summaryrefslogtreecommitdiff
path: root/src/pkg/image/image.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/image/image.go')
-rw-r--r--src/pkg/image/image.go904
1 files changed, 0 insertions, 904 deletions
diff --git a/src/pkg/image/image.go b/src/pkg/image/image.go
deleted file mode 100644
index 32a89ef34..000000000
--- a/src/pkg/image/image.go
+++ /dev/null
@@ -1,904 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Package image implements a basic 2-D image library.
-//
-// The fundamental interface is called Image. An Image contains colors, which
-// are described in the image/color package.
-//
-// Values of the Image interface are created either by calling functions such
-// as NewRGBA and NewPaletted, or by calling Decode on an io.Reader containing
-// image data in a format such as GIF, JPEG or PNG. Decoding any particular
-// image format requires the prior registration of a decoder function.
-// Registration is typically automatic as a side effect of initializing that
-// format's package so that, to decode a PNG image, it suffices to have
-// import _ "image/png"
-// in a program's main package. The _ means to import a package purely for its
-// initialization side effects.
-//
-// See "The Go image package" for more details:
-// http://golang.org/doc/articles/image_package.html
-package image
-
-import (
- "image/color"
-)
-
-// Config holds an image's color model and dimensions.
-type Config struct {
- ColorModel color.Model
- Width, Height int
-}
-
-// Image is a finite rectangular grid of color.Color values taken from a color
-// model.
-type Image interface {
- // ColorModel returns the Image's color model.
- ColorModel() color.Model
- // Bounds returns the domain for which At can return non-zero color.
- // The bounds do not necessarily contain the point (0, 0).
- Bounds() Rectangle
- // At returns the color of the pixel at (x, y).
- // At(Bounds().Min.X, Bounds().Min.Y) returns the upper-left pixel of the grid.
- // At(Bounds().Max.X-1, Bounds().Max.Y-1) returns the lower-right one.
- At(x, y int) color.Color
-}
-
-// PalettedImage is an image whose colors may come from a limited palette.
-// If m is a PalettedImage and m.ColorModel() returns a PalettedColorModel p,
-// then m.At(x, y) should be equivalent to p[m.ColorIndexAt(x, y)]. If m's
-// color model is not a PalettedColorModel, then ColorIndexAt's behavior is
-// undefined.
-type PalettedImage interface {
- // ColorIndexAt returns the palette index of the pixel at (x, y).
- ColorIndexAt(x, y int) uint8
- Image
-}
-
-// RGBA is an in-memory image whose At method returns color.RGBA values.
-type RGBA struct {
- // Pix holds the image's pixels, in R, G, B, A order. The pixel at
- // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4].
- Pix []uint8
- // Stride is the Pix stride (in bytes) between vertically adjacent pixels.
- Stride int
- // Rect is the image's bounds.
- Rect Rectangle
-}
-
-func (p *RGBA) ColorModel() color.Model { return color.RGBAModel }
-
-func (p *RGBA) Bounds() Rectangle { return p.Rect }
-
-func (p *RGBA) At(x, y int) color.Color {
- if !(Point{x, y}.In(p.Rect)) {
- return color.RGBA{}
- }
- i := p.PixOffset(x, y)
- return color.RGBA{p.Pix[i+0], p.Pix[i+1], p.Pix[i+2], p.Pix[i+3]}
-}
-
-// PixOffset returns the index of the first element of Pix that corresponds to
-// the pixel at (x, y).
-func (p *RGBA) PixOffset(x, y int) int {
- return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4
-}
-
-func (p *RGBA) Set(x, y int, c color.Color) {
- if !(Point{x, y}.In(p.Rect)) {
- return
- }
- i := p.PixOffset(x, y)
- c1 := color.RGBAModel.Convert(c).(color.RGBA)
- p.Pix[i+0] = c1.R
- p.Pix[i+1] = c1.G
- p.Pix[i+2] = c1.B
- p.Pix[i+3] = c1.A
-}
-
-func (p *RGBA) SetRGBA(x, y int, c color.RGBA) {
- if !(Point{x, y}.In(p.Rect)) {
- return
- }
- i := p.PixOffset(x, y)
- p.Pix[i+0] = c.R
- p.Pix[i+1] = c.G
- p.Pix[i+2] = c.B
- p.Pix[i+3] = c.A
-}
-
-// SubImage returns an image representing the portion of the image p visible
-// through r. The returned value shares pixels with the original image.
-func (p *RGBA) SubImage(r Rectangle) Image {
- r = r.Intersect(p.Rect)
- // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
- // either r1 or r2 if the intersection is empty. Without explicitly checking for
- // this, the Pix[i:] expression below can panic.
- if r.Empty() {
- return &RGBA{}
- }
- i := p.PixOffset(r.Min.X, r.Min.Y)
- return &RGBA{
- Pix: p.Pix[i:],
- Stride: p.Stride,
- Rect: r,
- }
-}
-
-// Opaque scans the entire image and reports whether it is fully opaque.
-func (p *RGBA) Opaque() bool {
- if p.Rect.Empty() {
- return true
- }
- i0, i1 := 3, p.Rect.Dx()*4
- for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
- for i := i0; i < i1; i += 4 {
- if p.Pix[i] != 0xff {
- return false
- }
- }
- i0 += p.Stride
- i1 += p.Stride
- }
- return true
-}
-
-// NewRGBA returns a new RGBA with the given bounds.
-func NewRGBA(r Rectangle) *RGBA {
- w, h := r.Dx(), r.Dy()
- buf := make([]uint8, 4*w*h)
- return &RGBA{buf, 4 * w, r}
-}
-
-// RGBA64 is an in-memory image whose At method returns color.RGBA64 values.
-type RGBA64 struct {
- // Pix holds the image's pixels, in R, G, B, A order and big-endian format. The pixel at
- // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*8].
- Pix []uint8
- // Stride is the Pix stride (in bytes) between vertically adjacent pixels.
- Stride int
- // Rect is the image's bounds.
- Rect Rectangle
-}
-
-func (p *RGBA64) ColorModel() color.Model { return color.RGBA64Model }
-
-func (p *RGBA64) Bounds() Rectangle { return p.Rect }
-
-func (p *RGBA64) At(x, y int) color.Color {
- if !(Point{x, y}.In(p.Rect)) {
- return color.RGBA64{}
- }
- i := p.PixOffset(x, y)
- return color.RGBA64{
- uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1]),
- uint16(p.Pix[i+2])<<8 | uint16(p.Pix[i+3]),
- uint16(p.Pix[i+4])<<8 | uint16(p.Pix[i+5]),
- uint16(p.Pix[i+6])<<8 | uint16(p.Pix[i+7]),
- }
-}
-
-// PixOffset returns the index of the first element of Pix that corresponds to
-// the pixel at (x, y).
-func (p *RGBA64) PixOffset(x, y int) int {
- return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8
-}
-
-func (p *RGBA64) Set(x, y int, c color.Color) {
- if !(Point{x, y}.In(p.Rect)) {
- return
- }
- i := p.PixOffset(x, y)
- c1 := color.RGBA64Model.Convert(c).(color.RGBA64)
- p.Pix[i+0] = uint8(c1.R >> 8)
- p.Pix[i+1] = uint8(c1.R)
- p.Pix[i+2] = uint8(c1.G >> 8)
- p.Pix[i+3] = uint8(c1.G)
- p.Pix[i+4] = uint8(c1.B >> 8)
- p.Pix[i+5] = uint8(c1.B)
- p.Pix[i+6] = uint8(c1.A >> 8)
- p.Pix[i+7] = uint8(c1.A)
-}
-
-func (p *RGBA64) SetRGBA64(x, y int, c color.RGBA64) {
- if !(Point{x, y}.In(p.Rect)) {
- return
- }
- i := p.PixOffset(x, y)
- p.Pix[i+0] = uint8(c.R >> 8)
- p.Pix[i+1] = uint8(c.R)
- p.Pix[i+2] = uint8(c.G >> 8)
- p.Pix[i+3] = uint8(c.G)
- p.Pix[i+4] = uint8(c.B >> 8)
- p.Pix[i+5] = uint8(c.B)
- p.Pix[i+6] = uint8(c.A >> 8)
- p.Pix[i+7] = uint8(c.A)
-}
-
-// SubImage returns an image representing the portion of the image p visible
-// through r. The returned value shares pixels with the original image.
-func (p *RGBA64) SubImage(r Rectangle) Image {
- r = r.Intersect(p.Rect)
- // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
- // either r1 or r2 if the intersection is empty. Without explicitly checking for
- // this, the Pix[i:] expression below can panic.
- if r.Empty() {
- return &RGBA64{}
- }
- i := p.PixOffset(r.Min.X, r.Min.Y)
- return &RGBA64{
- Pix: p.Pix[i:],
- Stride: p.Stride,
- Rect: r,
- }
-}
-
-// Opaque scans the entire image and reports whether it is fully opaque.
-func (p *RGBA64) Opaque() bool {
- if p.Rect.Empty() {
- return true
- }
- i0, i1 := 6, p.Rect.Dx()*8
- for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
- for i := i0; i < i1; i += 8 {
- if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff {
- return false
- }
- }
- i0 += p.Stride
- i1 += p.Stride
- }
- return true
-}
-
-// NewRGBA64 returns a new RGBA64 with the given bounds.
-func NewRGBA64(r Rectangle) *RGBA64 {
- w, h := r.Dx(), r.Dy()
- pix := make([]uint8, 8*w*h)
- return &RGBA64{pix, 8 * w, r}
-}
-
-// NRGBA is an in-memory image whose At method returns color.NRGBA values.
-type NRGBA struct {
- // Pix holds the image's pixels, in R, G, B, A order. The pixel at
- // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4].
- Pix []uint8
- // Stride is the Pix stride (in bytes) between vertically adjacent pixels.
- Stride int
- // Rect is the image's bounds.
- Rect Rectangle
-}
-
-func (p *NRGBA) ColorModel() color.Model { return color.NRGBAModel }
-
-func (p *NRGBA) Bounds() Rectangle { return p.Rect }
-
-func (p *NRGBA) At(x, y int) color.Color {
- if !(Point{x, y}.In(p.Rect)) {
- return color.NRGBA{}
- }
- i := p.PixOffset(x, y)
- return color.NRGBA{p.Pix[i+0], p.Pix[i+1], p.Pix[i+2], p.Pix[i+3]}
-}
-
-// PixOffset returns the index of the first element of Pix that corresponds to
-// the pixel at (x, y).
-func (p *NRGBA) PixOffset(x, y int) int {
- return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4
-}
-
-func (p *NRGBA) Set(x, y int, c color.Color) {
- if !(Point{x, y}.In(p.Rect)) {
- return
- }
- i := p.PixOffset(x, y)
- c1 := color.NRGBAModel.Convert(c).(color.NRGBA)
- p.Pix[i+0] = c1.R
- p.Pix[i+1] = c1.G
- p.Pix[i+2] = c1.B
- p.Pix[i+3] = c1.A
-}
-
-func (p *NRGBA) SetNRGBA(x, y int, c color.NRGBA) {
- if !(Point{x, y}.In(p.Rect)) {
- return
- }
- i := p.PixOffset(x, y)
- p.Pix[i+0] = c.R
- p.Pix[i+1] = c.G
- p.Pix[i+2] = c.B
- p.Pix[i+3] = c.A
-}
-
-// SubImage returns an image representing the portion of the image p visible
-// through r. The returned value shares pixels with the original image.
-func (p *NRGBA) SubImage(r Rectangle) Image {
- r = r.Intersect(p.Rect)
- // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
- // either r1 or r2 if the intersection is empty. Without explicitly checking for
- // this, the Pix[i:] expression below can panic.
- if r.Empty() {
- return &NRGBA{}
- }
- i := p.PixOffset(r.Min.X, r.Min.Y)
- return &NRGBA{
- Pix: p.Pix[i:],
- Stride: p.Stride,
- Rect: r,
- }
-}
-
-// Opaque scans the entire image and reports whether it is fully opaque.
-func (p *NRGBA) Opaque() bool {
- if p.Rect.Empty() {
- return true
- }
- i0, i1 := 3, p.Rect.Dx()*4
- for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
- for i := i0; i < i1; i += 4 {
- if p.Pix[i] != 0xff {
- return false
- }
- }
- i0 += p.Stride
- i1 += p.Stride
- }
- return true
-}
-
-// NewNRGBA returns a new NRGBA with the given bounds.
-func NewNRGBA(r Rectangle) *NRGBA {
- w, h := r.Dx(), r.Dy()
- pix := make([]uint8, 4*w*h)
- return &NRGBA{pix, 4 * w, r}
-}
-
-// NRGBA64 is an in-memory image whose At method returns color.NRGBA64 values.
-type NRGBA64 struct {
- // Pix holds the image's pixels, in R, G, B, A order and big-endian format. The pixel at
- // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*8].
- Pix []uint8
- // Stride is the Pix stride (in bytes) between vertically adjacent pixels.
- Stride int
- // Rect is the image's bounds.
- Rect Rectangle
-}
-
-func (p *NRGBA64) ColorModel() color.Model { return color.NRGBA64Model }
-
-func (p *NRGBA64) Bounds() Rectangle { return p.Rect }
-
-func (p *NRGBA64) At(x, y int) color.Color {
- if !(Point{x, y}.In(p.Rect)) {
- return color.NRGBA64{}
- }
- i := p.PixOffset(x, y)
- return color.NRGBA64{
- uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1]),
- uint16(p.Pix[i+2])<<8 | uint16(p.Pix[i+3]),
- uint16(p.Pix[i+4])<<8 | uint16(p.Pix[i+5]),
- uint16(p.Pix[i+6])<<8 | uint16(p.Pix[i+7]),
- }
-}
-
-// PixOffset returns the index of the first element of Pix that corresponds to
-// the pixel at (x, y).
-func (p *NRGBA64) PixOffset(x, y int) int {
- return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8
-}
-
-func (p *NRGBA64) Set(x, y int, c color.Color) {
- if !(Point{x, y}.In(p.Rect)) {
- return
- }
- i := p.PixOffset(x, y)
- c1 := color.NRGBA64Model.Convert(c).(color.NRGBA64)
- p.Pix[i+0] = uint8(c1.R >> 8)
- p.Pix[i+1] = uint8(c1.R)
- p.Pix[i+2] = uint8(c1.G >> 8)
- p.Pix[i+3] = uint8(c1.G)
- p.Pix[i+4] = uint8(c1.B >> 8)
- p.Pix[i+5] = uint8(c1.B)
- p.Pix[i+6] = uint8(c1.A >> 8)
- p.Pix[i+7] = uint8(c1.A)
-}
-
-func (p *NRGBA64) SetNRGBA64(x, y int, c color.NRGBA64) {
- if !(Point{x, y}.In(p.Rect)) {
- return
- }
- i := p.PixOffset(x, y)
- p.Pix[i+0] = uint8(c.R >> 8)
- p.Pix[i+1] = uint8(c.R)
- p.Pix[i+2] = uint8(c.G >> 8)
- p.Pix[i+3] = uint8(c.G)
- p.Pix[i+4] = uint8(c.B >> 8)
- p.Pix[i+5] = uint8(c.B)
- p.Pix[i+6] = uint8(c.A >> 8)
- p.Pix[i+7] = uint8(c.A)
-}
-
-// SubImage returns an image representing the portion of the image p visible
-// through r. The returned value shares pixels with the original image.
-func (p *NRGBA64) SubImage(r Rectangle) Image {
- r = r.Intersect(p.Rect)
- // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
- // either r1 or r2 if the intersection is empty. Without explicitly checking for
- // this, the Pix[i:] expression below can panic.
- if r.Empty() {
- return &NRGBA64{}
- }
- i := p.PixOffset(r.Min.X, r.Min.Y)
- return &NRGBA64{
- Pix: p.Pix[i:],
- Stride: p.Stride,
- Rect: r,
- }
-}
-
-// Opaque scans the entire image and reports whether it is fully opaque.
-func (p *NRGBA64) Opaque() bool {
- if p.Rect.Empty() {
- return true
- }
- i0, i1 := 6, p.Rect.Dx()*8
- for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
- for i := i0; i < i1; i += 8 {
- if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff {
- return false
- }
- }
- i0 += p.Stride
- i1 += p.Stride
- }
- return true
-}
-
-// NewNRGBA64 returns a new NRGBA64 with the given bounds.
-func NewNRGBA64(r Rectangle) *NRGBA64 {
- w, h := r.Dx(), r.Dy()
- pix := make([]uint8, 8*w*h)
- return &NRGBA64{pix, 8 * w, r}
-}
-
-// Alpha is an in-memory image whose At method returns color.Alpha values.
-type Alpha struct {
- // Pix holds the image's pixels, as alpha values. The pixel at
- // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1].
- Pix []uint8
- // Stride is the Pix stride (in bytes) between vertically adjacent pixels.
- Stride int
- // Rect is the image's bounds.
- Rect Rectangle
-}
-
-func (p *Alpha) ColorModel() color.Model { return color.AlphaModel }
-
-func (p *Alpha) Bounds() Rectangle { return p.Rect }
-
-func (p *Alpha) At(x, y int) color.Color {
- if !(Point{x, y}.In(p.Rect)) {
- return color.Alpha{}
- }
- i := p.PixOffset(x, y)
- return color.Alpha{p.Pix[i]}
-}
-
-// PixOffset returns the index of the first element of Pix that corresponds to
-// the pixel at (x, y).
-func (p *Alpha) PixOffset(x, y int) int {
- return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1
-}
-
-func (p *Alpha) Set(x, y int, c color.Color) {
- if !(Point{x, y}.In(p.Rect)) {
- return
- }
- i := p.PixOffset(x, y)
- p.Pix[i] = color.AlphaModel.Convert(c).(color.Alpha).A
-}
-
-func (p *Alpha) SetAlpha(x, y int, c color.Alpha) {
- if !(Point{x, y}.In(p.Rect)) {
- return
- }
- i := p.PixOffset(x, y)
- p.Pix[i] = c.A
-}
-
-// SubImage returns an image representing the portion of the image p visible
-// through r. The returned value shares pixels with the original image.
-func (p *Alpha) SubImage(r Rectangle) Image {
- r = r.Intersect(p.Rect)
- // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
- // either r1 or r2 if the intersection is empty. Without explicitly checking for
- // this, the Pix[i:] expression below can panic.
- if r.Empty() {
- return &Alpha{}
- }
- i := p.PixOffset(r.Min.X, r.Min.Y)
- return &Alpha{
- Pix: p.Pix[i:],
- Stride: p.Stride,
- Rect: r,
- }
-}
-
-// Opaque scans the entire image and reports whether it is fully opaque.
-func (p *Alpha) Opaque() bool {
- if p.Rect.Empty() {
- return true
- }
- i0, i1 := 0, p.Rect.Dx()
- for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
- for i := i0; i < i1; i++ {
- if p.Pix[i] != 0xff {
- return false
- }
- }
- i0 += p.Stride
- i1 += p.Stride
- }
- return true
-}
-
-// NewAlpha returns a new Alpha with the given bounds.
-func NewAlpha(r Rectangle) *Alpha {
- w, h := r.Dx(), r.Dy()
- pix := make([]uint8, 1*w*h)
- return &Alpha{pix, 1 * w, r}
-}
-
-// Alpha16 is an in-memory image whose At method returns color.Alpha64 values.
-type Alpha16 struct {
- // Pix holds the image's pixels, as alpha values in big-endian format. The pixel at
- // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*2].
- Pix []uint8
- // Stride is the Pix stride (in bytes) between vertically adjacent pixels.
- Stride int
- // Rect is the image's bounds.
- Rect Rectangle
-}
-
-func (p *Alpha16) ColorModel() color.Model { return color.Alpha16Model }
-
-func (p *Alpha16) Bounds() Rectangle { return p.Rect }
-
-func (p *Alpha16) At(x, y int) color.Color {
- if !(Point{x, y}.In(p.Rect)) {
- return color.Alpha16{}
- }
- i := p.PixOffset(x, y)
- return color.Alpha16{uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1])}
-}
-
-// PixOffset returns the index of the first element of Pix that corresponds to
-// the pixel at (x, y).
-func (p *Alpha16) PixOffset(x, y int) int {
- return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2
-}
-
-func (p *Alpha16) Set(x, y int, c color.Color) {
- if !(Point{x, y}.In(p.Rect)) {
- return
- }
- i := p.PixOffset(x, y)
- c1 := color.Alpha16Model.Convert(c).(color.Alpha16)
- p.Pix[i+0] = uint8(c1.A >> 8)
- p.Pix[i+1] = uint8(c1.A)
-}
-
-func (p *Alpha16) SetAlpha16(x, y int, c color.Alpha16) {
- if !(Point{x, y}.In(p.Rect)) {
- return
- }
- i := p.PixOffset(x, y)
- p.Pix[i+0] = uint8(c.A >> 8)
- p.Pix[i+1] = uint8(c.A)
-}
-
-// SubImage returns an image representing the portion of the image p visible
-// through r. The returned value shares pixels with the original image.
-func (p *Alpha16) SubImage(r Rectangle) Image {
- r = r.Intersect(p.Rect)
- // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
- // either r1 or r2 if the intersection is empty. Without explicitly checking for
- // this, the Pix[i:] expression below can panic.
- if r.Empty() {
- return &Alpha16{}
- }
- i := p.PixOffset(r.Min.X, r.Min.Y)
- return &Alpha16{
- Pix: p.Pix[i:],
- Stride: p.Stride,
- Rect: r,
- }
-}
-
-// Opaque scans the entire image and reports whether it is fully opaque.
-func (p *Alpha16) Opaque() bool {
- if p.Rect.Empty() {
- return true
- }
- i0, i1 := 0, p.Rect.Dx()*2
- for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
- for i := i0; i < i1; i += 2 {
- if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff {
- return false
- }
- }
- i0 += p.Stride
- i1 += p.Stride
- }
- return true
-}
-
-// NewAlpha16 returns a new Alpha16 with the given bounds.
-func NewAlpha16(r Rectangle) *Alpha16 {
- w, h := r.Dx(), r.Dy()
- pix := make([]uint8, 2*w*h)
- return &Alpha16{pix, 2 * w, r}
-}
-
-// Gray is an in-memory image whose At method returns color.Gray values.
-type Gray struct {
- // Pix holds the image's pixels, as gray values. The pixel at
- // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1].
- Pix []uint8
- // Stride is the Pix stride (in bytes) between vertically adjacent pixels.
- Stride int
- // Rect is the image's bounds.
- Rect Rectangle
-}
-
-func (p *Gray) ColorModel() color.Model { return color.GrayModel }
-
-func (p *Gray) Bounds() Rectangle { return p.Rect }
-
-func (p *Gray) At(x, y int) color.Color {
- if !(Point{x, y}.In(p.Rect)) {
- return color.Gray{}
- }
- i := p.PixOffset(x, y)
- return color.Gray{p.Pix[i]}
-}
-
-// PixOffset returns the index of the first element of Pix that corresponds to
-// the pixel at (x, y).
-func (p *Gray) PixOffset(x, y int) int {
- return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1
-}
-
-func (p *Gray) Set(x, y int, c color.Color) {
- if !(Point{x, y}.In(p.Rect)) {
- return
- }
- i := p.PixOffset(x, y)
- p.Pix[i] = color.GrayModel.Convert(c).(color.Gray).Y
-}
-
-func (p *Gray) SetGray(x, y int, c color.Gray) {
- if !(Point{x, y}.In(p.Rect)) {
- return
- }
- i := p.PixOffset(x, y)
- p.Pix[i] = c.Y
-}
-
-// SubImage returns an image representing the portion of the image p visible
-// through r. The returned value shares pixels with the original image.
-func (p *Gray) SubImage(r Rectangle) Image {
- r = r.Intersect(p.Rect)
- // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
- // either r1 or r2 if the intersection is empty. Without explicitly checking for
- // this, the Pix[i:] expression below can panic.
- if r.Empty() {
- return &Gray{}
- }
- i := p.PixOffset(r.Min.X, r.Min.Y)
- return &Gray{
- Pix: p.Pix[i:],
- Stride: p.Stride,
- Rect: r,
- }
-}
-
-// Opaque scans the entire image and reports whether it is fully opaque.
-func (p *Gray) Opaque() bool {
- return true
-}
-
-// NewGray returns a new Gray with the given bounds.
-func NewGray(r Rectangle) *Gray {
- w, h := r.Dx(), r.Dy()
- pix := make([]uint8, 1*w*h)
- return &Gray{pix, 1 * w, r}
-}
-
-// Gray16 is an in-memory image whose At method returns color.Gray16 values.
-type Gray16 struct {
- // Pix holds the image's pixels, as gray values in big-endian format. The pixel at
- // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*2].
- Pix []uint8
- // Stride is the Pix stride (in bytes) between vertically adjacent pixels.
- Stride int
- // Rect is the image's bounds.
- Rect Rectangle
-}
-
-func (p *Gray16) ColorModel() color.Model { return color.Gray16Model }
-
-func (p *Gray16) Bounds() Rectangle { return p.Rect }
-
-func (p *Gray16) At(x, y int) color.Color {
- if !(Point{x, y}.In(p.Rect)) {
- return color.Gray16{}
- }
- i := p.PixOffset(x, y)
- return color.Gray16{uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1])}
-}
-
-// PixOffset returns the index of the first element of Pix that corresponds to
-// the pixel at (x, y).
-func (p *Gray16) PixOffset(x, y int) int {
- return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2
-}
-
-func (p *Gray16) Set(x, y int, c color.Color) {
- if !(Point{x, y}.In(p.Rect)) {
- return
- }
- i := p.PixOffset(x, y)
- c1 := color.Gray16Model.Convert(c).(color.Gray16)
- p.Pix[i+0] = uint8(c1.Y >> 8)
- p.Pix[i+1] = uint8(c1.Y)
-}
-
-func (p *Gray16) SetGray16(x, y int, c color.Gray16) {
- if !(Point{x, y}.In(p.Rect)) {
- return
- }
- i := p.PixOffset(x, y)
- p.Pix[i+0] = uint8(c.Y >> 8)
- p.Pix[i+1] = uint8(c.Y)
-}
-
-// SubImage returns an image representing the portion of the image p visible
-// through r. The returned value shares pixels with the original image.
-func (p *Gray16) SubImage(r Rectangle) Image {
- r = r.Intersect(p.Rect)
- // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
- // either r1 or r2 if the intersection is empty. Without explicitly checking for
- // this, the Pix[i:] expression below can panic.
- if r.Empty() {
- return &Gray16{}
- }
- i := p.PixOffset(r.Min.X, r.Min.Y)
- return &Gray16{
- Pix: p.Pix[i:],
- Stride: p.Stride,
- Rect: r,
- }
-}
-
-// Opaque scans the entire image and reports whether it is fully opaque.
-func (p *Gray16) Opaque() bool {
- return true
-}
-
-// NewGray16 returns a new Gray16 with the given bounds.
-func NewGray16(r Rectangle) *Gray16 {
- w, h := r.Dx(), r.Dy()
- pix := make([]uint8, 2*w*h)
- return &Gray16{pix, 2 * w, r}
-}
-
-// Paletted is an in-memory image of uint8 indices into a given palette.
-type Paletted struct {
- // Pix holds the image's pixels, as palette indices. The pixel at
- // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1].
- Pix []uint8
- // Stride is the Pix stride (in bytes) between vertically adjacent pixels.
- Stride int
- // Rect is the image's bounds.
- Rect Rectangle
- // Palette is the image's palette.
- Palette color.Palette
-}
-
-func (p *Paletted) ColorModel() color.Model { return p.Palette }
-
-func (p *Paletted) Bounds() Rectangle { return p.Rect }
-
-func (p *Paletted) At(x, y int) color.Color {
- if len(p.Palette) == 0 {
- return nil
- }
- if !(Point{x, y}.In(p.Rect)) {
- return p.Palette[0]
- }
- i := p.PixOffset(x, y)
- return p.Palette[p.Pix[i]]
-}
-
-// PixOffset returns the index of the first element of Pix that corresponds to
-// the pixel at (x, y).
-func (p *Paletted) PixOffset(x, y int) int {
- return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1
-}
-
-func (p *Paletted) Set(x, y int, c color.Color) {
- if !(Point{x, y}.In(p.Rect)) {
- return
- }
- i := p.PixOffset(x, y)
- p.Pix[i] = uint8(p.Palette.Index(c))
-}
-
-func (p *Paletted) ColorIndexAt(x, y int) uint8 {
- if !(Point{x, y}.In(p.Rect)) {
- return 0
- }
- i := p.PixOffset(x, y)
- return p.Pix[i]
-}
-
-func (p *Paletted) SetColorIndex(x, y int, index uint8) {
- if !(Point{x, y}.In(p.Rect)) {
- return
- }
- i := p.PixOffset(x, y)
- p.Pix[i] = index
-}
-
-// SubImage returns an image representing the portion of the image p visible
-// through r. The returned value shares pixels with the original image.
-func (p *Paletted) SubImage(r Rectangle) Image {
- r = r.Intersect(p.Rect)
- // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
- // either r1 or r2 if the intersection is empty. Without explicitly checking for
- // this, the Pix[i:] expression below can panic.
- if r.Empty() {
- return &Paletted{
- Palette: p.Palette,
- }
- }
- i := p.PixOffset(r.Min.X, r.Min.Y)
- return &Paletted{
- Pix: p.Pix[i:],
- Stride: p.Stride,
- Rect: p.Rect.Intersect(r),
- Palette: p.Palette,
- }
-}
-
-// Opaque scans the entire image and reports whether it is fully opaque.
-func (p *Paletted) Opaque() bool {
- var present [256]bool
- i0, i1 := 0, p.Rect.Dx()
- for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
- for _, c := range p.Pix[i0:i1] {
- present[c] = true
- }
- i0 += p.Stride
- i1 += p.Stride
- }
- for i, c := range p.Palette {
- if !present[i] {
- continue
- }
- _, _, _, a := c.RGBA()
- if a != 0xffff {
- return false
- }
- }
- return true
-}
-
-// NewPaletted returns a new Paletted with the given width, height and palette.
-func NewPaletted(r Rectangle, p color.Palette) *Paletted {
- w, h := r.Dx(), r.Dy()
- pix := make([]uint8, 1*w*h)
- return &Paletted{pix, 1 * w, r, p}
-}