summaryrefslogtreecommitdiff
path: root/src/pkg/gob/encode.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/gob/encode.go')
-rw-r--r--src/pkg/gob/encode.go541
1 files changed, 153 insertions, 388 deletions
diff --git a/src/pkg/gob/encode.go b/src/pkg/gob/encode.go
index 00548868b..3431eafa7 100644
--- a/src/pkg/gob/encode.go
+++ b/src/pkg/gob/encode.go
@@ -2,270 +2,8 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
-/*
- The gob package manages streams of gobs - binary values exchanged between an
- Encoder (transmitter) and a Decoder (receiver). A typical use is transporting
- arguments and results of remote procedure calls (RPCs) such as those provided by
- package "rpc".
-
- A stream of gobs is self-describing. Each data item in the stream is preceded by
- a specification of its type, expressed in terms of a small set of predefined
- types. Pointers are not transmitted, but the things they point to are
- transmitted; that is, the values are flattened. Recursive types work fine, but
- recursive values (data with cycles) are problematic. This may change.
-
- To use gobs, create an Encoder and present it with a series of data items as
- values or addresses that can be dereferenced to values. The Encoder makes sure
- all type information is sent before it is needed. At the receive side, a
- Decoder retrieves values from the encoded stream and unpacks them into local
- variables.
-
- The source and destination values/types need not correspond exactly. For structs,
- fields (identified by name) that are in the source but absent from the receiving
- variable will be ignored. Fields that are in the receiving variable but missing
- from the transmitted type or value will be ignored in the destination. If a field
- with the same name is present in both, their types must be compatible. Both the
- receiver and transmitter will do all necessary indirection and dereferencing to
- convert between gobs and actual Go values. For instance, a gob type that is
- schematically,
-
- struct { a, b int }
-
- can be sent from or received into any of these Go types:
-
- struct { a, b int } // the same
- *struct { a, b int } // extra indirection of the struct
- struct { *a, **b int } // extra indirection of the fields
- struct { a, b int64 } // different concrete value type; see below
-
- It may also be received into any of these:
-
- struct { a, b int } // the same
- struct { b, a int } // ordering doesn't matter; matching is by name
- struct { a, b, c int } // extra field (c) ignored
- struct { b int } // missing field (a) ignored; data will be dropped
- struct { b, c int } // missing field (a) ignored; extra field (c) ignored.
-
- Attempting to receive into these types will draw a decode error:
-
- struct { a int; b uint } // change of signedness for b
- struct { a int; b float } // change of type for b
- struct { } // no field names in common
- struct { c, d int } // no field names in common
-
- Integers are transmitted two ways: arbitrary precision signed integers or
- arbitrary precision unsigned integers. There is no int8, int16 etc.
- discrimination in the gob format; there are only signed and unsigned integers. As
- described below, the transmitter sends the value in a variable-length encoding;
- the receiver accepts the value and stores it in the destination variable.
- Floating-point numbers are always sent using IEEE-754 64-bit precision (see
- below).
-
- Signed integers may be received into any signed integer variable: int, int16, etc.;
- unsigned integers may be received into any unsigned integer variable; and floating
- point values may be received into any floating point variable. However,
- the destination variable must be able to represent the value or the decode
- operation will fail.
-
- Structs, arrays and slices are also supported. Strings and arrays of bytes are
- supported with a special, efficient representation (see below).
-
- Interfaces, functions, and channels cannot be sent in a gob. Attempting
- to encode a value that contains one will fail.
-
- The rest of this comment documents the encoding, details that are not important
- for most users. Details are presented bottom-up.
-
- An unsigned integer is sent one of two ways. If it is less than 128, it is sent
- as a byte with that value. Otherwise it is sent as a minimal-length big-endian
- (high byte first) byte stream holding the value, preceded by one byte holding the
- byte count, negated. Thus 0 is transmitted as (00), 7 is transmitted as (07) and
- 256 is transmitted as (FE 01 00).
-
- A boolean is encoded within an unsigned integer: 0 for false, 1 for true.
-
- A signed integer, i, is encoded within an unsigned integer, u. Within u, bits 1
- upward contain the value; bit 0 says whether they should be complemented upon
- receipt. The encode algorithm looks like this:
-
- uint u;
- if i < 0 {
- u = (^i << 1) | 1 // complement i, bit 0 is 1
- } else {
- u = (i << 1) // do not complement i, bit 0 is 0
- }
- encodeUnsigned(u)
-
- The low bit is therefore analogous to a sign bit, but making it the complement bit
- instead guarantees that the largest negative integer is not a special case. For
- example, -129=^128=(^256>>1) encodes as (FE 01 01).
-
- Floating-point numbers are always sent as a representation of a float64 value.
- That value is converted to a uint64 using math.Float64bits. The uint64 is then
- byte-reversed and sent as a regular unsigned integer. The byte-reversal means the
- exponent and high-precision part of the mantissa go first. Since the low bits are
- often zero, this can save encoding bytes. For instance, 17.0 is encoded in only
- three bytes (FE 31 40).
-
- Strings and slices of bytes are sent as an unsigned count followed by that many
- uninterpreted bytes of the value.
-
- All other slices and arrays are sent as an unsigned count followed by that many
- elements using the standard gob encoding for their type, recursively.
-
- Structs are sent as a sequence of (field number, field value) pairs. The field
- value is sent using the standard gob encoding for its type, recursively. If a
- field has the zero value for its type, it is omitted from the transmission. The
- field number is defined by the type of the encoded struct: the first field of the
- encoded type is field 0, the second is field 1, etc. When encoding a value, the
- field numbers are delta encoded for efficiency and the fields are always sent in
- order of increasing field number; the deltas are therefore unsigned. The
- initialization for the delta encoding sets the field number to -1, so an unsigned
- integer field 0 with value 7 is transmitted as unsigned delta = 1, unsigned value
- = 7 or (01 0E). Finally, after all the fields have been sent a terminating mark
- denotes the end of the struct. That mark is a delta=0 value, which has
- representation (00).
-
- The representation of types is described below. When a type is defined on a given
- connection between an Encoder and Decoder, it is assigned a signed integer type
- id. When Encoder.Encode(v) is called, it makes sure there is an id assigned for
- the type of v and all its elements and then it sends the pair (typeid, encoded-v)
- where typeid is the type id of the encoded type of v and encoded-v is the gob
- encoding of the value v.
-
- To define a type, the encoder chooses an unused, positive type id and sends the
- pair (-type id, encoded-type) where encoded-type is the gob encoding of a wireType
- description, constructed from these types:
-
- type wireType struct {
- s structType;
- }
- type fieldType struct {
- name string; // the name of the field.
- id int; // the type id of the field, which must be already defined
- }
- type commonType {
- name string; // the name of the struct type
- id int; // the id of the type, repeated for so it's inside the type
- }
- type structType struct {
- commonType;
- field []fieldType; // the fields of the struct.
- }
-
- If there are nested type ids, the types for all inner type ids must be defined
- before the top-level type id is used to describe an encoded-v.
-
- For simplicity in setup, the connection is defined to understand these types a
- priori, as well as the basic gob types int, uint, etc. Their ids are:
-
- bool 1
- int 2
- uint 3
- float 4
- []byte 5
- string 6
- wireType 7
- structType 8
- commonType 9
- fieldType 10
-
- In summary, a gob stream looks like
-
- ((-type id, encoding of a wireType)* (type id, encoding of a value))*
-
- where * signifies zero or more repetitions and the type id of a value must
- be predefined or be defined before the value in the stream.
-*/
package gob
-/*
- For implementers and the curious, here is an encoded example. Given
- type Point {x, y int}
- and the value
- p := Point{22, 33}
- the bytes transmitted that encode p will be:
- 1f ff 81 03 01 01 05 50 6f 69 6e 74 01 ff 82 00 01 02 01 01 78
- 01 04 00 01 01 79 01 04 00 00 00 07 ff 82 01 2c 01 42 00 07 ff
- 82 01 2c 01 42 00
- They are determined as follows.
-
- Since this is the first transmission of type Point, the type descriptor
- for Point itself must be sent before the value. This is the first type
- we've sent on this Encoder, so it has type id 65 (0 through 64 are
- reserved).
-
- 1f // This item (a type descriptor) is 31 bytes long.
- ff 81 // The negative of the id for the type we're defining, -65.
- // This is one byte (indicated by FF = -1) followed by
- // ^-65<<1 | 1. The low 1 bit signals to complement the
- // rest upon receipt.
-
- // Now we send a type descriptor, which is itself a struct (wireType).
- // The type of wireType itself is known (it's built in, as is the type of
- // all its components), so we just need to send a *value* of type wireType
- // that represents type "Point".
- // Here starts the encoding of that value.
- // Set the field number implicitly to zero; this is done at the beginning
- // of every struct, including nested structs.
- 03 // Add 3 to field number; now 3 (wireType.structType; this is a struct).
- // structType starts with an embedded commonType, which appears
- // as a regular structure here too.
- 01 // add 1 to field number (now 1); start of embedded commonType.
- 01 // add one to field number (now 1, the name of the type)
- 05 // string is (unsigned) 5 bytes long
- 50 6f 69 6e 74 // wireType.structType.commonType.name = "Point"
- 01 // add one to field number (now 2, the id of the type)
- ff 82 // wireType.structType.commonType._id = 65
- 00 // end of embedded wiretype.structType.commonType struct
- 01 // add one to field number (now 2, the Field array in wireType.structType)
- 02 // There are two fields in the type (len(structType.field))
- 01 // Start of first field structure; add 1 to get field number 1: field[0].name
- 01 // 1 byte
- 78 // structType.field[0].name = "x"
- 01 // Add 1 to get field number 2: field[0].id
- 04 // structType.field[0].typeId is 2 (signed int).
- 00 // End of structType.field[0]; start structType.field[1]; set field number to 0.
- 01 // Add 1 to get field number 1: field[1].name
- 01 // 1 byte
- 79 // structType.field[1].name = "y"
- 01 // Add 1 to get field number 2: field[0].id
- 04 // struct.Type.field[1].typeId is 2 (signed int).
- 00 // End of structType.field[1]; end of structType.field.
- 00 // end of wireType.structType structure
- 00 // end of wireType structure
-
- Now we can send the Point value. Again the field number resets to zero:
-
- 07 // this value is 7 bytes long
- ff 82 // the type number, 65 (1 byte (-FF) followed by 65<<1)
- 01 // add one to field number, yielding field 1
- 2c // encoding of signed "22" (0x22 = 44 = 22<<1); Point.x = 22
- 01 // add one to field number, yielding field 2
- 42 // encoding of signed "33" (0x42 = 66 = 33<<1); Point.y = 33
- 00 // end of structure
-
- The type encoding is long and fairly intricate but we send it only once.
- If p is transmitted a second time, the type is already known so the
- output will be just:
-
- 07 ff 82 01 2c 01 42 00
-
- A single non-struct value at top level is transmitted like a field with
- delta tag 0. For instance, a signed integer with value 3 presented as
- the argument to Encode will emit:
-
- 03 04 00 06
-
- Which represents:
-
- 03 // this value is 3 bytes long
- 04 // the type number, 2, represents an integer
- 00 // tag delta 0
- 06 // value 3
-
-*/
-
import (
"bytes"
"io"
@@ -282,26 +20,29 @@ const uint64Size = unsafe.Sizeof(uint64(0))
// number is initialized to -1 so 0 comes out as delta(1). A delta of
// 0 terminates the structure.
type encoderState struct {
+ enc *Encoder
b *bytes.Buffer
- err os.Error // error encountered during encoding.
sendZero bool // encoding an array element or map key/value pair; send zero values
fieldnum int // the last field number written.
buf [1 + uint64Size]byte // buffer used by the encoder; here to avoid allocation.
}
+func newEncoderState(enc *Encoder, b *bytes.Buffer) *encoderState {
+ return &encoderState{enc: enc, b: b}
+}
+
// Unsigned integers have a two-state encoding. If the number is less
// than 128 (0 through 0x7F), its value is written directly.
// Otherwise the value is written in big-endian byte order preceded
// by the byte length, negated.
-// encodeUint writes an encoded unsigned integer to state.b. Sets state.err.
-// If state.err is already non-nil, it does nothing.
-func encodeUint(state *encoderState, x uint64) {
- if state.err != nil {
- return
- }
+// encodeUint writes an encoded unsigned integer to state.b.
+func (state *encoderState) encodeUint(x uint64) {
if x <= 0x7F {
- state.err = state.b.WriteByte(uint8(x))
+ err := state.b.WriteByte(uint8(x))
+ if err != nil {
+ error(err)
+ }
return
}
var n, m int
@@ -312,20 +53,23 @@ func encodeUint(state *encoderState, x uint64) {
m--
}
state.buf[m] = uint8(-(n - 1))
- n, state.err = state.b.Write(state.buf[m : uint64Size+1])
+ n, err := state.b.Write(state.buf[m : uint64Size+1])
+ if err != nil {
+ error(err)
+ }
}
// encodeInt writes an encoded signed integer to state.w.
-// The low bit of the encoding says whether to bit complement the (other bits of the) uint to recover the int.
-// Sets state.err. If state.err is already non-nil, it does nothing.
-func encodeInt(state *encoderState, i int64) {
+// The low bit of the encoding says whether to bit complement the (other bits of the)
+// uint to recover the int.
+func (state *encoderState) encodeInt(i int64) {
var x uint64
if i < 0 {
x = uint64(^i<<1) | 1
} else {
x = uint64(i << 1)
}
- encodeUint(state, uint64(x))
+ state.encodeUint(uint64(x))
}
type encOp func(i *encInstr, state *encoderState, p unsafe.Pointer)
@@ -342,7 +86,7 @@ type encInstr struct {
// If the instruction pointer is nil, do nothing
func (state *encoderState) update(instr *encInstr) {
if instr != nil {
- encodeUint(state, uint64(instr.field-state.fieldnum))
+ state.encodeUint(uint64(instr.field - state.fieldnum))
state.fieldnum = instr.field
}
}
@@ -368,9 +112,9 @@ func encBool(i *encInstr, state *encoderState, p unsafe.Pointer) {
if b || state.sendZero {
state.update(i)
if b {
- encodeUint(state, 1)
+ state.encodeUint(1)
} else {
- encodeUint(state, 0)
+ state.encodeUint(0)
}
}
}
@@ -379,7 +123,7 @@ func encInt(i *encInstr, state *encoderState, p unsafe.Pointer) {
v := int64(*(*int)(p))
if v != 0 || state.sendZero {
state.update(i)
- encodeInt(state, v)
+ state.encodeInt(v)
}
}
@@ -387,7 +131,7 @@ func encUint(i *encInstr, state *encoderState, p unsafe.Pointer) {
v := uint64(*(*uint)(p))
if v != 0 || state.sendZero {
state.update(i)
- encodeUint(state, v)
+ state.encodeUint(v)
}
}
@@ -395,7 +139,7 @@ func encInt8(i *encInstr, state *encoderState, p unsafe.Pointer) {
v := int64(*(*int8)(p))
if v != 0 || state.sendZero {
state.update(i)
- encodeInt(state, v)
+ state.encodeInt(v)
}
}
@@ -403,7 +147,7 @@ func encUint8(i *encInstr, state *encoderState, p unsafe.Pointer) {
v := uint64(*(*uint8)(p))
if v != 0 || state.sendZero {
state.update(i)
- encodeUint(state, v)
+ state.encodeUint(v)
}
}
@@ -411,7 +155,7 @@ func encInt16(i *encInstr, state *encoderState, p unsafe.Pointer) {
v := int64(*(*int16)(p))
if v != 0 || state.sendZero {
state.update(i)
- encodeInt(state, v)
+ state.encodeInt(v)
}
}
@@ -419,7 +163,7 @@ func encUint16(i *encInstr, state *encoderState, p unsafe.Pointer) {
v := uint64(*(*uint16)(p))
if v != 0 || state.sendZero {
state.update(i)
- encodeUint(state, v)
+ state.encodeUint(v)
}
}
@@ -427,7 +171,7 @@ func encInt32(i *encInstr, state *encoderState, p unsafe.Pointer) {
v := int64(*(*int32)(p))
if v != 0 || state.sendZero {
state.update(i)
- encodeInt(state, v)
+ state.encodeInt(v)
}
}
@@ -435,7 +179,7 @@ func encUint32(i *encInstr, state *encoderState, p unsafe.Pointer) {
v := uint64(*(*uint32)(p))
if v != 0 || state.sendZero {
state.update(i)
- encodeUint(state, v)
+ state.encodeUint(v)
}
}
@@ -443,7 +187,7 @@ func encInt64(i *encInstr, state *encoderState, p unsafe.Pointer) {
v := *(*int64)(p)
if v != 0 || state.sendZero {
state.update(i)
- encodeInt(state, v)
+ state.encodeInt(v)
}
}
@@ -451,7 +195,7 @@ func encUint64(i *encInstr, state *encoderState, p unsafe.Pointer) {
v := *(*uint64)(p)
if v != 0 || state.sendZero {
state.update(i)
- encodeUint(state, v)
+ state.encodeUint(v)
}
}
@@ -459,7 +203,7 @@ func encUintptr(i *encInstr, state *encoderState, p unsafe.Pointer) {
v := uint64(*(*uintptr)(p))
if v != 0 || state.sendZero {
state.update(i)
- encodeUint(state, v)
+ state.encodeUint(v)
}
}
@@ -484,7 +228,7 @@ func encFloat(i *encInstr, state *encoderState, p unsafe.Pointer) {
if f != 0 || state.sendZero {
v := floatBits(float64(f))
state.update(i)
- encodeUint(state, v)
+ state.encodeUint(v)
}
}
@@ -493,7 +237,7 @@ func encFloat32(i *encInstr, state *encoderState, p unsafe.Pointer) {
if f != 0 || state.sendZero {
v := floatBits(float64(f))
state.update(i)
- encodeUint(state, v)
+ state.encodeUint(v)
}
}
@@ -502,7 +246,7 @@ func encFloat64(i *encInstr, state *encoderState, p unsafe.Pointer) {
if f != 0 || state.sendZero {
state.update(i)
v := floatBits(f)
- encodeUint(state, v)
+ state.encodeUint(v)
}
}
@@ -513,8 +257,8 @@ func encComplex(i *encInstr, state *encoderState, p unsafe.Pointer) {
rpart := floatBits(float64(real(c)))
ipart := floatBits(float64(imag(c)))
state.update(i)
- encodeUint(state, rpart)
- encodeUint(state, ipart)
+ state.encodeUint(rpart)
+ state.encodeUint(ipart)
}
}
@@ -524,8 +268,8 @@ func encComplex64(i *encInstr, state *encoderState, p unsafe.Pointer) {
rpart := floatBits(float64(real(c)))
ipart := floatBits(float64(imag(c)))
state.update(i)
- encodeUint(state, rpart)
- encodeUint(state, ipart)
+ state.encodeUint(rpart)
+ state.encodeUint(ipart)
}
}
@@ -535,17 +279,20 @@ func encComplex128(i *encInstr, state *encoderState, p unsafe.Pointer) {
rpart := floatBits(real(c))
ipart := floatBits(imag(c))
state.update(i)
- encodeUint(state, rpart)
- encodeUint(state, ipart)
+ state.encodeUint(rpart)
+ state.encodeUint(ipart)
}
}
+func encNoOp(i *encInstr, state *encoderState, p unsafe.Pointer) {
+}
+
// Byte arrays are encoded as an unsigned count followed by the raw bytes.
func encUint8Array(i *encInstr, state *encoderState, p unsafe.Pointer) {
b := *(*[]byte)(p)
if len(b) > 0 || state.sendZero {
state.update(i)
- encodeUint(state, uint64(len(b)))
+ state.encodeUint(uint64(len(b)))
state.b.Write(b)
}
}
@@ -555,14 +302,14 @@ func encString(i *encInstr, state *encoderState, p unsafe.Pointer) {
s := *(*string)(p)
if len(s) > 0 || state.sendZero {
state.update(i)
- encodeUint(state, uint64(len(s)))
+ state.encodeUint(uint64(len(s)))
io.WriteString(state.b, s)
}
}
// The end of a struct is marked by a delta field number of 0.
func encStructTerminator(i *encInstr, state *encoderState, p unsafe.Pointer) {
- encodeUint(state, 0)
+ state.encodeUint(0)
}
// Execution engine
@@ -575,9 +322,8 @@ type encEngine struct {
const singletonField = 0
-func encodeSingle(engine *encEngine, b *bytes.Buffer, basep uintptr) os.Error {
- state := new(encoderState)
- state.b = b
+func (enc *Encoder) encodeSingle(b *bytes.Buffer, engine *encEngine, basep uintptr) {
+ state := newEncoderState(enc, b)
state.fieldnum = singletonField
// There is no surrounding struct to frame the transmission, so we must
// generate data even if the item is zero. To do this, set sendZero.
@@ -586,16 +332,14 @@ func encodeSingle(engine *encEngine, b *bytes.Buffer, basep uintptr) os.Error {
p := unsafe.Pointer(basep) // offset will be zero
if instr.indir > 0 {
if p = encIndirect(p, instr.indir); p == nil {
- return nil
+ return
}
}
instr.op(instr, state, p)
- return state.err
}
-func encodeStruct(engine *encEngine, b *bytes.Buffer, basep uintptr) os.Error {
- state := new(encoderState)
- state.b = b
+func (enc *Encoder) encodeStruct(b *bytes.Buffer, engine *encEngine, basep uintptr) {
+ state := newEncoderState(enc, b)
state.fieldnum = -1
for i := 0; i < len(engine.instr); i++ {
instr := &engine.instr[i]
@@ -606,33 +350,26 @@ func encodeStruct(engine *encEngine, b *bytes.Buffer, basep uintptr) os.Error {
}
}
instr.op(instr, state, p)
- if state.err != nil {
- break
- }
}
- return state.err
}
-func encodeArray(b *bytes.Buffer, p uintptr, op encOp, elemWid uintptr, elemIndir int, length int) os.Error {
- state := new(encoderState)
- state.b = b
+func (enc *Encoder) encodeArray(b *bytes.Buffer, p uintptr, op encOp, elemWid uintptr, elemIndir int, length int) {
+ state := newEncoderState(enc, b)
state.fieldnum = -1
state.sendZero = true
- encodeUint(state, uint64(length))
- for i := 0; i < length && state.err == nil; i++ {
+ state.encodeUint(uint64(length))
+ for i := 0; i < length; i++ {
elemp := p
up := unsafe.Pointer(elemp)
if elemIndir > 0 {
if up = encIndirect(up, elemIndir); up == nil {
- state.err = os.ErrorString("gob: encodeArray: nil element")
- break
+ errorf("gob: encodeArray: nil element")
}
elemp = uintptr(up)
}
op(nil, state, unsafe.Pointer(elemp))
p += uintptr(elemWid)
}
- return state.err
}
func encodeReflectValue(state *encoderState, v reflect.Value, op encOp, indir int) {
@@ -640,27 +377,60 @@ func encodeReflectValue(state *encoderState, v reflect.Value, op encOp, indir in
v = reflect.Indirect(v)
}
if v == nil {
- state.err = os.ErrorString("gob: encodeReflectValue: nil element")
- return
+ errorf("gob: encodeReflectValue: nil element")
}
op(nil, state, unsafe.Pointer(v.Addr()))
}
-func encodeMap(b *bytes.Buffer, mv *reflect.MapValue, keyOp, elemOp encOp, keyIndir, elemIndir int) os.Error {
- state := new(encoderState)
- state.b = b
+func (enc *Encoder) encodeMap(b *bytes.Buffer, mv *reflect.MapValue, keyOp, elemOp encOp, keyIndir, elemIndir int) {
+ state := newEncoderState(enc, b)
state.fieldnum = -1
state.sendZero = true
keys := mv.Keys()
- encodeUint(state, uint64(len(keys)))
+ state.encodeUint(uint64(len(keys)))
for _, key := range keys {
- if state.err != nil {
- break
- }
encodeReflectValue(state, key, keyOp, keyIndir)
encodeReflectValue(state, mv.Elem(key), elemOp, elemIndir)
}
- return state.err
+}
+
+// To send an interface, we send a string identifying the concrete type, followed
+// by the type identifier (which might require defining that type right now), followed
+// by the concrete value. A nil value gets sent as the empty string for the name,
+// followed by no value.
+func (enc *Encoder) encodeInterface(b *bytes.Buffer, iv *reflect.InterfaceValue) {
+ state := newEncoderState(enc, b)
+ state.fieldnum = -1
+ state.sendZero = true
+ if iv.IsNil() {
+ state.encodeUint(0)
+ return
+ }
+
+ typ, _ := indirect(iv.Elem().Type())
+ name, ok := concreteTypeToName[typ]
+ if !ok {
+ errorf("gob: type not registered for interface: %s", typ)
+ }
+ // Send the name.
+ state.encodeUint(uint64(len(name)))
+ _, err := io.WriteString(state.b, name)
+ if err != nil {
+ error(err)
+ }
+ // Send (and maybe first define) the type id.
+ enc.sendTypeDescriptor(typ)
+ // Encode the value into a new buffer.
+ data := new(bytes.Buffer)
+ err = enc.encode(data, iv.Elem())
+ if err != nil {
+ error(err)
+ }
+ state.encodeUint(uint64(data.Len()))
+ _, err = state.b.Write(data.Bytes())
+ if err != nil {
+ error(err)
+ }
}
var encOpMap = []encOp{
@@ -687,7 +457,7 @@ var encOpMap = []encOp{
// Return the encoding op for the base type under rt and
// the indirection count to reach it.
-func encOpFor(rt reflect.Type) (encOp, int, os.Error) {
+func (enc *Encoder) encOpFor(rt reflect.Type) (encOp, int) {
typ, indir := indirect(rt)
var op encOp
k := typ.Kind()
@@ -703,128 +473,123 @@ func encOpFor(rt reflect.Type) (encOp, int, os.Error) {
break
}
// Slices have a header; we decode it to find the underlying array.
- elemOp, indir, err := encOpFor(t.Elem())
- if err != nil {
- return nil, 0, err
- }
+ elemOp, indir := enc.encOpFor(t.Elem())
op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
slice := (*reflect.SliceHeader)(p)
- if slice.Len == 0 {
+ if !state.sendZero && slice.Len == 0 {
return
}
state.update(i)
- state.err = encodeArray(state.b, slice.Data, elemOp, t.Elem().Size(), indir, int(slice.Len))
+ state.enc.encodeArray(state.b, slice.Data, elemOp, t.Elem().Size(), indir, int(slice.Len))
}
case *reflect.ArrayType:
// True arrays have size in the type.
- elemOp, indir, err := encOpFor(t.Elem())
- if err != nil {
- return nil, 0, err
- }
+ elemOp, indir := enc.encOpFor(t.Elem())
op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
- slice := (*reflect.SliceHeader)(p)
- if slice.Len == 0 {
- return
- }
state.update(i)
- state.err = encodeArray(state.b, uintptr(p), elemOp, t.Elem().Size(), indir, t.Len())
+ state.enc.encodeArray(state.b, uintptr(p), elemOp, t.Elem().Size(), indir, t.Len())
}
case *reflect.MapType:
- keyOp, keyIndir, err := encOpFor(t.Key())
- if err != nil {
- return nil, 0, err
- }
- elemOp, elemIndir, err := encOpFor(t.Elem())
- if err != nil {
- return nil, 0, err
- }
+ keyOp, keyIndir := enc.encOpFor(t.Key())
+ elemOp, elemIndir := enc.encOpFor(t.Elem())
op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
// Maps cannot be accessed by moving addresses around the way
// that slices etc. can. We must recover a full reflection value for
// the iteration.
v := reflect.NewValue(unsafe.Unreflect(t, unsafe.Pointer((p))))
mv := reflect.Indirect(v).(*reflect.MapValue)
- if mv.Len() == 0 {
+ if !state.sendZero && mv.Len() == 0 {
return
}
state.update(i)
- state.err = encodeMap(state.b, mv, keyOp, elemOp, keyIndir, elemIndir)
+ state.enc.encodeMap(state.b, mv, keyOp, elemOp, keyIndir, elemIndir)
}
case *reflect.StructType:
// Generate a closure that calls out to the engine for the nested type.
- _, err := getEncEngine(typ)
- if err != nil {
- return nil, 0, err
- }
+ enc.getEncEngine(typ)
info := mustGetTypeInfo(typ)
op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
state.update(i)
// indirect through info to delay evaluation for recursive structs
- state.err = encodeStruct(info.encoder, state.b, uintptr(p))
+ state.enc.encodeStruct(state.b, info.encoder, uintptr(p))
+ }
+ case *reflect.InterfaceType:
+ op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
+ // Interfaces transmit the name and contents of the concrete
+ // value they contain.
+ v := reflect.NewValue(unsafe.Unreflect(t, unsafe.Pointer((p))))
+ iv := reflect.Indirect(v).(*reflect.InterfaceValue)
+ if !state.sendZero && (iv == nil || iv.IsNil()) {
+ return
+ }
+ state.update(i)
+ state.enc.encodeInterface(state.b, iv)
}
}
}
if op == nil {
- return op, indir, os.ErrorString("gob enc: can't happen: encode type " + rt.String())
+ errorf("gob enc: can't happen: encode type %s", rt.String())
}
- return op, indir, nil
+ return op, indir
}
// The local Type was compiled from the actual value, so we know it's compatible.
-func compileEnc(rt reflect.Type) (*encEngine, os.Error) {
+func (enc *Encoder) compileEnc(rt reflect.Type) *encEngine {
srt, isStruct := rt.(*reflect.StructType)
engine := new(encEngine)
if isStruct {
engine.instr = make([]encInstr, srt.NumField()+1) // +1 for terminator
for fieldnum := 0; fieldnum < srt.NumField(); fieldnum++ {
f := srt.Field(fieldnum)
- op, indir, err := encOpFor(f.Type)
- if err != nil {
- return nil, err
+ op, indir := enc.encOpFor(f.Type)
+ if !isExported(f.Name) {
+ op = encNoOp
}
engine.instr[fieldnum] = encInstr{op, fieldnum, indir, uintptr(f.Offset)}
}
engine.instr[srt.NumField()] = encInstr{encStructTerminator, 0, 0, 0}
} else {
engine.instr = make([]encInstr, 1)
- op, indir, err := encOpFor(rt)
- if err != nil {
- return nil, err
- }
+ op, indir := enc.encOpFor(rt)
engine.instr[0] = encInstr{op, singletonField, indir, 0} // offset is zero
}
- return engine, nil
+ return engine
}
// typeLock must be held (or we're in initialization and guaranteed single-threaded).
// The reflection type must have all its indirections processed out.
-func getEncEngine(rt reflect.Type) (*encEngine, os.Error) {
- info, err := getTypeInfo(rt)
- if err != nil {
- return nil, err
+func (enc *Encoder) getEncEngine(rt reflect.Type) *encEngine {
+ info, err1 := getTypeInfo(rt)
+ if err1 != nil {
+ error(err1)
}
if info.encoder == nil {
// mark this engine as underway before compiling to handle recursive types.
info.encoder = new(encEngine)
- info.encoder, err = compileEnc(rt)
+ info.encoder = enc.compileEnc(rt)
}
- return info.encoder, err
+ return info.encoder
+}
+
+// Put this in a function so we can hold the lock only while compiling, not when encoding.
+func (enc *Encoder) lockAndGetEncEngine(rt reflect.Type) *encEngine {
+ typeLock.Lock()
+ defer typeLock.Unlock()
+ return enc.getEncEngine(rt)
}
-func encode(b *bytes.Buffer, value reflect.Value) os.Error {
+func (enc *Encoder) encode(b *bytes.Buffer, value reflect.Value) (err os.Error) {
+ defer catchError(&err)
// Dereference down to the underlying object.
rt, indir := indirect(value.Type())
for i := 0; i < indir; i++ {
value = reflect.Indirect(value)
}
- typeLock.Lock()
- engine, err := getEncEngine(rt)
- typeLock.Unlock()
- if err != nil {
- return err
- }
+ engine := enc.lockAndGetEncEngine(rt)
if value.Type().Kind() == reflect.Struct {
- return encodeStruct(engine, b, value.Addr())
+ enc.encodeStruct(b, engine, value.Addr())
+ } else {
+ enc.encodeSingle(b, engine, value.Addr())
}
- return encodeSingle(engine, b, value.Addr())
+ return nil
}