diff options
Diffstat (limited to 'src/pkg/fmt/scan.go')
| -rw-r--r-- | src/pkg/fmt/scan.go | 1168 |
1 files changed, 0 insertions, 1168 deletions
diff --git a/src/pkg/fmt/scan.go b/src/pkg/fmt/scan.go deleted file mode 100644 index 8a337e479..000000000 --- a/src/pkg/fmt/scan.go +++ /dev/null @@ -1,1168 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package fmt - -import ( - "errors" - "io" - "math" - "os" - "reflect" - "strconv" - "sync" - "unicode/utf8" -) - -// runeUnreader is the interface to something that can unread runes. -// If the object provided to Scan does not satisfy this interface, -// a local buffer will be used to back up the input, but its contents -// will be lost when Scan returns. -type runeUnreader interface { - UnreadRune() error -} - -// ScanState represents the scanner state passed to custom scanners. -// Scanners may do rune-at-a-time scanning or ask the ScanState -// to discover the next space-delimited token. -type ScanState interface { - // ReadRune reads the next rune (Unicode code point) from the input. - // If invoked during Scanln, Fscanln, or Sscanln, ReadRune() will - // return EOF after returning the first '\n' or when reading beyond - // the specified width. - ReadRune() (r rune, size int, err error) - // UnreadRune causes the next call to ReadRune to return the same rune. - UnreadRune() error - // SkipSpace skips space in the input. Newlines are treated as space - // unless the scan operation is Scanln, Fscanln or Sscanln, in which case - // a newline is treated as EOF. - SkipSpace() - // Token skips space in the input if skipSpace is true, then returns the - // run of Unicode code points c satisfying f(c). If f is nil, - // !unicode.IsSpace(c) is used; that is, the token will hold non-space - // characters. Newlines are treated as space unless the scan operation - // is Scanln, Fscanln or Sscanln, in which case a newline is treated as - // EOF. The returned slice points to shared data that may be overwritten - // by the next call to Token, a call to a Scan function using the ScanState - // as input, or when the calling Scan method returns. - Token(skipSpace bool, f func(rune) bool) (token []byte, err error) - // Width returns the value of the width option and whether it has been set. - // The unit is Unicode code points. - Width() (wid int, ok bool) - // Because ReadRune is implemented by the interface, Read should never be - // called by the scanning routines and a valid implementation of - // ScanState may choose always to return an error from Read. - Read(buf []byte) (n int, err error) -} - -// Scanner is implemented by any value that has a Scan method, which scans -// the input for the representation of a value and stores the result in the -// receiver, which must be a pointer to be useful. The Scan method is called -// for any argument to Scan, Scanf, or Scanln that implements it. -type Scanner interface { - Scan(state ScanState, verb rune) error -} - -// Scan scans text read from standard input, storing successive -// space-separated values into successive arguments. Newlines count -// as space. It returns the number of items successfully scanned. -// If that is less than the number of arguments, err will report why. -func Scan(a ...interface{}) (n int, err error) { - return Fscan(os.Stdin, a...) -} - -// Scanln is similar to Scan, but stops scanning at a newline and -// after the final item there must be a newline or EOF. -func Scanln(a ...interface{}) (n int, err error) { - return Fscanln(os.Stdin, a...) -} - -// Scanf scans text read from standard input, storing successive -// space-separated values into successive arguments as determined by -// the format. It returns the number of items successfully scanned. -func Scanf(format string, a ...interface{}) (n int, err error) { - return Fscanf(os.Stdin, format, a...) -} - -type stringReader string - -func (r *stringReader) Read(b []byte) (n int, err error) { - n = copy(b, *r) - *r = (*r)[n:] - if n == 0 { - err = io.EOF - } - return -} - -// Sscan scans the argument string, storing successive space-separated -// values into successive arguments. Newlines count as space. It -// returns the number of items successfully scanned. If that is less -// than the number of arguments, err will report why. -func Sscan(str string, a ...interface{}) (n int, err error) { - return Fscan((*stringReader)(&str), a...) -} - -// Sscanln is similar to Sscan, but stops scanning at a newline and -// after the final item there must be a newline or EOF. -func Sscanln(str string, a ...interface{}) (n int, err error) { - return Fscanln((*stringReader)(&str), a...) -} - -// Sscanf scans the argument string, storing successive space-separated -// values into successive arguments as determined by the format. It -// returns the number of items successfully parsed. -func Sscanf(str string, format string, a ...interface{}) (n int, err error) { - return Fscanf((*stringReader)(&str), format, a...) -} - -// Fscan scans text read from r, storing successive space-separated -// values into successive arguments. Newlines count as space. It -// returns the number of items successfully scanned. If that is less -// than the number of arguments, err will report why. -func Fscan(r io.Reader, a ...interface{}) (n int, err error) { - s, old := newScanState(r, true, false) - n, err = s.doScan(a) - s.free(old) - return -} - -// Fscanln is similar to Fscan, but stops scanning at a newline and -// after the final item there must be a newline or EOF. -func Fscanln(r io.Reader, a ...interface{}) (n int, err error) { - s, old := newScanState(r, false, true) - n, err = s.doScan(a) - s.free(old) - return -} - -// Fscanf scans text read from r, storing successive space-separated -// values into successive arguments as determined by the format. It -// returns the number of items successfully parsed. -func Fscanf(r io.Reader, format string, a ...interface{}) (n int, err error) { - s, old := newScanState(r, false, false) - n, err = s.doScanf(format, a) - s.free(old) - return -} - -// scanError represents an error generated by the scanning software. -// It's used as a unique signature to identify such errors when recovering. -type scanError struct { - err error -} - -const eof = -1 - -// ss is the internal implementation of ScanState. -type ss struct { - rr io.RuneReader // where to read input - buf buffer // token accumulator - peekRune rune // one-rune lookahead - prevRune rune // last rune returned by ReadRune - count int // runes consumed so far. - atEOF bool // already read EOF - ssave -} - -// ssave holds the parts of ss that need to be -// saved and restored on recursive scans. -type ssave struct { - validSave bool // is or was a part of an actual ss. - nlIsEnd bool // whether newline terminates scan - nlIsSpace bool // whether newline counts as white space - argLimit int // max value of ss.count for this arg; argLimit <= limit - limit int // max value of ss.count. - maxWid int // width of this arg. -} - -// The Read method is only in ScanState so that ScanState -// satisfies io.Reader. It will never be called when used as -// intended, so there is no need to make it actually work. -func (s *ss) Read(buf []byte) (n int, err error) { - return 0, errors.New("ScanState's Read should not be called. Use ReadRune") -} - -func (s *ss) ReadRune() (r rune, size int, err error) { - if s.peekRune >= 0 { - s.count++ - r = s.peekRune - size = utf8.RuneLen(r) - s.prevRune = r - s.peekRune = -1 - return - } - if s.atEOF || s.nlIsEnd && s.prevRune == '\n' || s.count >= s.argLimit { - err = io.EOF - return - } - - r, size, err = s.rr.ReadRune() - if err == nil { - s.count++ - s.prevRune = r - } else if err == io.EOF { - s.atEOF = true - } - return -} - -func (s *ss) Width() (wid int, ok bool) { - if s.maxWid == hugeWid { - return 0, false - } - return s.maxWid, true -} - -// The public method returns an error; this private one panics. -// If getRune reaches EOF, the return value is EOF (-1). -func (s *ss) getRune() (r rune) { - r, _, err := s.ReadRune() - if err != nil { - if err == io.EOF { - return eof - } - s.error(err) - } - return -} - -// mustReadRune turns io.EOF into a panic(io.ErrUnexpectedEOF). -// It is called in cases such as string scanning where an EOF is a -// syntax error. -func (s *ss) mustReadRune() (r rune) { - r = s.getRune() - if r == eof { - s.error(io.ErrUnexpectedEOF) - } - return -} - -func (s *ss) UnreadRune() error { - if u, ok := s.rr.(runeUnreader); ok { - u.UnreadRune() - } else { - s.peekRune = s.prevRune - } - s.prevRune = -1 - s.count-- - return nil -} - -func (s *ss) error(err error) { - panic(scanError{err}) -} - -func (s *ss) errorString(err string) { - panic(scanError{errors.New(err)}) -} - -func (s *ss) Token(skipSpace bool, f func(rune) bool) (tok []byte, err error) { - defer func() { - if e := recover(); e != nil { - if se, ok := e.(scanError); ok { - err = se.err - } else { - panic(e) - } - } - }() - if f == nil { - f = notSpace - } - s.buf = s.buf[:0] - tok = s.token(skipSpace, f) - return -} - -// space is a copy of the unicode.White_Space ranges, -// to avoid depending on package unicode. -var space = [][2]uint16{ - {0x0009, 0x000d}, - {0x0020, 0x0020}, - {0x0085, 0x0085}, - {0x00a0, 0x00a0}, - {0x1680, 0x1680}, - {0x2000, 0x200a}, - {0x2028, 0x2029}, - {0x202f, 0x202f}, - {0x205f, 0x205f}, - {0x3000, 0x3000}, -} - -func isSpace(r rune) bool { - if r >= 1<<16 { - return false - } - rx := uint16(r) - for _, rng := range space { - if rx < rng[0] { - return false - } - if rx <= rng[1] { - return true - } - } - return false -} - -// notSpace is the default scanning function used in Token. -func notSpace(r rune) bool { - return !isSpace(r) -} - -// SkipSpace provides Scan methods the ability to skip space and newline -// characters in keeping with the current scanning mode set by format strings -// and Scan/Scanln. -func (s *ss) SkipSpace() { - s.skipSpace(false) -} - -// readRune is a structure to enable reading UTF-8 encoded code points -// from an io.Reader. It is used if the Reader given to the scanner does -// not already implement io.RuneReader. -type readRune struct { - reader io.Reader - buf [utf8.UTFMax]byte // used only inside ReadRune - pending int // number of bytes in pendBuf; only >0 for bad UTF-8 - pendBuf [utf8.UTFMax]byte // bytes left over -} - -// readByte returns the next byte from the input, which may be -// left over from a previous read if the UTF-8 was ill-formed. -func (r *readRune) readByte() (b byte, err error) { - if r.pending > 0 { - b = r.pendBuf[0] - copy(r.pendBuf[0:], r.pendBuf[1:]) - r.pending-- - return - } - n, err := io.ReadFull(r.reader, r.pendBuf[0:1]) - if n != 1 { - return 0, err - } - return r.pendBuf[0], err -} - -// unread saves the bytes for the next read. -func (r *readRune) unread(buf []byte) { - copy(r.pendBuf[r.pending:], buf) - r.pending += len(buf) -} - -// ReadRune returns the next UTF-8 encoded code point from the -// io.Reader inside r. -func (r *readRune) ReadRune() (rr rune, size int, err error) { - r.buf[0], err = r.readByte() - if err != nil { - return 0, 0, err - } - if r.buf[0] < utf8.RuneSelf { // fast check for common ASCII case - rr = rune(r.buf[0]) - return - } - var n int - for n = 1; !utf8.FullRune(r.buf[0:n]); n++ { - r.buf[n], err = r.readByte() - if err != nil { - if err == io.EOF { - err = nil - break - } - return - } - } - rr, size = utf8.DecodeRune(r.buf[0:n]) - if size < n { // an error - r.unread(r.buf[size:n]) - } - return -} - -var ssFree = sync.Pool{ - New: func() interface{} { return new(ss) }, -} - -// newScanState allocates a new ss struct or grab a cached one. -func newScanState(r io.Reader, nlIsSpace, nlIsEnd bool) (s *ss, old ssave) { - // If the reader is a *ss, then we've got a recursive - // call to Scan, so re-use the scan state. - s, ok := r.(*ss) - if ok { - old = s.ssave - s.limit = s.argLimit - s.nlIsEnd = nlIsEnd || s.nlIsEnd - s.nlIsSpace = nlIsSpace - return - } - - s = ssFree.Get().(*ss) - if rr, ok := r.(io.RuneReader); ok { - s.rr = rr - } else { - s.rr = &readRune{reader: r} - } - s.nlIsSpace = nlIsSpace - s.nlIsEnd = nlIsEnd - s.prevRune = -1 - s.peekRune = -1 - s.atEOF = false - s.limit = hugeWid - s.argLimit = hugeWid - s.maxWid = hugeWid - s.validSave = true - s.count = 0 - return -} - -// free saves used ss structs in ssFree; avoid an allocation per invocation. -func (s *ss) free(old ssave) { - // If it was used recursively, just restore the old state. - if old.validSave { - s.ssave = old - return - } - // Don't hold on to ss structs with large buffers. - if cap(s.buf) > 1024 { - return - } - s.buf = s.buf[:0] - s.rr = nil - ssFree.Put(s) -} - -// skipSpace skips spaces and maybe newlines. -func (s *ss) skipSpace(stopAtNewline bool) { - for { - r := s.getRune() - if r == eof { - return - } - if r == '\r' && s.peek("\n") { - continue - } - if r == '\n' { - if stopAtNewline { - break - } - if s.nlIsSpace { - continue - } - s.errorString("unexpected newline") - return - } - if !isSpace(r) { - s.UnreadRune() - break - } - } -} - -// token returns the next space-delimited string from the input. It -// skips white space. For Scanln, it stops at newlines. For Scan, -// newlines are treated as spaces. -func (s *ss) token(skipSpace bool, f func(rune) bool) []byte { - if skipSpace { - s.skipSpace(false) - } - // read until white space or newline - for { - r := s.getRune() - if r == eof { - break - } - if !f(r) { - s.UnreadRune() - break - } - s.buf.WriteRune(r) - } - return s.buf -} - -var complexError = errors.New("syntax error scanning complex number") -var boolError = errors.New("syntax error scanning boolean") - -func indexRune(s string, r rune) int { - for i, c := range s { - if c == r { - return i - } - } - return -1 -} - -// consume reads the next rune in the input and reports whether it is in the ok string. -// If accept is true, it puts the character into the input token. -func (s *ss) consume(ok string, accept bool) bool { - r := s.getRune() - if r == eof { - return false - } - if indexRune(ok, r) >= 0 { - if accept { - s.buf.WriteRune(r) - } - return true - } - if r != eof && accept { - s.UnreadRune() - } - return false -} - -// peek reports whether the next character is in the ok string, without consuming it. -func (s *ss) peek(ok string) bool { - r := s.getRune() - if r != eof { - s.UnreadRune() - } - return indexRune(ok, r) >= 0 -} - -func (s *ss) notEOF() { - // Guarantee there is data to be read. - if r := s.getRune(); r == eof { - panic(io.EOF) - } - s.UnreadRune() -} - -// accept checks the next rune in the input. If it's a byte (sic) in the string, it puts it in the -// buffer and returns true. Otherwise it return false. -func (s *ss) accept(ok string) bool { - return s.consume(ok, true) -} - -// okVerb verifies that the verb is present in the list, setting s.err appropriately if not. -func (s *ss) okVerb(verb rune, okVerbs, typ string) bool { - for _, v := range okVerbs { - if v == verb { - return true - } - } - s.errorString("bad verb %" + string(verb) + " for " + typ) - return false -} - -// scanBool returns the value of the boolean represented by the next token. -func (s *ss) scanBool(verb rune) bool { - s.skipSpace(false) - s.notEOF() - if !s.okVerb(verb, "tv", "boolean") { - return false - } - // Syntax-checking a boolean is annoying. We're not fastidious about case. - switch s.getRune() { - case '0': - return false - case '1': - return true - case 't', 'T': - if s.accept("rR") && (!s.accept("uU") || !s.accept("eE")) { - s.error(boolError) - } - return true - case 'f', 'F': - if s.accept("aA") && (!s.accept("lL") || !s.accept("sS") || !s.accept("eE")) { - s.error(boolError) - } - return false - } - return false -} - -// Numerical elements -const ( - binaryDigits = "01" - octalDigits = "01234567" - decimalDigits = "0123456789" - hexadecimalDigits = "0123456789aAbBcCdDeEfF" - sign = "+-" - period = "." - exponent = "eEp" -) - -// getBase returns the numeric base represented by the verb and its digit string. -func (s *ss) getBase(verb rune) (base int, digits string) { - s.okVerb(verb, "bdoUxXv", "integer") // sets s.err - base = 10 - digits = decimalDigits - switch verb { - case 'b': - base = 2 - digits = binaryDigits - case 'o': - base = 8 - digits = octalDigits - case 'x', 'X', 'U': - base = 16 - digits = hexadecimalDigits - } - return -} - -// scanNumber returns the numerical string with specified digits starting here. -func (s *ss) scanNumber(digits string, haveDigits bool) string { - if !haveDigits { - s.notEOF() - if !s.accept(digits) { - s.errorString("expected integer") - } - } - for s.accept(digits) { - } - return string(s.buf) -} - -// scanRune returns the next rune value in the input. -func (s *ss) scanRune(bitSize int) int64 { - s.notEOF() - r := int64(s.getRune()) - n := uint(bitSize) - x := (r << (64 - n)) >> (64 - n) - if x != r { - s.errorString("overflow on character value " + string(r)) - } - return r -} - -// scanBasePrefix reports whether the integer begins with a 0 or 0x, -// and returns the base, digit string, and whether a zero was found. -// It is called only if the verb is %v. -func (s *ss) scanBasePrefix() (base int, digits string, found bool) { - if !s.peek("0") { - return 10, decimalDigits, false - } - s.accept("0") - found = true // We've put a digit into the token buffer. - // Special cases for '0' && '0x' - base, digits = 8, octalDigits - if s.peek("xX") { - s.consume("xX", false) - base, digits = 16, hexadecimalDigits - } - return -} - -// scanInt returns the value of the integer represented by the next -// token, checking for overflow. Any error is stored in s.err. -func (s *ss) scanInt(verb rune, bitSize int) int64 { - if verb == 'c' { - return s.scanRune(bitSize) - } - s.skipSpace(false) - s.notEOF() - base, digits := s.getBase(verb) - haveDigits := false - if verb == 'U' { - if !s.consume("U", false) || !s.consume("+", false) { - s.errorString("bad unicode format ") - } - } else { - s.accept(sign) // If there's a sign, it will be left in the token buffer. - if verb == 'v' { - base, digits, haveDigits = s.scanBasePrefix() - } - } - tok := s.scanNumber(digits, haveDigits) - i, err := strconv.ParseInt(tok, base, 64) - if err != nil { - s.error(err) - } - n := uint(bitSize) - x := (i << (64 - n)) >> (64 - n) - if x != i { - s.errorString("integer overflow on token " + tok) - } - return i -} - -// scanUint returns the value of the unsigned integer represented -// by the next token, checking for overflow. Any error is stored in s.err. -func (s *ss) scanUint(verb rune, bitSize int) uint64 { - if verb == 'c' { - return uint64(s.scanRune(bitSize)) - } - s.skipSpace(false) - s.notEOF() - base, digits := s.getBase(verb) - haveDigits := false - if verb == 'U' { - if !s.consume("U", false) || !s.consume("+", false) { - s.errorString("bad unicode format ") - } - } else if verb == 'v' { - base, digits, haveDigits = s.scanBasePrefix() - } - tok := s.scanNumber(digits, haveDigits) - i, err := strconv.ParseUint(tok, base, 64) - if err != nil { - s.error(err) - } - n := uint(bitSize) - x := (i << (64 - n)) >> (64 - n) - if x != i { - s.errorString("unsigned integer overflow on token " + tok) - } - return i -} - -// floatToken returns the floating-point number starting here, no longer than swid -// if the width is specified. It's not rigorous about syntax because it doesn't check that -// we have at least some digits, but Atof will do that. -func (s *ss) floatToken() string { - s.buf = s.buf[:0] - // NaN? - if s.accept("nN") && s.accept("aA") && s.accept("nN") { - return string(s.buf) - } - // leading sign? - s.accept(sign) - // Inf? - if s.accept("iI") && s.accept("nN") && s.accept("fF") { - return string(s.buf) - } - // digits? - for s.accept(decimalDigits) { - } - // decimal point? - if s.accept(period) { - // fraction? - for s.accept(decimalDigits) { - } - } - // exponent? - if s.accept(exponent) { - // leading sign? - s.accept(sign) - // digits? - for s.accept(decimalDigits) { - } - } - return string(s.buf) -} - -// complexTokens returns the real and imaginary parts of the complex number starting here. -// The number might be parenthesized and has the format (N+Ni) where N is a floating-point -// number and there are no spaces within. -func (s *ss) complexTokens() (real, imag string) { - // TODO: accept N and Ni independently? - parens := s.accept("(") - real = s.floatToken() - s.buf = s.buf[:0] - // Must now have a sign. - if !s.accept("+-") { - s.error(complexError) - } - // Sign is now in buffer - imagSign := string(s.buf) - imag = s.floatToken() - if !s.accept("i") { - s.error(complexError) - } - if parens && !s.accept(")") { - s.error(complexError) - } - return real, imagSign + imag -} - -// convertFloat converts the string to a float64value. -func (s *ss) convertFloat(str string, n int) float64 { - if p := indexRune(str, 'p'); p >= 0 { - // Atof doesn't handle power-of-2 exponents, - // but they're easy to evaluate. - f, err := strconv.ParseFloat(str[:p], n) - if err != nil { - // Put full string into error. - if e, ok := err.(*strconv.NumError); ok { - e.Num = str - } - s.error(err) - } - m, err := strconv.Atoi(str[p+1:]) - if err != nil { - // Put full string into error. - if e, ok := err.(*strconv.NumError); ok { - e.Num = str - } - s.error(err) - } - return math.Ldexp(f, m) - } - f, err := strconv.ParseFloat(str, n) - if err != nil { - s.error(err) - } - return f -} - -// convertComplex converts the next token to a complex128 value. -// The atof argument is a type-specific reader for the underlying type. -// If we're reading complex64, atof will parse float32s and convert them -// to float64's to avoid reproducing this code for each complex type. -func (s *ss) scanComplex(verb rune, n int) complex128 { - if !s.okVerb(verb, floatVerbs, "complex") { - return 0 - } - s.skipSpace(false) - s.notEOF() - sreal, simag := s.complexTokens() - real := s.convertFloat(sreal, n/2) - imag := s.convertFloat(simag, n/2) - return complex(real, imag) -} - -// convertString returns the string represented by the next input characters. -// The format of the input is determined by the verb. -func (s *ss) convertString(verb rune) (str string) { - if !s.okVerb(verb, "svqx", "string") { - return "" - } - s.skipSpace(false) - s.notEOF() - switch verb { - case 'q': - str = s.quotedString() - case 'x': - str = s.hexString() - default: - str = string(s.token(true, notSpace)) // %s and %v just return the next word - } - return -} - -// quotedString returns the double- or back-quoted string represented by the next input characters. -func (s *ss) quotedString() string { - s.notEOF() - quote := s.getRune() - switch quote { - case '`': - // Back-quoted: Anything goes until EOF or back quote. - for { - r := s.mustReadRune() - if r == quote { - break - } - s.buf.WriteRune(r) - } - return string(s.buf) - case '"': - // Double-quoted: Include the quotes and let strconv.Unquote do the backslash escapes. - s.buf.WriteRune(quote) - for { - r := s.mustReadRune() - s.buf.WriteRune(r) - if r == '\\' { - // In a legal backslash escape, no matter how long, only the character - // immediately after the escape can itself be a backslash or quote. - // Thus we only need to protect the first character after the backslash. - s.buf.WriteRune(s.mustReadRune()) - } else if r == '"' { - break - } - } - result, err := strconv.Unquote(string(s.buf)) - if err != nil { - s.error(err) - } - return result - default: - s.errorString("expected quoted string") - } - return "" -} - -// hexDigit returns the value of the hexadecimal digit -func (s *ss) hexDigit(d rune) int { - digit := int(d) - switch digit { - case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9': - return digit - '0' - case 'a', 'b', 'c', 'd', 'e', 'f': - return 10 + digit - 'a' - case 'A', 'B', 'C', 'D', 'E', 'F': - return 10 + digit - 'A' - } - s.errorString("illegal hex digit") - return 0 -} - -// hexByte returns the next hex-encoded (two-character) byte from the input. -// There must be either two hexadecimal digits or a space character in the input. -func (s *ss) hexByte() (b byte, ok bool) { - rune1 := s.getRune() - if rune1 == eof { - return - } - if isSpace(rune1) { - s.UnreadRune() - return - } - rune2 := s.mustReadRune() - return byte(s.hexDigit(rune1)<<4 | s.hexDigit(rune2)), true -} - -// hexString returns the space-delimited hexpair-encoded string. -func (s *ss) hexString() string { - s.notEOF() - for { - b, ok := s.hexByte() - if !ok { - break - } - s.buf.WriteByte(b) - } - if len(s.buf) == 0 { - s.errorString("no hex data for %x string") - return "" - } - return string(s.buf) -} - -const floatVerbs = "beEfFgGv" - -const hugeWid = 1 << 30 - -// scanOne scans a single value, deriving the scanner from the type of the argument. -func (s *ss) scanOne(verb rune, arg interface{}) { - s.buf = s.buf[:0] - var err error - // If the parameter has its own Scan method, use that. - if v, ok := arg.(Scanner); ok { - err = v.Scan(s, verb) - if err != nil { - if err == io.EOF { - err = io.ErrUnexpectedEOF - } - s.error(err) - } - return - } - - switch v := arg.(type) { - case *bool: - *v = s.scanBool(verb) - case *complex64: - *v = complex64(s.scanComplex(verb, 64)) - case *complex128: - *v = s.scanComplex(verb, 128) - case *int: - *v = int(s.scanInt(verb, intBits)) - case *int8: - *v = int8(s.scanInt(verb, 8)) - case *int16: - *v = int16(s.scanInt(verb, 16)) - case *int32: - *v = int32(s.scanInt(verb, 32)) - case *int64: - *v = s.scanInt(verb, 64) - case *uint: - *v = uint(s.scanUint(verb, intBits)) - case *uint8: - *v = uint8(s.scanUint(verb, 8)) - case *uint16: - *v = uint16(s.scanUint(verb, 16)) - case *uint32: - *v = uint32(s.scanUint(verb, 32)) - case *uint64: - *v = s.scanUint(verb, 64) - case *uintptr: - *v = uintptr(s.scanUint(verb, uintptrBits)) - // Floats are tricky because you want to scan in the precision of the result, not - // scan in high precision and convert, in order to preserve the correct error condition. - case *float32: - if s.okVerb(verb, floatVerbs, "float32") { - s.skipSpace(false) - s.notEOF() - *v = float32(s.convertFloat(s.floatToken(), 32)) - } - case *float64: - if s.okVerb(verb, floatVerbs, "float64") { - s.skipSpace(false) - s.notEOF() - *v = s.convertFloat(s.floatToken(), 64) - } - case *string: - *v = s.convertString(verb) - case *[]byte: - // We scan to string and convert so we get a copy of the data. - // If we scanned to bytes, the slice would point at the buffer. - *v = []byte(s.convertString(verb)) - default: - val := reflect.ValueOf(v) - ptr := val - if ptr.Kind() != reflect.Ptr { - s.errorString("type not a pointer: " + val.Type().String()) - return - } - switch v := ptr.Elem(); v.Kind() { - case reflect.Bool: - v.SetBool(s.scanBool(verb)) - case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: - v.SetInt(s.scanInt(verb, v.Type().Bits())) - case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: - v.SetUint(s.scanUint(verb, v.Type().Bits())) - case reflect.String: - v.SetString(s.convertString(verb)) - case reflect.Slice: - // For now, can only handle (renamed) []byte. - typ := v.Type() - if typ.Elem().Kind() != reflect.Uint8 { - s.errorString("can't scan type: " + val.Type().String()) - } - str := s.convertString(verb) - v.Set(reflect.MakeSlice(typ, len(str), len(str))) - for i := 0; i < len(str); i++ { - v.Index(i).SetUint(uint64(str[i])) - } - case reflect.Float32, reflect.Float64: - s.skipSpace(false) - s.notEOF() - v.SetFloat(s.convertFloat(s.floatToken(), v.Type().Bits())) - case reflect.Complex64, reflect.Complex128: - v.SetComplex(s.scanComplex(verb, v.Type().Bits())) - default: - s.errorString("can't scan type: " + val.Type().String()) - } - } -} - -// errorHandler turns local panics into error returns. -func errorHandler(errp *error) { - if e := recover(); e != nil { - if se, ok := e.(scanError); ok { // catch local error - *errp = se.err - } else if eof, ok := e.(error); ok && eof == io.EOF { // out of input - *errp = eof - } else { - panic(e) - } - } -} - -// doScan does the real work for scanning without a format string. -func (s *ss) doScan(a []interface{}) (numProcessed int, err error) { - defer errorHandler(&err) - for _, arg := range a { - s.scanOne('v', arg) - numProcessed++ - } - // Check for newline if required. - if !s.nlIsSpace { - for { - r := s.getRune() - if r == '\n' || r == eof { - break - } - if !isSpace(r) { - s.errorString("expected newline") - break - } - } - } - return -} - -// advance determines whether the next characters in the input match -// those of the format. It returns the number of bytes (sic) consumed -// in the format. Newlines included, all runs of space characters in -// either input or format behave as a single space. This routine also -// handles the %% case. If the return value is zero, either format -// starts with a % (with no following %) or the input is empty. -// If it is negative, the input did not match the string. -func (s *ss) advance(format string) (i int) { - for i < len(format) { - fmtc, w := utf8.DecodeRuneInString(format[i:]) - if fmtc == '%' { - // %% acts like a real percent - nextc, _ := utf8.DecodeRuneInString(format[i+w:]) // will not match % if string is empty - if nextc != '%' { - return - } - i += w // skip the first % - } - sawSpace := false - for isSpace(fmtc) && i < len(format) { - sawSpace = true - i += w - fmtc, w = utf8.DecodeRuneInString(format[i:]) - } - if sawSpace { - // There was space in the format, so there should be space (EOF) - // in the input. - inputc := s.getRune() - if inputc == eof || inputc == '\n' { - // If we've reached a newline, stop now; don't read ahead. - return - } - if !isSpace(inputc) { - // Space in format but not in input: error - s.errorString("expected space in input to match format") - } - s.skipSpace(true) - continue - } - inputc := s.mustReadRune() - if fmtc != inputc { - s.UnreadRune() - return -1 - } - i += w - } - return -} - -// doScanf does the real work when scanning with a format string. -// At the moment, it handles only pointers to basic types. -func (s *ss) doScanf(format string, a []interface{}) (numProcessed int, err error) { - defer errorHandler(&err) - end := len(format) - 1 - // We process one item per non-trivial format - for i := 0; i <= end; { - w := s.advance(format[i:]) - if w > 0 { - i += w - continue - } - // Either we failed to advance, we have a percent character, or we ran out of input. - if format[i] != '%' { - // Can't advance format. Why not? - if w < 0 { - s.errorString("input does not match format") - } - // Otherwise at EOF; "too many operands" error handled below - break - } - i++ // % is one byte - - // do we have 20 (width)? - var widPresent bool - s.maxWid, widPresent, i = parsenum(format, i, end) - if !widPresent { - s.maxWid = hugeWid - } - s.argLimit = s.limit - if f := s.count + s.maxWid; f < s.argLimit { - s.argLimit = f - } - - c, w := utf8.DecodeRuneInString(format[i:]) - i += w - - if numProcessed >= len(a) { // out of operands - s.errorString("too few operands for format %" + format[i-w:]) - break - } - arg := a[numProcessed] - - s.scanOne(c, arg) - numProcessed++ - s.argLimit = s.limit - } - if numProcessed < len(a) { - s.errorString("too many operands") - } - return -} |
