diff options
Diffstat (limited to 'src/pkg/gob/encode.go')
-rw-r--r-- | src/pkg/gob/encode.go | 541 |
1 files changed, 153 insertions, 388 deletions
diff --git a/src/pkg/gob/encode.go b/src/pkg/gob/encode.go index 00548868b..3431eafa7 100644 --- a/src/pkg/gob/encode.go +++ b/src/pkg/gob/encode.go @@ -2,270 +2,8 @@ // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. -/* - The gob package manages streams of gobs - binary values exchanged between an - Encoder (transmitter) and a Decoder (receiver). A typical use is transporting - arguments and results of remote procedure calls (RPCs) such as those provided by - package "rpc". - - A stream of gobs is self-describing. Each data item in the stream is preceded by - a specification of its type, expressed in terms of a small set of predefined - types. Pointers are not transmitted, but the things they point to are - transmitted; that is, the values are flattened. Recursive types work fine, but - recursive values (data with cycles) are problematic. This may change. - - To use gobs, create an Encoder and present it with a series of data items as - values or addresses that can be dereferenced to values. The Encoder makes sure - all type information is sent before it is needed. At the receive side, a - Decoder retrieves values from the encoded stream and unpacks them into local - variables. - - The source and destination values/types need not correspond exactly. For structs, - fields (identified by name) that are in the source but absent from the receiving - variable will be ignored. Fields that are in the receiving variable but missing - from the transmitted type or value will be ignored in the destination. If a field - with the same name is present in both, their types must be compatible. Both the - receiver and transmitter will do all necessary indirection and dereferencing to - convert between gobs and actual Go values. For instance, a gob type that is - schematically, - - struct { a, b int } - - can be sent from or received into any of these Go types: - - struct { a, b int } // the same - *struct { a, b int } // extra indirection of the struct - struct { *a, **b int } // extra indirection of the fields - struct { a, b int64 } // different concrete value type; see below - - It may also be received into any of these: - - struct { a, b int } // the same - struct { b, a int } // ordering doesn't matter; matching is by name - struct { a, b, c int } // extra field (c) ignored - struct { b int } // missing field (a) ignored; data will be dropped - struct { b, c int } // missing field (a) ignored; extra field (c) ignored. - - Attempting to receive into these types will draw a decode error: - - struct { a int; b uint } // change of signedness for b - struct { a int; b float } // change of type for b - struct { } // no field names in common - struct { c, d int } // no field names in common - - Integers are transmitted two ways: arbitrary precision signed integers or - arbitrary precision unsigned integers. There is no int8, int16 etc. - discrimination in the gob format; there are only signed and unsigned integers. As - described below, the transmitter sends the value in a variable-length encoding; - the receiver accepts the value and stores it in the destination variable. - Floating-point numbers are always sent using IEEE-754 64-bit precision (see - below). - - Signed integers may be received into any signed integer variable: int, int16, etc.; - unsigned integers may be received into any unsigned integer variable; and floating - point values may be received into any floating point variable. However, - the destination variable must be able to represent the value or the decode - operation will fail. - - Structs, arrays and slices are also supported. Strings and arrays of bytes are - supported with a special, efficient representation (see below). - - Interfaces, functions, and channels cannot be sent in a gob. Attempting - to encode a value that contains one will fail. - - The rest of this comment documents the encoding, details that are not important - for most users. Details are presented bottom-up. - - An unsigned integer is sent one of two ways. If it is less than 128, it is sent - as a byte with that value. Otherwise it is sent as a minimal-length big-endian - (high byte first) byte stream holding the value, preceded by one byte holding the - byte count, negated. Thus 0 is transmitted as (00), 7 is transmitted as (07) and - 256 is transmitted as (FE 01 00). - - A boolean is encoded within an unsigned integer: 0 for false, 1 for true. - - A signed integer, i, is encoded within an unsigned integer, u. Within u, bits 1 - upward contain the value; bit 0 says whether they should be complemented upon - receipt. The encode algorithm looks like this: - - uint u; - if i < 0 { - u = (^i << 1) | 1 // complement i, bit 0 is 1 - } else { - u = (i << 1) // do not complement i, bit 0 is 0 - } - encodeUnsigned(u) - - The low bit is therefore analogous to a sign bit, but making it the complement bit - instead guarantees that the largest negative integer is not a special case. For - example, -129=^128=(^256>>1) encodes as (FE 01 01). - - Floating-point numbers are always sent as a representation of a float64 value. - That value is converted to a uint64 using math.Float64bits. The uint64 is then - byte-reversed and sent as a regular unsigned integer. The byte-reversal means the - exponent and high-precision part of the mantissa go first. Since the low bits are - often zero, this can save encoding bytes. For instance, 17.0 is encoded in only - three bytes (FE 31 40). - - Strings and slices of bytes are sent as an unsigned count followed by that many - uninterpreted bytes of the value. - - All other slices and arrays are sent as an unsigned count followed by that many - elements using the standard gob encoding for their type, recursively. - - Structs are sent as a sequence of (field number, field value) pairs. The field - value is sent using the standard gob encoding for its type, recursively. If a - field has the zero value for its type, it is omitted from the transmission. The - field number is defined by the type of the encoded struct: the first field of the - encoded type is field 0, the second is field 1, etc. When encoding a value, the - field numbers are delta encoded for efficiency and the fields are always sent in - order of increasing field number; the deltas are therefore unsigned. The - initialization for the delta encoding sets the field number to -1, so an unsigned - integer field 0 with value 7 is transmitted as unsigned delta = 1, unsigned value - = 7 or (01 0E). Finally, after all the fields have been sent a terminating mark - denotes the end of the struct. That mark is a delta=0 value, which has - representation (00). - - The representation of types is described below. When a type is defined on a given - connection between an Encoder and Decoder, it is assigned a signed integer type - id. When Encoder.Encode(v) is called, it makes sure there is an id assigned for - the type of v and all its elements and then it sends the pair (typeid, encoded-v) - where typeid is the type id of the encoded type of v and encoded-v is the gob - encoding of the value v. - - To define a type, the encoder chooses an unused, positive type id and sends the - pair (-type id, encoded-type) where encoded-type is the gob encoding of a wireType - description, constructed from these types: - - type wireType struct { - s structType; - } - type fieldType struct { - name string; // the name of the field. - id int; // the type id of the field, which must be already defined - } - type commonType { - name string; // the name of the struct type - id int; // the id of the type, repeated for so it's inside the type - } - type structType struct { - commonType; - field []fieldType; // the fields of the struct. - } - - If there are nested type ids, the types for all inner type ids must be defined - before the top-level type id is used to describe an encoded-v. - - For simplicity in setup, the connection is defined to understand these types a - priori, as well as the basic gob types int, uint, etc. Their ids are: - - bool 1 - int 2 - uint 3 - float 4 - []byte 5 - string 6 - wireType 7 - structType 8 - commonType 9 - fieldType 10 - - In summary, a gob stream looks like - - ((-type id, encoding of a wireType)* (type id, encoding of a value))* - - where * signifies zero or more repetitions and the type id of a value must - be predefined or be defined before the value in the stream. -*/ package gob -/* - For implementers and the curious, here is an encoded example. Given - type Point {x, y int} - and the value - p := Point{22, 33} - the bytes transmitted that encode p will be: - 1f ff 81 03 01 01 05 50 6f 69 6e 74 01 ff 82 00 01 02 01 01 78 - 01 04 00 01 01 79 01 04 00 00 00 07 ff 82 01 2c 01 42 00 07 ff - 82 01 2c 01 42 00 - They are determined as follows. - - Since this is the first transmission of type Point, the type descriptor - for Point itself must be sent before the value. This is the first type - we've sent on this Encoder, so it has type id 65 (0 through 64 are - reserved). - - 1f // This item (a type descriptor) is 31 bytes long. - ff 81 // The negative of the id for the type we're defining, -65. - // This is one byte (indicated by FF = -1) followed by - // ^-65<<1 | 1. The low 1 bit signals to complement the - // rest upon receipt. - - // Now we send a type descriptor, which is itself a struct (wireType). - // The type of wireType itself is known (it's built in, as is the type of - // all its components), so we just need to send a *value* of type wireType - // that represents type "Point". - // Here starts the encoding of that value. - // Set the field number implicitly to zero; this is done at the beginning - // of every struct, including nested structs. - 03 // Add 3 to field number; now 3 (wireType.structType; this is a struct). - // structType starts with an embedded commonType, which appears - // as a regular structure here too. - 01 // add 1 to field number (now 1); start of embedded commonType. - 01 // add one to field number (now 1, the name of the type) - 05 // string is (unsigned) 5 bytes long - 50 6f 69 6e 74 // wireType.structType.commonType.name = "Point" - 01 // add one to field number (now 2, the id of the type) - ff 82 // wireType.structType.commonType._id = 65 - 00 // end of embedded wiretype.structType.commonType struct - 01 // add one to field number (now 2, the Field array in wireType.structType) - 02 // There are two fields in the type (len(structType.field)) - 01 // Start of first field structure; add 1 to get field number 1: field[0].name - 01 // 1 byte - 78 // structType.field[0].name = "x" - 01 // Add 1 to get field number 2: field[0].id - 04 // structType.field[0].typeId is 2 (signed int). - 00 // End of structType.field[0]; start structType.field[1]; set field number to 0. - 01 // Add 1 to get field number 1: field[1].name - 01 // 1 byte - 79 // structType.field[1].name = "y" - 01 // Add 1 to get field number 2: field[0].id - 04 // struct.Type.field[1].typeId is 2 (signed int). - 00 // End of structType.field[1]; end of structType.field. - 00 // end of wireType.structType structure - 00 // end of wireType structure - - Now we can send the Point value. Again the field number resets to zero: - - 07 // this value is 7 bytes long - ff 82 // the type number, 65 (1 byte (-FF) followed by 65<<1) - 01 // add one to field number, yielding field 1 - 2c // encoding of signed "22" (0x22 = 44 = 22<<1); Point.x = 22 - 01 // add one to field number, yielding field 2 - 42 // encoding of signed "33" (0x42 = 66 = 33<<1); Point.y = 33 - 00 // end of structure - - The type encoding is long and fairly intricate but we send it only once. - If p is transmitted a second time, the type is already known so the - output will be just: - - 07 ff 82 01 2c 01 42 00 - - A single non-struct value at top level is transmitted like a field with - delta tag 0. For instance, a signed integer with value 3 presented as - the argument to Encode will emit: - - 03 04 00 06 - - Which represents: - - 03 // this value is 3 bytes long - 04 // the type number, 2, represents an integer - 00 // tag delta 0 - 06 // value 3 - -*/ - import ( "bytes" "io" @@ -282,26 +20,29 @@ const uint64Size = unsafe.Sizeof(uint64(0)) // number is initialized to -1 so 0 comes out as delta(1). A delta of // 0 terminates the structure. type encoderState struct { + enc *Encoder b *bytes.Buffer - err os.Error // error encountered during encoding. sendZero bool // encoding an array element or map key/value pair; send zero values fieldnum int // the last field number written. buf [1 + uint64Size]byte // buffer used by the encoder; here to avoid allocation. } +func newEncoderState(enc *Encoder, b *bytes.Buffer) *encoderState { + return &encoderState{enc: enc, b: b} +} + // Unsigned integers have a two-state encoding. If the number is less // than 128 (0 through 0x7F), its value is written directly. // Otherwise the value is written in big-endian byte order preceded // by the byte length, negated. -// encodeUint writes an encoded unsigned integer to state.b. Sets state.err. -// If state.err is already non-nil, it does nothing. -func encodeUint(state *encoderState, x uint64) { - if state.err != nil { - return - } +// encodeUint writes an encoded unsigned integer to state.b. +func (state *encoderState) encodeUint(x uint64) { if x <= 0x7F { - state.err = state.b.WriteByte(uint8(x)) + err := state.b.WriteByte(uint8(x)) + if err != nil { + error(err) + } return } var n, m int @@ -312,20 +53,23 @@ func encodeUint(state *encoderState, x uint64) { m-- } state.buf[m] = uint8(-(n - 1)) - n, state.err = state.b.Write(state.buf[m : uint64Size+1]) + n, err := state.b.Write(state.buf[m : uint64Size+1]) + if err != nil { + error(err) + } } // encodeInt writes an encoded signed integer to state.w. -// The low bit of the encoding says whether to bit complement the (other bits of the) uint to recover the int. -// Sets state.err. If state.err is already non-nil, it does nothing. -func encodeInt(state *encoderState, i int64) { +// The low bit of the encoding says whether to bit complement the (other bits of the) +// uint to recover the int. +func (state *encoderState) encodeInt(i int64) { var x uint64 if i < 0 { x = uint64(^i<<1) | 1 } else { x = uint64(i << 1) } - encodeUint(state, uint64(x)) + state.encodeUint(uint64(x)) } type encOp func(i *encInstr, state *encoderState, p unsafe.Pointer) @@ -342,7 +86,7 @@ type encInstr struct { // If the instruction pointer is nil, do nothing func (state *encoderState) update(instr *encInstr) { if instr != nil { - encodeUint(state, uint64(instr.field-state.fieldnum)) + state.encodeUint(uint64(instr.field - state.fieldnum)) state.fieldnum = instr.field } } @@ -368,9 +112,9 @@ func encBool(i *encInstr, state *encoderState, p unsafe.Pointer) { if b || state.sendZero { state.update(i) if b { - encodeUint(state, 1) + state.encodeUint(1) } else { - encodeUint(state, 0) + state.encodeUint(0) } } } @@ -379,7 +123,7 @@ func encInt(i *encInstr, state *encoderState, p unsafe.Pointer) { v := int64(*(*int)(p)) if v != 0 || state.sendZero { state.update(i) - encodeInt(state, v) + state.encodeInt(v) } } @@ -387,7 +131,7 @@ func encUint(i *encInstr, state *encoderState, p unsafe.Pointer) { v := uint64(*(*uint)(p)) if v != 0 || state.sendZero { state.update(i) - encodeUint(state, v) + state.encodeUint(v) } } @@ -395,7 +139,7 @@ func encInt8(i *encInstr, state *encoderState, p unsafe.Pointer) { v := int64(*(*int8)(p)) if v != 0 || state.sendZero { state.update(i) - encodeInt(state, v) + state.encodeInt(v) } } @@ -403,7 +147,7 @@ func encUint8(i *encInstr, state *encoderState, p unsafe.Pointer) { v := uint64(*(*uint8)(p)) if v != 0 || state.sendZero { state.update(i) - encodeUint(state, v) + state.encodeUint(v) } } @@ -411,7 +155,7 @@ func encInt16(i *encInstr, state *encoderState, p unsafe.Pointer) { v := int64(*(*int16)(p)) if v != 0 || state.sendZero { state.update(i) - encodeInt(state, v) + state.encodeInt(v) } } @@ -419,7 +163,7 @@ func encUint16(i *encInstr, state *encoderState, p unsafe.Pointer) { v := uint64(*(*uint16)(p)) if v != 0 || state.sendZero { state.update(i) - encodeUint(state, v) + state.encodeUint(v) } } @@ -427,7 +171,7 @@ func encInt32(i *encInstr, state *encoderState, p unsafe.Pointer) { v := int64(*(*int32)(p)) if v != 0 || state.sendZero { state.update(i) - encodeInt(state, v) + state.encodeInt(v) } } @@ -435,7 +179,7 @@ func encUint32(i *encInstr, state *encoderState, p unsafe.Pointer) { v := uint64(*(*uint32)(p)) if v != 0 || state.sendZero { state.update(i) - encodeUint(state, v) + state.encodeUint(v) } } @@ -443,7 +187,7 @@ func encInt64(i *encInstr, state *encoderState, p unsafe.Pointer) { v := *(*int64)(p) if v != 0 || state.sendZero { state.update(i) - encodeInt(state, v) + state.encodeInt(v) } } @@ -451,7 +195,7 @@ func encUint64(i *encInstr, state *encoderState, p unsafe.Pointer) { v := *(*uint64)(p) if v != 0 || state.sendZero { state.update(i) - encodeUint(state, v) + state.encodeUint(v) } } @@ -459,7 +203,7 @@ func encUintptr(i *encInstr, state *encoderState, p unsafe.Pointer) { v := uint64(*(*uintptr)(p)) if v != 0 || state.sendZero { state.update(i) - encodeUint(state, v) + state.encodeUint(v) } } @@ -484,7 +228,7 @@ func encFloat(i *encInstr, state *encoderState, p unsafe.Pointer) { if f != 0 || state.sendZero { v := floatBits(float64(f)) state.update(i) - encodeUint(state, v) + state.encodeUint(v) } } @@ -493,7 +237,7 @@ func encFloat32(i *encInstr, state *encoderState, p unsafe.Pointer) { if f != 0 || state.sendZero { v := floatBits(float64(f)) state.update(i) - encodeUint(state, v) + state.encodeUint(v) } } @@ -502,7 +246,7 @@ func encFloat64(i *encInstr, state *encoderState, p unsafe.Pointer) { if f != 0 || state.sendZero { state.update(i) v := floatBits(f) - encodeUint(state, v) + state.encodeUint(v) } } @@ -513,8 +257,8 @@ func encComplex(i *encInstr, state *encoderState, p unsafe.Pointer) { rpart := floatBits(float64(real(c))) ipart := floatBits(float64(imag(c))) state.update(i) - encodeUint(state, rpart) - encodeUint(state, ipart) + state.encodeUint(rpart) + state.encodeUint(ipart) } } @@ -524,8 +268,8 @@ func encComplex64(i *encInstr, state *encoderState, p unsafe.Pointer) { rpart := floatBits(float64(real(c))) ipart := floatBits(float64(imag(c))) state.update(i) - encodeUint(state, rpart) - encodeUint(state, ipart) + state.encodeUint(rpart) + state.encodeUint(ipart) } } @@ -535,17 +279,20 @@ func encComplex128(i *encInstr, state *encoderState, p unsafe.Pointer) { rpart := floatBits(real(c)) ipart := floatBits(imag(c)) state.update(i) - encodeUint(state, rpart) - encodeUint(state, ipart) + state.encodeUint(rpart) + state.encodeUint(ipart) } } +func encNoOp(i *encInstr, state *encoderState, p unsafe.Pointer) { +} + // Byte arrays are encoded as an unsigned count followed by the raw bytes. func encUint8Array(i *encInstr, state *encoderState, p unsafe.Pointer) { b := *(*[]byte)(p) if len(b) > 0 || state.sendZero { state.update(i) - encodeUint(state, uint64(len(b))) + state.encodeUint(uint64(len(b))) state.b.Write(b) } } @@ -555,14 +302,14 @@ func encString(i *encInstr, state *encoderState, p unsafe.Pointer) { s := *(*string)(p) if len(s) > 0 || state.sendZero { state.update(i) - encodeUint(state, uint64(len(s))) + state.encodeUint(uint64(len(s))) io.WriteString(state.b, s) } } // The end of a struct is marked by a delta field number of 0. func encStructTerminator(i *encInstr, state *encoderState, p unsafe.Pointer) { - encodeUint(state, 0) + state.encodeUint(0) } // Execution engine @@ -575,9 +322,8 @@ type encEngine struct { const singletonField = 0 -func encodeSingle(engine *encEngine, b *bytes.Buffer, basep uintptr) os.Error { - state := new(encoderState) - state.b = b +func (enc *Encoder) encodeSingle(b *bytes.Buffer, engine *encEngine, basep uintptr) { + state := newEncoderState(enc, b) state.fieldnum = singletonField // There is no surrounding struct to frame the transmission, so we must // generate data even if the item is zero. To do this, set sendZero. @@ -586,16 +332,14 @@ func encodeSingle(engine *encEngine, b *bytes.Buffer, basep uintptr) os.Error { p := unsafe.Pointer(basep) // offset will be zero if instr.indir > 0 { if p = encIndirect(p, instr.indir); p == nil { - return nil + return } } instr.op(instr, state, p) - return state.err } -func encodeStruct(engine *encEngine, b *bytes.Buffer, basep uintptr) os.Error { - state := new(encoderState) - state.b = b +func (enc *Encoder) encodeStruct(b *bytes.Buffer, engine *encEngine, basep uintptr) { + state := newEncoderState(enc, b) state.fieldnum = -1 for i := 0; i < len(engine.instr); i++ { instr := &engine.instr[i] @@ -606,33 +350,26 @@ func encodeStruct(engine *encEngine, b *bytes.Buffer, basep uintptr) os.Error { } } instr.op(instr, state, p) - if state.err != nil { - break - } } - return state.err } -func encodeArray(b *bytes.Buffer, p uintptr, op encOp, elemWid uintptr, elemIndir int, length int) os.Error { - state := new(encoderState) - state.b = b +func (enc *Encoder) encodeArray(b *bytes.Buffer, p uintptr, op encOp, elemWid uintptr, elemIndir int, length int) { + state := newEncoderState(enc, b) state.fieldnum = -1 state.sendZero = true - encodeUint(state, uint64(length)) - for i := 0; i < length && state.err == nil; i++ { + state.encodeUint(uint64(length)) + for i := 0; i < length; i++ { elemp := p up := unsafe.Pointer(elemp) if elemIndir > 0 { if up = encIndirect(up, elemIndir); up == nil { - state.err = os.ErrorString("gob: encodeArray: nil element") - break + errorf("gob: encodeArray: nil element") } elemp = uintptr(up) } op(nil, state, unsafe.Pointer(elemp)) p += uintptr(elemWid) } - return state.err } func encodeReflectValue(state *encoderState, v reflect.Value, op encOp, indir int) { @@ -640,27 +377,60 @@ func encodeReflectValue(state *encoderState, v reflect.Value, op encOp, indir in v = reflect.Indirect(v) } if v == nil { - state.err = os.ErrorString("gob: encodeReflectValue: nil element") - return + errorf("gob: encodeReflectValue: nil element") } op(nil, state, unsafe.Pointer(v.Addr())) } -func encodeMap(b *bytes.Buffer, mv *reflect.MapValue, keyOp, elemOp encOp, keyIndir, elemIndir int) os.Error { - state := new(encoderState) - state.b = b +func (enc *Encoder) encodeMap(b *bytes.Buffer, mv *reflect.MapValue, keyOp, elemOp encOp, keyIndir, elemIndir int) { + state := newEncoderState(enc, b) state.fieldnum = -1 state.sendZero = true keys := mv.Keys() - encodeUint(state, uint64(len(keys))) + state.encodeUint(uint64(len(keys))) for _, key := range keys { - if state.err != nil { - break - } encodeReflectValue(state, key, keyOp, keyIndir) encodeReflectValue(state, mv.Elem(key), elemOp, elemIndir) } - return state.err +} + +// To send an interface, we send a string identifying the concrete type, followed +// by the type identifier (which might require defining that type right now), followed +// by the concrete value. A nil value gets sent as the empty string for the name, +// followed by no value. +func (enc *Encoder) encodeInterface(b *bytes.Buffer, iv *reflect.InterfaceValue) { + state := newEncoderState(enc, b) + state.fieldnum = -1 + state.sendZero = true + if iv.IsNil() { + state.encodeUint(0) + return + } + + typ, _ := indirect(iv.Elem().Type()) + name, ok := concreteTypeToName[typ] + if !ok { + errorf("gob: type not registered for interface: %s", typ) + } + // Send the name. + state.encodeUint(uint64(len(name))) + _, err := io.WriteString(state.b, name) + if err != nil { + error(err) + } + // Send (and maybe first define) the type id. + enc.sendTypeDescriptor(typ) + // Encode the value into a new buffer. + data := new(bytes.Buffer) + err = enc.encode(data, iv.Elem()) + if err != nil { + error(err) + } + state.encodeUint(uint64(data.Len())) + _, err = state.b.Write(data.Bytes()) + if err != nil { + error(err) + } } var encOpMap = []encOp{ @@ -687,7 +457,7 @@ var encOpMap = []encOp{ // Return the encoding op for the base type under rt and // the indirection count to reach it. -func encOpFor(rt reflect.Type) (encOp, int, os.Error) { +func (enc *Encoder) encOpFor(rt reflect.Type) (encOp, int) { typ, indir := indirect(rt) var op encOp k := typ.Kind() @@ -703,128 +473,123 @@ func encOpFor(rt reflect.Type) (encOp, int, os.Error) { break } // Slices have a header; we decode it to find the underlying array. - elemOp, indir, err := encOpFor(t.Elem()) - if err != nil { - return nil, 0, err - } + elemOp, indir := enc.encOpFor(t.Elem()) op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { slice := (*reflect.SliceHeader)(p) - if slice.Len == 0 { + if !state.sendZero && slice.Len == 0 { return } state.update(i) - state.err = encodeArray(state.b, slice.Data, elemOp, t.Elem().Size(), indir, int(slice.Len)) + state.enc.encodeArray(state.b, slice.Data, elemOp, t.Elem().Size(), indir, int(slice.Len)) } case *reflect.ArrayType: // True arrays have size in the type. - elemOp, indir, err := encOpFor(t.Elem()) - if err != nil { - return nil, 0, err - } + elemOp, indir := enc.encOpFor(t.Elem()) op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { - slice := (*reflect.SliceHeader)(p) - if slice.Len == 0 { - return - } state.update(i) - state.err = encodeArray(state.b, uintptr(p), elemOp, t.Elem().Size(), indir, t.Len()) + state.enc.encodeArray(state.b, uintptr(p), elemOp, t.Elem().Size(), indir, t.Len()) } case *reflect.MapType: - keyOp, keyIndir, err := encOpFor(t.Key()) - if err != nil { - return nil, 0, err - } - elemOp, elemIndir, err := encOpFor(t.Elem()) - if err != nil { - return nil, 0, err - } + keyOp, keyIndir := enc.encOpFor(t.Key()) + elemOp, elemIndir := enc.encOpFor(t.Elem()) op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { // Maps cannot be accessed by moving addresses around the way // that slices etc. can. We must recover a full reflection value for // the iteration. v := reflect.NewValue(unsafe.Unreflect(t, unsafe.Pointer((p)))) mv := reflect.Indirect(v).(*reflect.MapValue) - if mv.Len() == 0 { + if !state.sendZero && mv.Len() == 0 { return } state.update(i) - state.err = encodeMap(state.b, mv, keyOp, elemOp, keyIndir, elemIndir) + state.enc.encodeMap(state.b, mv, keyOp, elemOp, keyIndir, elemIndir) } case *reflect.StructType: // Generate a closure that calls out to the engine for the nested type. - _, err := getEncEngine(typ) - if err != nil { - return nil, 0, err - } + enc.getEncEngine(typ) info := mustGetTypeInfo(typ) op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { state.update(i) // indirect through info to delay evaluation for recursive structs - state.err = encodeStruct(info.encoder, state.b, uintptr(p)) + state.enc.encodeStruct(state.b, info.encoder, uintptr(p)) + } + case *reflect.InterfaceType: + op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { + // Interfaces transmit the name and contents of the concrete + // value they contain. + v := reflect.NewValue(unsafe.Unreflect(t, unsafe.Pointer((p)))) + iv := reflect.Indirect(v).(*reflect.InterfaceValue) + if !state.sendZero && (iv == nil || iv.IsNil()) { + return + } + state.update(i) + state.enc.encodeInterface(state.b, iv) } } } if op == nil { - return op, indir, os.ErrorString("gob enc: can't happen: encode type " + rt.String()) + errorf("gob enc: can't happen: encode type %s", rt.String()) } - return op, indir, nil + return op, indir } // The local Type was compiled from the actual value, so we know it's compatible. -func compileEnc(rt reflect.Type) (*encEngine, os.Error) { +func (enc *Encoder) compileEnc(rt reflect.Type) *encEngine { srt, isStruct := rt.(*reflect.StructType) engine := new(encEngine) if isStruct { engine.instr = make([]encInstr, srt.NumField()+1) // +1 for terminator for fieldnum := 0; fieldnum < srt.NumField(); fieldnum++ { f := srt.Field(fieldnum) - op, indir, err := encOpFor(f.Type) - if err != nil { - return nil, err + op, indir := enc.encOpFor(f.Type) + if !isExported(f.Name) { + op = encNoOp } engine.instr[fieldnum] = encInstr{op, fieldnum, indir, uintptr(f.Offset)} } engine.instr[srt.NumField()] = encInstr{encStructTerminator, 0, 0, 0} } else { engine.instr = make([]encInstr, 1) - op, indir, err := encOpFor(rt) - if err != nil { - return nil, err - } + op, indir := enc.encOpFor(rt) engine.instr[0] = encInstr{op, singletonField, indir, 0} // offset is zero } - return engine, nil + return engine } // typeLock must be held (or we're in initialization and guaranteed single-threaded). // The reflection type must have all its indirections processed out. -func getEncEngine(rt reflect.Type) (*encEngine, os.Error) { - info, err := getTypeInfo(rt) - if err != nil { - return nil, err +func (enc *Encoder) getEncEngine(rt reflect.Type) *encEngine { + info, err1 := getTypeInfo(rt) + if err1 != nil { + error(err1) } if info.encoder == nil { // mark this engine as underway before compiling to handle recursive types. info.encoder = new(encEngine) - info.encoder, err = compileEnc(rt) + info.encoder = enc.compileEnc(rt) } - return info.encoder, err + return info.encoder +} + +// Put this in a function so we can hold the lock only while compiling, not when encoding. +func (enc *Encoder) lockAndGetEncEngine(rt reflect.Type) *encEngine { + typeLock.Lock() + defer typeLock.Unlock() + return enc.getEncEngine(rt) } -func encode(b *bytes.Buffer, value reflect.Value) os.Error { +func (enc *Encoder) encode(b *bytes.Buffer, value reflect.Value) (err os.Error) { + defer catchError(&err) // Dereference down to the underlying object. rt, indir := indirect(value.Type()) for i := 0; i < indir; i++ { value = reflect.Indirect(value) } - typeLock.Lock() - engine, err := getEncEngine(rt) - typeLock.Unlock() - if err != nil { - return err - } + engine := enc.lockAndGetEncEngine(rt) if value.Type().Kind() == reflect.Struct { - return encodeStruct(engine, b, value.Addr()) + enc.encodeStruct(b, engine, value.Addr()) + } else { + enc.encodeSingle(b, engine, value.Addr()) } - return encodeSingle(engine, b, value.Addr()) + return nil } |