diff options
Diffstat (limited to 'src/pkg/image/image.go')
-rw-r--r-- | src/pkg/image/image.go | 482 |
1 files changed, 299 insertions, 183 deletions
diff --git a/src/pkg/image/image.go b/src/pkg/image/image.go index decf1ce43..c0e96e1f7 100644 --- a/src/pkg/image/image.go +++ b/src/pkg/image/image.go @@ -5,50 +5,67 @@ // The image package implements a basic 2-D image library. package image -// An Image is a rectangular grid of Colors drawn from a ColorModel. +// A Config consists of an image's color model and dimensions. +type Config struct { + ColorModel ColorModel + Width, Height int +} + +// An Image is a finite rectangular grid of Colors drawn from a ColorModel. type Image interface { + // ColorModel returns the Image's ColorModel. ColorModel() ColorModel - Width() int - Height() int - // At(0, 0) returns the upper-left pixel of the grid. - // At(Width()-1, Height()-1) returns the lower-right pixel. + // Bounds returns the domain for which At can return non-zero color. + // The bounds do not necessarily contain the point (0, 0). + Bounds() Rectangle + // At returns the color of the pixel at (x, y). + // At(Bounds().Min.X, Bounds().Min.Y) returns the upper-left pixel of the grid. + // At(Bounds().Max.X-1, Bounds().Max.Y-1) returns the lower-right one. At(x, y int) Color } -// An RGBA is an in-memory image backed by a 2-D slice of RGBAColor values. +// An RGBA is an in-memory image of RGBAColor values. type RGBA struct { - // The Pixel field's indices are y first, then x, so that At(x, y) == Pixel[y][x]. - Pixel [][]RGBAColor + // Pix holds the image's pixels. The pixel at (x, y) is Pix[y*Stride+x]. + Pix []RGBAColor + Stride int + // Rect is the image's bounds. + Rect Rectangle } func (p *RGBA) ColorModel() ColorModel { return RGBAColorModel } -func (p *RGBA) Width() int { - if len(p.Pixel) == 0 { - return 0 +func (p *RGBA) Bounds() Rectangle { return p.Rect } + +func (p *RGBA) At(x, y int) Color { + if !p.Rect.Contains(Point{x, y}) { + return RGBAColor{} } - return len(p.Pixel[0]) + return p.Pix[y*p.Stride+x] } -func (p *RGBA) Height() int { return len(p.Pixel) } - -func (p *RGBA) At(x, y int) Color { return p.Pixel[y][x] } - -func (p *RGBA) Set(x, y int, c Color) { p.Pixel[y][x] = toRGBAColor(c).(RGBAColor) } +func (p *RGBA) Set(x, y int, c Color) { + if !p.Rect.Contains(Point{x, y}) { + return + } + p.Pix[y*p.Stride+x] = toRGBAColor(c).(RGBAColor) +} // Opaque scans the entire image and returns whether or not it is fully opaque. func (p *RGBA) Opaque() bool { - h := len(p.Pixel) - if h > 0 { - w := len(p.Pixel[0]) - for y := 0; y < h; y++ { - pix := p.Pixel[y] - for x := 0; x < w; x++ { - if pix[x].A != 0xff { - return false - } + if p.Rect.Empty() { + return true + } + base := p.Rect.Min.Y * p.Stride + i0, i1 := base+p.Rect.Min.X, base+p.Rect.Max.X + for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { + for _, c := range p.Pix[i0:i1] { + if c.A != 0xff { + return false } } + i0 += p.Stride + i1 += p.Stride } return true } @@ -56,251 +73,343 @@ func (p *RGBA) Opaque() bool { // NewRGBA returns a new RGBA with the given width and height. func NewRGBA(w, h int) *RGBA { buf := make([]RGBAColor, w*h) - pix := make([][]RGBAColor, h) - for y := range pix { - pix[y] = buf[w*y : w*(y+1)] - } - return &RGBA{pix} + return &RGBA{buf, w, Rectangle{ZP, Point{w, h}}} } -// An RGBA64 is an in-memory image backed by a 2-D slice of RGBA64Color values. +// An RGBA64 is an in-memory image of RGBA64Color values. type RGBA64 struct { - // The Pixel field's indices are y first, then x, so that At(x, y) == Pixel[y][x]. - Pixel [][]RGBA64Color + // Pix holds the image's pixels. The pixel at (x, y) is Pix[y*Stride+x]. + Pix []RGBA64Color + Stride int + // Rect is the image's bounds. + Rect Rectangle } func (p *RGBA64) ColorModel() ColorModel { return RGBA64ColorModel } -func (p *RGBA64) Width() int { - if len(p.Pixel) == 0 { - return 0 +func (p *RGBA64) Bounds() Rectangle { return p.Rect } + +func (p *RGBA64) At(x, y int) Color { + if !p.Rect.Contains(Point{x, y}) { + return RGBA64Color{} } - return len(p.Pixel[0]) + return p.Pix[y*p.Stride+x] } -func (p *RGBA64) Height() int { return len(p.Pixel) } - -func (p *RGBA64) At(x, y int) Color { return p.Pixel[y][x] } - -func (p *RGBA64) Set(x, y int, c Color) { p.Pixel[y][x] = toRGBA64Color(c).(RGBA64Color) } +func (p *RGBA64) Set(x, y int, c Color) { + if !p.Rect.Contains(Point{x, y}) { + return + } + p.Pix[y*p.Stride+x] = toRGBA64Color(c).(RGBA64Color) +} // Opaque scans the entire image and returns whether or not it is fully opaque. func (p *RGBA64) Opaque() bool { - h := len(p.Pixel) - if h > 0 { - w := len(p.Pixel[0]) - for y := 0; y < h; y++ { - pix := p.Pixel[y] - for x := 0; x < w; x++ { - if pix[x].A != 0xffff { - return false - } + if p.Rect.Empty() { + return true + } + base := p.Rect.Min.Y * p.Stride + i0, i1 := base+p.Rect.Min.X, base+p.Rect.Max.X + for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { + for _, c := range p.Pix[i0:i1] { + if c.A != 0xffff { + return false } } + i0 += p.Stride + i1 += p.Stride } return true } // NewRGBA64 returns a new RGBA64 with the given width and height. func NewRGBA64(w, h int) *RGBA64 { - buf := make([]RGBA64Color, w*h) - pix := make([][]RGBA64Color, h) - for y := range pix { - pix[y] = buf[w*y : w*(y+1)] - } - return &RGBA64{pix} + pix := make([]RGBA64Color, w*h) + return &RGBA64{pix, w, Rectangle{ZP, Point{w, h}}} } -// A NRGBA is an in-memory image backed by a 2-D slice of NRGBAColor values. +// An NRGBA is an in-memory image of NRGBAColor values. type NRGBA struct { - // The Pixel field's indices are y first, then x, so that At(x, y) == Pixel[y][x]. - Pixel [][]NRGBAColor + // Pix holds the image's pixels. The pixel at (x, y) is Pix[y*Stride+x]. + Pix []NRGBAColor + Stride int + // Rect is the image's bounds. + Rect Rectangle } func (p *NRGBA) ColorModel() ColorModel { return NRGBAColorModel } -func (p *NRGBA) Width() int { - if len(p.Pixel) == 0 { - return 0 +func (p *NRGBA) Bounds() Rectangle { return p.Rect } + +func (p *NRGBA) At(x, y int) Color { + if !p.Rect.Contains(Point{x, y}) { + return NRGBAColor{} } - return len(p.Pixel[0]) + return p.Pix[y*p.Stride+x] } -func (p *NRGBA) Height() int { return len(p.Pixel) } - -func (p *NRGBA) At(x, y int) Color { return p.Pixel[y][x] } - -func (p *NRGBA) Set(x, y int, c Color) { p.Pixel[y][x] = toNRGBAColor(c).(NRGBAColor) } +func (p *NRGBA) Set(x, y int, c Color) { + if !p.Rect.Contains(Point{x, y}) { + return + } + p.Pix[y*p.Stride+x] = toNRGBAColor(c).(NRGBAColor) +} // Opaque scans the entire image and returns whether or not it is fully opaque. func (p *NRGBA) Opaque() bool { - h := len(p.Pixel) - if h > 0 { - w := len(p.Pixel[0]) - for y := 0; y < h; y++ { - pix := p.Pixel[y] - for x := 0; x < w; x++ { - if pix[x].A != 0xff { - return false - } + if p.Rect.Empty() { + return true + } + base := p.Rect.Min.Y * p.Stride + i0, i1 := base+p.Rect.Min.X, base+p.Rect.Max.X + for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { + for _, c := range p.Pix[i0:i1] { + if c.A != 0xff { + return false } } + i0 += p.Stride + i1 += p.Stride } return true } // NewNRGBA returns a new NRGBA with the given width and height. func NewNRGBA(w, h int) *NRGBA { - buf := make([]NRGBAColor, w*h) - pix := make([][]NRGBAColor, h) - for y := range pix { - pix[y] = buf[w*y : w*(y+1)] - } - return &NRGBA{pix} + pix := make([]NRGBAColor, w*h) + return &NRGBA{pix, w, Rectangle{ZP, Point{w, h}}} } -// A NRGBA64 is an in-memory image backed by a 2-D slice of NRGBA64Color values. +// An NRGBA64 is an in-memory image of NRGBA64Color values. type NRGBA64 struct { - // The Pixel field's indices are y first, then x, so that At(x, y) == Pixel[y][x]. - Pixel [][]NRGBA64Color + // Pix holds the image's pixels. The pixel at (x, y) is Pix[y*Stride+x]. + Pix []NRGBA64Color + Stride int + // Rect is the image's bounds. + Rect Rectangle } func (p *NRGBA64) ColorModel() ColorModel { return NRGBA64ColorModel } -func (p *NRGBA64) Width() int { - if len(p.Pixel) == 0 { - return 0 +func (p *NRGBA64) Bounds() Rectangle { return p.Rect } + +func (p *NRGBA64) At(x, y int) Color { + if !p.Rect.Contains(Point{x, y}) { + return NRGBA64Color{} } - return len(p.Pixel[0]) + return p.Pix[y*p.Stride+x] } -func (p *NRGBA64) Height() int { return len(p.Pixel) } - -func (p *NRGBA64) At(x, y int) Color { return p.Pixel[y][x] } - -func (p *NRGBA64) Set(x, y int, c Color) { p.Pixel[y][x] = toNRGBA64Color(c).(NRGBA64Color) } +func (p *NRGBA64) Set(x, y int, c Color) { + if !p.Rect.Contains(Point{x, y}) { + return + } + p.Pix[y*p.Stride+x] = toNRGBA64Color(c).(NRGBA64Color) +} // Opaque scans the entire image and returns whether or not it is fully opaque. func (p *NRGBA64) Opaque() bool { - h := len(p.Pixel) - if h > 0 { - w := len(p.Pixel[0]) - for y := 0; y < h; y++ { - pix := p.Pixel[y] - for x := 0; x < w; x++ { - if pix[x].A != 0xffff { - return false - } + if p.Rect.Empty() { + return true + } + base := p.Rect.Min.Y * p.Stride + i0, i1 := base+p.Rect.Min.X, base+p.Rect.Max.X + for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { + for _, c := range p.Pix[i0:i1] { + if c.A != 0xffff { + return false } } + i0 += p.Stride + i1 += p.Stride } return true } // NewNRGBA64 returns a new NRGBA64 with the given width and height. func NewNRGBA64(w, h int) *NRGBA64 { - buf := make([]NRGBA64Color, w*h) - pix := make([][]NRGBA64Color, h) - for y := range pix { - pix[y] = buf[w*y : w*(y+1)] - } - return &NRGBA64{pix} + pix := make([]NRGBA64Color, w*h) + return &NRGBA64{pix, w, Rectangle{ZP, Point{w, h}}} } -// An Alpha is an in-memory image backed by a 2-D slice of AlphaColor values. +// An Alpha is an in-memory image of AlphaColor values. type Alpha struct { - // The Pixel field's indices are y first, then x, so that At(x, y) == Pixel[y][x]. - Pixel [][]AlphaColor + // Pix holds the image's pixels. The pixel at (x, y) is Pix[y*Stride+x]. + Pix []AlphaColor + Stride int + // Rect is the image's bounds. + Rect Rectangle } func (p *Alpha) ColorModel() ColorModel { return AlphaColorModel } -func (p *Alpha) Width() int { - if len(p.Pixel) == 0 { - return 0 +func (p *Alpha) Bounds() Rectangle { return p.Rect } + +func (p *Alpha) At(x, y int) Color { + if !p.Rect.Contains(Point{x, y}) { + return AlphaColor{} } - return len(p.Pixel[0]) + return p.Pix[y*p.Stride+x] } -func (p *Alpha) Height() int { return len(p.Pixel) } - -func (p *Alpha) At(x, y int) Color { return p.Pixel[y][x] } - -func (p *Alpha) Set(x, y int, c Color) { p.Pixel[y][x] = toAlphaColor(c).(AlphaColor) } +func (p *Alpha) Set(x, y int, c Color) { + if !p.Rect.Contains(Point{x, y}) { + return + } + p.Pix[y*p.Stride+x] = toAlphaColor(c).(AlphaColor) +} // Opaque scans the entire image and returns whether or not it is fully opaque. func (p *Alpha) Opaque() bool { - h := len(p.Pixel) - if h > 0 { - w := len(p.Pixel[0]) - for y := 0; y < h; y++ { - pix := p.Pixel[y] - for x := 0; x < w; x++ { - if pix[x].A != 0xff { - return false - } + if p.Rect.Empty() { + return true + } + base := p.Rect.Min.Y * p.Stride + i0, i1 := base+p.Rect.Min.X, base+p.Rect.Max.X + for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { + for _, c := range p.Pix[i0:i1] { + if c.A != 0xff { + return false } } + i0 += p.Stride + i1 += p.Stride } return true } // NewAlpha returns a new Alpha with the given width and height. func NewAlpha(w, h int) *Alpha { - buf := make([]AlphaColor, w*h) - pix := make([][]AlphaColor, h) - for y := range pix { - pix[y] = buf[w*y : w*(y+1)] - } - return &Alpha{pix} + pix := make([]AlphaColor, w*h) + return &Alpha{pix, w, Rectangle{ZP, Point{w, h}}} } -// An Alpha16 is an in-memory image backed by a 2-D slice of Alpha16Color values. +// An Alpha16 is an in-memory image of Alpha16Color values. type Alpha16 struct { - // The Pixel field's indices are y first, then x, so that At(x, y) == Pixel[y][x]. - Pixel [][]Alpha16Color + // Pix holds the image's pixels. The pixel at (x, y) is Pix[y*Stride+x]. + Pix []Alpha16Color + Stride int + // Rect is the image's bounds. + Rect Rectangle } func (p *Alpha16) ColorModel() ColorModel { return Alpha16ColorModel } -func (p *Alpha16) Width() int { - if len(p.Pixel) == 0 { - return 0 +func (p *Alpha16) Bounds() Rectangle { return p.Rect } + +func (p *Alpha16) At(x, y int) Color { + if !p.Rect.Contains(Point{x, y}) { + return Alpha16Color{} } - return len(p.Pixel[0]) + return p.Pix[y*p.Stride+x] } -func (p *Alpha16) Height() int { return len(p.Pixel) } - -func (p *Alpha16) At(x, y int) Color { return p.Pixel[y][x] } - -func (p *Alpha16) Set(x, y int, c Color) { p.Pixel[y][x] = toAlpha16Color(c).(Alpha16Color) } +func (p *Alpha16) Set(x, y int, c Color) { + if !p.Rect.Contains(Point{x, y}) { + return + } + p.Pix[y*p.Stride+x] = toAlpha16Color(c).(Alpha16Color) +} // Opaque scans the entire image and returns whether or not it is fully opaque. func (p *Alpha16) Opaque() bool { - h := len(p.Pixel) - if h > 0 { - w := len(p.Pixel[0]) - for y := 0; y < h; y++ { - pix := p.Pixel[y] - for x := 0; x < w; x++ { - if pix[x].A != 0xffff { - return false - } + if p.Rect.Empty() { + return true + } + base := p.Rect.Min.Y * p.Stride + i0, i1 := base+p.Rect.Min.X, base+p.Rect.Max.X + for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { + for _, c := range p.Pix[i0:i1] { + if c.A != 0xffff { + return false } } + i0 += p.Stride + i1 += p.Stride } return true } // NewAlpha16 returns a new Alpha16 with the given width and height. func NewAlpha16(w, h int) *Alpha16 { - buf := make([]Alpha16Color, w*h) - pix := make([][]Alpha16Color, h) - for y := range pix { - pix[y] = buf[w*y : w*(y+1)] + pix := make([]Alpha16Color, w*h) + return &Alpha16{pix, w, Rectangle{ZP, Point{w, h}}} +} + +// A Gray is an in-memory image of GrayColor values. +type Gray struct { + // Pix holds the image's pixels. The pixel at (x, y) is Pix[y*Stride+x]. + Pix []GrayColor + Stride int + // Rect is the image's bounds. + Rect Rectangle +} + +func (p *Gray) ColorModel() ColorModel { return GrayColorModel } + +func (p *Gray) Bounds() Rectangle { return p.Rect } + +func (p *Gray) At(x, y int) Color { + if !p.Rect.Contains(Point{x, y}) { + return GrayColor{} } - return &Alpha16{pix} + return p.Pix[y*p.Stride+x] +} + +func (p *Gray) Set(x, y int, c Color) { + if !p.Rect.Contains(Point{x, y}) { + return + } + p.Pix[y*p.Stride+x] = toGrayColor(c).(GrayColor) +} + +// Opaque scans the entire image and returns whether or not it is fully opaque. +func (p *Gray) Opaque() bool { + return true +} + +// NewGray returns a new Gray with the given width and height. +func NewGray(w, h int) *Gray { + pix := make([]GrayColor, w*h) + return &Gray{pix, w, Rectangle{ZP, Point{w, h}}} +} + +// A Gray16 is an in-memory image of Gray16Color values. +type Gray16 struct { + // Pix holds the image's pixels. The pixel at (x, y) is Pix[y*Stride+x]. + Pix []Gray16Color + Stride int + // Rect is the image's bounds. + Rect Rectangle +} + +func (p *Gray16) ColorModel() ColorModel { return Gray16ColorModel } + +func (p *Gray16) Bounds() Rectangle { return p.Rect } + +func (p *Gray16) At(x, y int) Color { + if !p.Rect.Contains(Point{x, y}) { + return Gray16Color{} + } + return p.Pix[y*p.Stride+x] +} + +func (p *Gray16) Set(x, y int, c Color) { + if !p.Rect.Contains(Point{x, y}) { + return + } + p.Pix[y*p.Stride+x] = toGray16Color(c).(Gray16Color) +} + +// Opaque scans the entire image and returns whether or not it is fully opaque. +func (p *Gray16) Opaque() bool { + return true +} + +// NewGray16 returns a new Gray16 with the given width and height. +func NewGray16(w, h int) *Gray16 { + pix := make([]Gray16Color, w*h) + return &Gray16{pix, w, Rectangle{ZP, Point{w, h}}} } // A PalettedColorModel represents a fixed palette of colors. @@ -342,30 +451,41 @@ func (p PalettedColorModel) Convert(c Color) Color { // A Paletted is an in-memory image backed by a 2-D slice of uint8 values and a PalettedColorModel. type Paletted struct { - // The Pixel field's indices are y first, then x, so that At(x, y) == Palette[Pixel[y][x]]. - Pixel [][]uint8 + // Pix holds the image's pixels. The pixel at (x, y) is Pix[y*Stride+x]. + Pix []uint8 + Stride int + // Rect is the image's bounds. + Rect Rectangle + // Palette is the image's palette. Palette PalettedColorModel } func (p *Paletted) ColorModel() ColorModel { return p.Palette } -func (p *Paletted) Width() int { - if len(p.Pixel) == 0 { - return 0 +func (p *Paletted) Bounds() Rectangle { return p.Rect } + +func (p *Paletted) At(x, y int) Color { + if len(p.Palette) == 0 { + return nil + } + if !p.Rect.Contains(Point{x, y}) { + return p.Palette[0] } - return len(p.Pixel[0]) + return p.Palette[p.Pix[y*p.Stride+x]] } -func (p *Paletted) Height() int { return len(p.Pixel) } - -func (p *Paletted) At(x, y int) Color { return p.Palette[p.Pixel[y][x]] } - func (p *Paletted) ColorIndexAt(x, y int) uint8 { - return p.Pixel[y][x] + if !p.Rect.Contains(Point{x, y}) { + return 0 + } + return p.Pix[y*p.Stride+x] } func (p *Paletted) SetColorIndex(x, y int, index uint8) { - p.Pixel[y][x] = index + if !p.Rect.Contains(Point{x, y}) { + return + } + p.Pix[y*p.Stride+x] = index } // Opaque scans the entire image and returns whether or not it is fully opaque. @@ -381,10 +501,6 @@ func (p *Paletted) Opaque() bool { // NewPaletted returns a new Paletted with the given width, height and palette. func NewPaletted(w, h int, m PalettedColorModel) *Paletted { - buf := make([]uint8, w*h) - pix := make([][]uint8, h) - for y := range pix { - pix[y] = buf[w*y : w*(y+1)] - } - return &Paletted{pix, m} + pix := make([]uint8, w*h) + return &Paletted{pix, w, Rectangle{ZP, Point{w, h}}, m} } |