }
-}
-
-func (p *pp) fmtFloat64(v float64, verb rune) {
- switch verb {
- case 'b':
- p.fmt.fmt_fb64(v)
- case 'e':
- p.fmt.fmt_e64(v)
- case 'E':
- p.fmt.fmt_E64(v)
- case 'f', 'F':
- p.fmt.fmt_f64(v)
- case 'g', 'v':
- p.fmt.fmt_g64(v)
- case 'G':
- p.fmt.fmt_G64(v)
- default:
- p.badVerb(verb)
- }
-}
-
-func (p *pp) fmtComplex64(v complex64, verb rune) {
- switch verb {
- case 'b', 'e', 'E', 'f', 'F', 'g', 'G':
- p.fmt.fmt_c64(v, verb)
- case 'v':
- p.fmt.fmt_c64(v, 'g')
- default:
- p.badVerb(verb)
- }
-}
-
-func (p *pp) fmtComplex128(v complex128, verb rune) {
- switch verb {
- case 'b', 'e', 'E', 'f', 'F', 'g', 'G':
- p.fmt.fmt_c128(v, verb)
- case 'v':
- p.fmt.fmt_c128(v, 'g')
- default:
- p.badVerb(verb)
- }
-}
-
-func (p *pp) fmtString(v string, verb rune, goSyntax bool) {
- switch verb {
- case 'v':
- if goSyntax {
- p.fmt.fmt_q(v)
- } else {
- p.fmt.fmt_s(v)
- }
- case 's':
- p.fmt.fmt_s(v)
- case 'x':
- p.fmt.fmt_sx(v, ldigits)
- case 'X':
- p.fmt.fmt_sx(v, udigits)
- case 'q':
- p.fmt.fmt_q(v)
- default:
- p.badVerb(verb)
- }
-}
-
-func (p *pp) fmtBytes(v []byte, verb rune, goSyntax bool, typ reflect.Type, depth int) {
- if verb == 'v' || verb == 'd' {
- if goSyntax {
- if v == nil {
- if typ == nil {
- p.buf.WriteString("[]byte(nil)")
- } else {
- p.buf.WriteString(typ.String())
- p.buf.Write(nilParenBytes)
- }
- return
- }
- if typ == nil {
- p.buf.Write(bytesBytes)
- } else {
- p.buf.WriteString(typ.String())
- p.buf.WriteByte('{')
- }
- } else {
- p.buf.WriteByte('[')
- }
- for i, c := range v {
- if i > 0 {
- if goSyntax {
- p.buf.Write(commaSpaceBytes)
- } else {
- p.buf.WriteByte(' ')
- }
- }
- p.printArg(c, 'v', p.fmt.plus, goSyntax, depth+1)
- }
- if goSyntax {
- p.buf.WriteByte('}')
- } else {
- p.buf.WriteByte(']')
- }
- return
- }
- switch verb {
- case 's':
- p.fmt.fmt_s(string(v))
- case 'x':
- p.fmt.fmt_bx(v, ldigits)
- case 'X':
- p.fmt.fmt_bx(v, udigits)
- case 'q':
- p.fmt.fmt_q(string(v))
- default:
- p.badVerb(verb)
- }
-}
-
-func (p *pp) fmtPointer(value reflect.Value, verb rune, goSyntax bool) {
- use0x64 := true
- switch verb {
- case 'p', 'v':
- // ok
- case 'b', 'd', 'o', 'x', 'X':
- use0x64 = false
- // ok
- default:
- p.badVerb(verb)
- return
- }
-
- var u uintptr
- switch value.Kind() {
- case reflect.Chan, reflect.Func, reflect.Map, reflect.Ptr, reflect.Slice, reflect.UnsafePointer:
- u = value.Pointer()
- default:
- p.badVerb(verb)
- return
- }
-
- if goSyntax {
- p.add('(')
- p.buf.WriteString(value.Type().String())
- p.add(')')
- p.add('(')
- if u == 0 {
- p.buf.Write(nilBytes)
- } else {
- p.fmt0x64(uint64(u), true)
- }
- p.add(')')
- } else if verb == 'v' && u == 0 {
- p.buf.Write(nilAngleBytes)
- } else {
- if use0x64 {
- p.fmt0x64(uint64(u), !p.fmt.sharp)
- } else {
- p.fmtUint64(uint64(u), verb, false)
- }
- }
-}
-
-var (
- intBits = reflect.TypeOf(0).Bits()
- uintptrBits = reflect.TypeOf(uintptr(0)).Bits()
-)
-
-func (p *pp) catchPanic(arg interface{}, verb rune) {
- if err := recover(); err != nil {
- // If it's a nil pointer, just say "<nil>". The likeliest causes are a
- // Stringer that fails to guard against nil or a nil pointer for a
- // value receiver, and in either case, "<nil>" is a nice result.
- if v := reflect.ValueOf(arg); v.Kind() == reflect.Ptr && v.IsNil() {
- p.buf.Write(nilAngleBytes)
- return
- }
- // Otherwise print a concise panic message. Most of the time the panic
- // value will print itself nicely.
- if p.panicking {
- // Nested panics; the recursion in printArg cannot succeed.
- panic(err)
- }
- p.buf.Write(percentBangBytes)
- p.add(verb)
- p.buf.Write(panicBytes)
- p.panicking = true
- p.printArg(err, 'v', false, false, 0)
- p.panicking = false
- p.buf.WriteByte(')')
- }
-}
-
-func (p *pp) handleMethods(verb rune, plus, goSyntax bool, depth int) (wasString, handled bool) {
- if p.erroring {
- return
- }
- // Is it a Formatter?
- if formatter, ok := p.arg.(Formatter); ok {
- handled = true
- wasString = false
- defer p.catchPanic(p.arg, verb)
- formatter.Format(p, verb)
- return
- }
- // Must not touch flags before Formatter looks at them.
- if plus {
- p.fmt.plus = false
- }
-
- // If we're doing Go syntax and the argument knows how to supply it, take care of it now.
- if goSyntax {
- p.fmt.sharp = false
- if stringer, ok := p.arg.(GoStringer); ok {
- wasString = false
- handled = true
- defer p.catchPanic(p.arg, verb)
- // Print the result of GoString unadorned.
- p.fmtString(stringer.GoString(), 's', false)
- return
- }
- } else {
- // If a string is acceptable according to the format, see if
- // the value satisfies one of the string-valued interfaces.
- // Println etc. set verb to %v, which is "stringable".
- switch verb {
- case 'v', 's', 'x', 'X', 'q':
- // Is it an error or Stringer?
- // The duplication in the bodies is necessary:
- // setting wasString and handled, and deferring catchPanic,
- // must happen before calling the method.
- switch v := p.arg.(type) {
- case error:
- wasString = false
- handled = true
- defer p.catchPanic(p.arg, verb)
- p.printArg(v.Error(), verb, plus, false, depth)
- return
-
- case Stringer:
- wasString = false
- handled = true
- defer p.catchPanic(p.arg, verb)
- p.printArg(v.String(), verb, plus, false, depth)
- return
- }
- }
- }
- handled = false
- return
-}
-
-func (p *pp) printArg(arg interface{}, verb rune, plus, goSyntax bool, depth int) (wasString bool) {
- p.arg = arg
- p.value = reflect.Value{}
-
- if arg == nil {
- if verb == 'T' || verb == 'v' {
- p.fmt.pad(nilAngleBytes)
- } else {
- p.badVerb(verb)
- }
- return false
- }
-
- // Special processing considerations.
- // %T (the value's type) and %p (its address) are special; we always do them first.
- switch verb {
- case 'T':
- p.printArg(reflect.TypeOf(arg).String(), 's', false, false, 0)
- return false
- case 'p':
- p.fmtPointer(reflect.ValueOf(arg), verb, goSyntax)
- return false
- }
-
- // Clear flags for base formatters.
- // handleMethods needs them, so we must restore them later.
- // We could call handleMethods here and avoid this work, but
- // handleMethods is expensive enough to be worth delaying.
- oldPlus := p.fmt.plus
- oldSharp := p.fmt.sharp
- if plus {
- p.fmt.plus = false
- }
- if goSyntax {
- p.fmt.sharp = false
- }
-
- // Some types can be done without reflection.
- switch f := arg.(type) {
- case bool:
- p.fmtBool(f, verb)
- case float32:
- p.fmtFloat32(f, verb)
- case float64:
- p.fmtFloat64(f, verb)
- case complex64:
- p.fmtComplex64(f, verb)
- case complex128:
- p.fmtComplex128(f, verb)
- case int:
- p.fmtInt64(int64(f), verb)
- case int8:
- p.fmtInt64(int64(f), verb)
- case int16:
- p.fmtInt64(int64(f), verb)
- case int32:
- p.fmtInt64(int64(f), verb)
- case int64:
- p.fmtInt64(f, verb)
- case uint:
- p.fmtUint64(uint64(f), verb, goSyntax)
- case uint8:
- p.fmtUint64(uint64(f), verb, goSyntax)
- case uint16:
- p.fmtUint64(uint64(f), verb, goSyntax)
- case uint32:
- p.fmtUint64(uint64(f), verb, goSyntax)
- case uint64:
- p.fmtUint64(f, verb, goSyntax)
- case uintptr:
- p.fmtUint64(uint64(f), verb, goSyntax)
- case string:
- p.fmtString(f, verb, goSyntax)
- wasString = verb == 's' || verb == 'v'
- case []byte:
- p.fmtBytes(f, verb, goSyntax, nil, depth)
- wasString = verb == 's'
- default:
- // Restore flags in case handleMethods finds a Formatter.
- p.fmt.plus = oldPlus
- p.fmt.sharp = oldSharp
- // If the type is not simple, it might have methods.
- if isString, handled := p.handleMethods(verb, plus, goSyntax, depth); handled {
- return isString
- }
- // Need to use reflection
- return p.printReflectValue(reflect.ValueOf(arg), verb, plus, goSyntax, depth)
- }
- p.arg = nil
- return
-}
-
-// printValue is like printArg but starts with a reflect value, not an interface{} value.
-func (p *pp) printValue(value reflect.Value, verb rune, plus, goSyntax bool, depth int) (wasString bool) {
- if !value.IsValid() {
- if verb == 'T' || verb == 'v' {
- p.buf.Write(nilAngleBytes)
- } else {
- p.badVerb(verb)
- }
- return false
- }
-
- // Special processing considerations.
- // %T (the value's type) and %p (its address) are special; we always do them first.
- switch verb {
- case 'T':
- p.printArg(value.Type().String(), 's', false, false, 0)
- return false
- case 'p':
- p.fmtPointer(value, verb, goSyntax)
- return false
- }
-
- // Handle values with special methods.
- // Call always, even when arg == nil, because handleMethods clears p.fmt.plus for us.
- p.arg = nil // Make sure it's cleared, for safety.
- if value.CanInterface() {
- p.arg = value.Interface()
- }
- if isString, handled := p.handleMethods(verb, plus, goSyntax, depth); handled {
- return isString
- }
-
- return p.printReflectValue(value, verb, plus, goSyntax, depth)
-}
-
-// printReflectValue is the fallback for both printArg and printValue.
-// It uses reflect to print the value.
-func (p *pp) printReflectValue(value reflect.Value, verb rune, plus, goSyntax bool, depth int) (wasString bool) {
- oldValue := p.value
- p.value = value
-BigSwitch:
- switch f := value; f.Kind() {
- case reflect.Bool:
- p.fmtBool(f.Bool(), verb)
- case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
- p.fmtInt64(f.Int(), verb)
- case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
- p.fmtUint64(f.Uint(), verb, goSyntax)
- case reflect.Float32, reflect.Float64:
- if f.Type().Size() == 4 {
- p.fmtFloat32(float32(f.Float()), verb)
- } else {
- p.fmtFloat64(f.Float(), verb)
- }
- case reflect.Complex64, reflect.Complex128:
- if f.Type().Size() == 8 {
- p.fmtComplex64(complex64(f.Complex()), verb)
- } else {
- p.fmtComplex128(f.Complex(), verb)
- }
- case reflect.String:
- p.fmtString(f.String(), verb, goSyntax)
- case reflect.Map:
- if goSyntax {
- p.buf.WriteString(f.Type().String())
- if f.IsNil() {
- p.buf.WriteString("(nil)")
- break
- }
- p.buf.WriteByte('{')
- } else {
- p.buf.Write(mapBytes)
- }
- keys := f.MapKeys()
- for i, key := range keys {
- if i > 0 {
- if goSyntax {
- p.buf.Write(commaSpaceBytes)
- } else {
- p.buf.WriteByte(' ')
- }
- }
- p.printValue(key, verb, plus, goSyntax, depth+1)
- p.buf.WriteByte(':')
- p.printValue(f.MapIndex(key), verb, plus, goSyntax, depth+1)
- }
- if goSyntax {
- p.buf.WriteByte('}')
- } else {
- p.buf.WriteByte(']')
- }
- case reflect.Struct:
- if goSyntax {
- p.buf.WriteString(value.Type().String())
- }
- p.add('{')
- v := f
- t := v.Type()
- for i := 0; i < v.NumField(); i++ {
- if i > 0 {
- if goSyntax {
- p.buf.Write(commaSpaceBytes)
- } else {
- p.buf.WriteByte(' ')
- }
- }
- if plus || goSyntax {
- if f := t.Field(i); f.Name != "" {
- p.buf.WriteString(f.Name)
- p.buf.WriteByte(':')
- }
- }
- p.printValue(getField(v, i), verb, plus, goSyntax, depth+1)
- }
- p.buf.WriteByte('}')
- case reflect.Interface:
- value := f.Elem()
- if !value.IsValid() {
- if goSyntax {
- p.buf.WriteString(f.Type().String())
- p.buf.Write(nilParenBytes)
- } else {
- p.buf.Write(nilAngleBytes)
- }
- } else {
- wasString = p.printValue(value, verb, plus, goSyntax, depth+1)
- }
- case reflect.Array, reflect.Slice:
- // Byte slices are special.
- if typ := f.Type(); typ.Elem().Kind() == reflect.Uint8 {
- var bytes []byte
- if f.Kind() == reflect.Slice {
- bytes = f.Bytes()
- } else if f.CanAddr() {
- bytes = f.Slice(0, f.Len()).Bytes()
- } else {
- // We have an array, but we cannot Slice() a non-addressable array,
- // so we build a slice by hand. This is a rare case but it would be nice
- // if reflection could help a little more.
- bytes = make([]byte, f.Len())
- for i := range bytes {
- bytes[i] = byte(f.Index(i).Uint())
- }
- }
- p.fmtBytes(bytes, verb, goSyntax, typ, depth)
- wasString = verb == 's'
- break
- }
- if goSyntax {
- p.buf.WriteString(value.Type().String())
- if f.Kind() == reflect.Slice && f.IsNil() {
- p.buf.WriteString("(nil)")
- break
- }
- p.buf.WriteByte('{')
- } else {
- p.buf.WriteByte('[')
- }
- for i := 0; i < f.Len(); i++ {
- if i > 0 {
- if goSyntax {
- p.buf.Write(commaSpaceBytes)
- } else {
- p.buf.WriteByte(' ')
- }
- }
- p.printValue(f.Index(i), verb, plus, goSyntax, depth+1)
- }
- if goSyntax {
- p.buf.WriteByte('}')
- } else {
- p.buf.WriteByte(']')
- }
- case reflect.Ptr:
- v := f.Pointer()
- // pointer to array or slice or struct? ok at top level
- // but not embedded (avoid loops)
- if v != 0 && depth == 0 {
- switch a := f.Elem(); a.Kind() {
- case reflect.Array, reflect.Slice:
- p.buf.WriteByte('&')
- p.printValue(a, verb, plus, goSyntax, depth+1)
- break BigSwitch
- case reflect.Struct:
- p.buf.WriteByte('&')
- p.printValue(a, verb, plus, goSyntax, depth+1)
- break BigSwitch
- }
- }
- fallthrough
- case reflect.Chan, reflect.Func, reflect.UnsafePointer:
- p.fmtPointer(value, verb, goSyntax)
- default:
- p.unknownType(f)
- }
- p.value = oldValue
- return wasString
-}
-
-// intFromArg gets the argNumth element of a. On return, isInt reports whether the argument has type int.
-func intFromArg(a []interface{}, argNum int) (num int, isInt bool, newArgNum int) {
- newArgNum = argNum
- if argNum < len(a) {
- num, isInt = a[argNum].(int)
- newArgNum = argNum + 1
- }
- return
-}
-
-// parseArgNumber returns the value of the bracketed number, minus 1
-// (explicit argument numbers are one-indexed but we want zero-indexed).
-// The opening bracket is known to be present at format[0].
-// The returned values are the index, the number of bytes to consume
-// up to the closing paren, if present, and whether the number parsed
-// ok. The bytes to consume will be 1 if no closing paren is present.
-func parseArgNumber(format string) (index int, wid int, ok bool) {
- // Find closing bracket.
- for i := 1; i < len(format); i++ {
- if format[i] == ']' {
- width, ok, newi := parsenum(format, 1, i)
- if !ok || newi != i {
- return 0, i + 1, false
- }
- return width - 1, i + 1, true // arg numbers are one-indexed and skip paren.
- }
- }
- return 0, 1, false
-}
-
-// argNumber returns the next argument to evaluate, which is either the value of the passed-in
-// argNum or the value of the bracketed integer that begins format[i:]. It also returns
-// the new value of i, that is, the index of the next byte of the format to process.
-func (p *pp) argNumber(argNum int, format string, i int, numArgs int) (newArgNum, newi int, found bool) {
- if len(format) <= i || format[i] != '[' {
- return argNum, i, false
- }
- p.reordered = true
- index, wid, ok := parseArgNumber(format[i:])
- if ok && 0 <= index && index < numArgs {
- return index, i + wid, true
- }
- p.goodArgNum = false
- return argNum, i + wid, true
-}
-
-func (p *pp) doPrintf(format string, a []interface{}) {
- end := len(format)
- argNum := 0 // we process one argument per non-trivial format
- afterIndex := false // previous item in format was an index like [3].
- p.reordered = false
- for i := 0; i < end; {
- p.goodArgNum = true
- lasti := i
- for i < end && format[i] != '%' {
- i++
- }
- if i > lasti {
- p.buf.WriteString(format[lasti:i])
- }
- if i >= end {
- // done processing format string
- break
- }
-
- // Process one verb
- i++
-
- // Do we have flags?
- p.fmt.clearflags()
- F:
- for ; i < end; i++ {
- switch format[i] {
- case '#':
- p.fmt.sharp = true
- case '0':
- p.fmt.zero = true
- case '+':
- p.fmt.plus = true
- case '-':
- p.fmt.minus = true
- case ' ':
- p.fmt.space = true
- default:
- break F
- }
- }
-
- // Do we have an explicit argument index?
- argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a))
-
- // Do we have width?
- if i < end && format[i] == '*' {
- i++
- p.fmt.wid, p.fmt.widPresent, argNum = intFromArg(a, argNum)
- if !p.fmt.widPresent {
- p.buf.Write(badWidthBytes)
- }
- afterIndex = false
- } else {
- p.fmt.wid, p.fmt.widPresent, i = parsenum(format, i, end)
- if afterIndex && p.fmt.widPresent { // "%[3]2d"
- p.goodArgNum = false
- }
- }
-
- // Do we have precision?
- if i+1 < end && format[i] == '.' {
- i++
- if afterIndex { // "%[3].2d"
- p.goodArgNum = false
- }
- argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a))
- if format[i] == '*' {
- i++
- p.fmt.prec, p.fmt.precPresent, argNum = intFromArg(a, argNum)
- if !p.fmt.precPresent {
- p.buf.Write(badPrecBytes)
- }
- afterIndex = false
- } else {
- p.fmt.prec, p.fmt.precPresent, i = parsenum(format, i, end)
- if !p.fmt.precPresent {
- p.fmt.prec = 0
- p.fmt.precPresent = true
- }
- }
- }
-
- if !afterIndex {
- argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a))
- }
-
- if i >= end {
- p.buf.Write(noVerbBytes)
- continue
- }
- c, w := utf8.DecodeRuneInString(format[i:])
- i += w
- // percent is special - absorbs no operand
- if c == '%' {
- p.buf.WriteByte('%') // We ignore width and prec.
- continue
- }
- if !p.goodArgNum {
- p.buf.Write(percentBangBytes)
- p.add(c)
- p.buf.Write(badIndexBytes)
- continue
- } else if argNum >= len(a) { // out of operands
- p.buf.Write(percentBangBytes)
- p.add(c)
- p.buf.Write(missingBytes)
- continue
- }
- arg := a[argNum]
- argNum++
-
- goSyntax := c == 'v' && p.fmt.sharp
- plus := c == 'v' && p.fmt.plus
- p.printArg(arg, c, plus, goSyntax, 0)
- }
-
- // Check for extra arguments unless the call accessed the arguments
- // out of order, in which case it's too expensive to detect if they've all
- // been used and arguably OK if they're not.
- if !p.reordered && argNum < len(a) {
- p.buf.Write(extraBytes)
- for ; argNum < len(a); argNum++ {
- arg := a[argNum]
- if arg != nil {
- p.buf.WriteString(reflect.TypeOf(arg).String())
- p.buf.WriteByte('=')
- }
- p.printArg(arg, 'v', false, false, 0)
- if argNum+1 < len(a) {
- p.buf.Write(commaSpaceBytes)
- }
- }
- p.buf.WriteByte(')')
- }
-}
-
-func (p *pp) doPrint(a []interface{}, addspace, addnewline bool) {
- prevString := false
- for argNum := 0; argNum < len(a); argNum++ {
- p.fmt.clearflags()
- // always add spaces if we're doing Println
- arg := a[argNum]
- if argNum > 0 {
- isString := arg != nil && reflect.TypeOf(arg).Kind() == reflect.String
- if addspace || !isString && !prevString {
- p.buf.WriteByte(' ')
- }
- }
- prevString = p.printArg(arg, 'v', false, false, 0)
- }
- if addnewline {
- p.buf.WriteByte('\n')
- }
-}