summaryrefslogtreecommitdiff
path: root/src/pkg/image/image.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/image/image.go')
-rw-r--r--src/pkg/image/image.go850
1 files changed, 850 insertions, 0 deletions
diff --git a/src/pkg/image/image.go b/src/pkg/image/image.go
new file mode 100644
index 000000000..11def9435
--- /dev/null
+++ b/src/pkg/image/image.go
@@ -0,0 +1,850 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package image implements a basic 2-D image library.
+package image
+
+// Config holds an image's color model and dimensions.
+type Config struct {
+ ColorModel ColorModel
+ Width, Height int
+}
+
+// Image is a finite rectangular grid of Colors drawn from a ColorModel.
+type Image interface {
+ // ColorModel returns the Image's ColorModel.
+ ColorModel() ColorModel
+ // Bounds returns the domain for which At can return non-zero color.
+ // The bounds do not necessarily contain the point (0, 0).
+ Bounds() Rectangle
+ // At returns the color of the pixel at (x, y).
+ // At(Bounds().Min.X, Bounds().Min.Y) returns the upper-left pixel of the grid.
+ // At(Bounds().Max.X-1, Bounds().Max.Y-1) returns the lower-right one.
+ At(x, y int) Color
+}
+
+// RGBA is an in-memory image of RGBAColor values.
+type RGBA struct {
+ // Pix holds the image's pixels, in R, G, B, A order. The pixel at
+ // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4].
+ Pix []uint8
+ // Stride is the Pix stride (in bytes) between vertically adjacent pixels.
+ Stride int
+ // Rect is the image's bounds.
+ Rect Rectangle
+}
+
+func (p *RGBA) ColorModel() ColorModel { return RGBAColorModel }
+
+func (p *RGBA) Bounds() Rectangle { return p.Rect }
+
+func (p *RGBA) At(x, y int) Color {
+ if !(Point{x, y}.In(p.Rect)) {
+ return RGBAColor{}
+ }
+ i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4
+ return RGBAColor{p.Pix[i+0], p.Pix[i+1], p.Pix[i+2], p.Pix[i+3]}
+}
+
+func (p *RGBA) Set(x, y int, c Color) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4
+ c1 := toRGBAColor(c).(RGBAColor)
+ p.Pix[i+0] = c1.R
+ p.Pix[i+1] = c1.G
+ p.Pix[i+2] = c1.B
+ p.Pix[i+3] = c1.A
+}
+
+func (p *RGBA) SetRGBA(x, y int, c RGBAColor) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4
+ p.Pix[i+0] = c.R
+ p.Pix[i+1] = c.G
+ p.Pix[i+2] = c.B
+ p.Pix[i+3] = c.A
+}
+
+// SubImage returns an image representing the portion of the image p visible
+// through r. The returned value shares pixels with the original image.
+func (p *RGBA) SubImage(r Rectangle) Image {
+ r = r.Intersect(p.Rect)
+ // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
+ // either r1 or r2 if the intersection is empty. Without explicitly checking for
+ // this, the Pix[i:] expression below can panic.
+ if r.Empty() {
+ return &RGBA{}
+ }
+ i := (r.Min.Y-p.Rect.Min.Y)*p.Stride + (r.Min.X-p.Rect.Min.X)*4
+ return &RGBA{
+ Pix: p.Pix[i:],
+ Stride: p.Stride,
+ Rect: r,
+ }
+}
+
+// Opaque scans the entire image and returns whether or not it is fully opaque.
+func (p *RGBA) Opaque() bool {
+ if p.Rect.Empty() {
+ return true
+ }
+ i0, i1 := 3, p.Rect.Dx()*4
+ for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
+ for i := i0; i < i1; i += 4 {
+ if p.Pix[i] != 0xff {
+ return false
+ }
+ }
+ i0 += p.Stride
+ i1 += p.Stride
+ }
+ return true
+}
+
+// NewRGBA returns a new RGBA with the given width and height.
+func NewRGBA(w, h int) *RGBA {
+ buf := make([]uint8, 4*w*h)
+ return &RGBA{buf, 4 * w, Rectangle{ZP, Point{w, h}}}
+}
+
+// RGBA64 is an in-memory image of RGBA64Color values.
+type RGBA64 struct {
+ // Pix holds the image's pixels, in R, G, B, A order and big-endian format. The pixel at
+ // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*8].
+ Pix []uint8
+ // Stride is the Pix stride (in bytes) between vertically adjacent pixels.
+ Stride int
+ // Rect is the image's bounds.
+ Rect Rectangle
+}
+
+func (p *RGBA64) ColorModel() ColorModel { return RGBA64ColorModel }
+
+func (p *RGBA64) Bounds() Rectangle { return p.Rect }
+
+func (p *RGBA64) At(x, y int) Color {
+ if !(Point{x, y}.In(p.Rect)) {
+ return RGBA64Color{}
+ }
+ i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8
+ return RGBA64Color{
+ uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1]),
+ uint16(p.Pix[i+2])<<8 | uint16(p.Pix[i+3]),
+ uint16(p.Pix[i+4])<<8 | uint16(p.Pix[i+5]),
+ uint16(p.Pix[i+6])<<8 | uint16(p.Pix[i+7]),
+ }
+}
+
+func (p *RGBA64) Set(x, y int, c Color) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8
+ c1 := toRGBA64Color(c).(RGBA64Color)
+ p.Pix[i+0] = uint8(c1.R >> 8)
+ p.Pix[i+1] = uint8(c1.R)
+ p.Pix[i+2] = uint8(c1.G >> 8)
+ p.Pix[i+3] = uint8(c1.G)
+ p.Pix[i+4] = uint8(c1.B >> 8)
+ p.Pix[i+5] = uint8(c1.B)
+ p.Pix[i+6] = uint8(c1.A >> 8)
+ p.Pix[i+7] = uint8(c1.A)
+}
+
+func (p *RGBA64) SetRGBA64(x, y int, c RGBA64Color) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8
+ p.Pix[i+0] = uint8(c.R >> 8)
+ p.Pix[i+1] = uint8(c.R)
+ p.Pix[i+2] = uint8(c.G >> 8)
+ p.Pix[i+3] = uint8(c.G)
+ p.Pix[i+4] = uint8(c.B >> 8)
+ p.Pix[i+5] = uint8(c.B)
+ p.Pix[i+6] = uint8(c.A >> 8)
+ p.Pix[i+7] = uint8(c.A)
+}
+
+// SubImage returns an image representing the portion of the image p visible
+// through r. The returned value shares pixels with the original image.
+func (p *RGBA64) SubImage(r Rectangle) Image {
+ r = r.Intersect(p.Rect)
+ // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
+ // either r1 or r2 if the intersection is empty. Without explicitly checking for
+ // this, the Pix[i:] expression below can panic.
+ if r.Empty() {
+ return &RGBA64{}
+ }
+ i := (r.Min.Y-p.Rect.Min.Y)*p.Stride + (r.Min.X-p.Rect.Min.X)*8
+ return &RGBA64{
+ Pix: p.Pix[i:],
+ Stride: p.Stride,
+ Rect: r,
+ }
+}
+
+// Opaque scans the entire image and returns whether or not it is fully opaque.
+func (p *RGBA64) Opaque() bool {
+ if p.Rect.Empty() {
+ return true
+ }
+ i0, i1 := 6, p.Rect.Dx()*8
+ for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
+ for i := i0; i < i1; i += 8 {
+ if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff {
+ return false
+ }
+ }
+ i0 += p.Stride
+ i1 += p.Stride
+ }
+ return true
+}
+
+// NewRGBA64 returns a new RGBA64 with the given width and height.
+func NewRGBA64(w, h int) *RGBA64 {
+ pix := make([]uint8, 8*w*h)
+ return &RGBA64{pix, 8 * w, Rectangle{ZP, Point{w, h}}}
+}
+
+// NRGBA is an in-memory image of NRGBAColor values.
+type NRGBA struct {
+ // Pix holds the image's pixels, in R, G, B, A order. The pixel at
+ // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4].
+ Pix []uint8
+ // Stride is the Pix stride (in bytes) between vertically adjacent pixels.
+ Stride int
+ // Rect is the image's bounds.
+ Rect Rectangle
+}
+
+func (p *NRGBA) ColorModel() ColorModel { return NRGBAColorModel }
+
+func (p *NRGBA) Bounds() Rectangle { return p.Rect }
+
+func (p *NRGBA) At(x, y int) Color {
+ if !(Point{x, y}.In(p.Rect)) {
+ return NRGBAColor{}
+ }
+ i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4
+ return NRGBAColor{p.Pix[i+0], p.Pix[i+1], p.Pix[i+2], p.Pix[i+3]}
+}
+
+func (p *NRGBA) Set(x, y int, c Color) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4
+ c1 := toNRGBAColor(c).(NRGBAColor)
+ p.Pix[i+0] = c1.R
+ p.Pix[i+1] = c1.G
+ p.Pix[i+2] = c1.B
+ p.Pix[i+3] = c1.A
+}
+
+func (p *NRGBA) SetNRGBA(x, y int, c NRGBAColor) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4
+ p.Pix[i+0] = c.R
+ p.Pix[i+1] = c.G
+ p.Pix[i+2] = c.B
+ p.Pix[i+3] = c.A
+}
+
+// SubImage returns an image representing the portion of the image p visible
+// through r. The returned value shares pixels with the original image.
+func (p *NRGBA) SubImage(r Rectangle) Image {
+ r = r.Intersect(p.Rect)
+ // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
+ // either r1 or r2 if the intersection is empty. Without explicitly checking for
+ // this, the Pix[i:] expression below can panic.
+ if r.Empty() {
+ return &NRGBA{}
+ }
+ i := (r.Min.Y-p.Rect.Min.Y)*p.Stride + (r.Min.X-p.Rect.Min.X)*4
+ return &NRGBA{
+ Pix: p.Pix[i:],
+ Stride: p.Stride,
+ Rect: r,
+ }
+}
+
+// Opaque scans the entire image and returns whether or not it is fully opaque.
+func (p *NRGBA) Opaque() bool {
+ if p.Rect.Empty() {
+ return true
+ }
+ i0, i1 := 3, p.Rect.Dx()*4
+ for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
+ for i := i0; i < i1; i += 4 {
+ if p.Pix[i] != 0xff {
+ return false
+ }
+ }
+ i0 += p.Stride
+ i1 += p.Stride
+ }
+ return true
+}
+
+// NewNRGBA returns a new NRGBA with the given width and height.
+func NewNRGBA(w, h int) *NRGBA {
+ pix := make([]uint8, 4*w*h)
+ return &NRGBA{pix, 4 * w, Rectangle{ZP, Point{w, h}}}
+}
+
+// NRGBA64 is an in-memory image of NRGBA64Color values.
+type NRGBA64 struct {
+ // Pix holds the image's pixels, in R, G, B, A order and big-endian format. The pixel at
+ // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*8].
+ Pix []uint8
+ // Stride is the Pix stride (in bytes) between vertically adjacent pixels.
+ Stride int
+ // Rect is the image's bounds.
+ Rect Rectangle
+}
+
+func (p *NRGBA64) ColorModel() ColorModel { return NRGBA64ColorModel }
+
+func (p *NRGBA64) Bounds() Rectangle { return p.Rect }
+
+func (p *NRGBA64) At(x, y int) Color {
+ if !(Point{x, y}.In(p.Rect)) {
+ return NRGBA64Color{}
+ }
+ i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8
+ return NRGBA64Color{
+ uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1]),
+ uint16(p.Pix[i+2])<<8 | uint16(p.Pix[i+3]),
+ uint16(p.Pix[i+4])<<8 | uint16(p.Pix[i+5]),
+ uint16(p.Pix[i+6])<<8 | uint16(p.Pix[i+7]),
+ }
+}
+
+func (p *NRGBA64) Set(x, y int, c Color) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8
+ c1 := toNRGBA64Color(c).(NRGBA64Color)
+ p.Pix[i+0] = uint8(c1.R >> 8)
+ p.Pix[i+1] = uint8(c1.R)
+ p.Pix[i+2] = uint8(c1.G >> 8)
+ p.Pix[i+3] = uint8(c1.G)
+ p.Pix[i+4] = uint8(c1.B >> 8)
+ p.Pix[i+5] = uint8(c1.B)
+ p.Pix[i+6] = uint8(c1.A >> 8)
+ p.Pix[i+7] = uint8(c1.A)
+}
+
+func (p *NRGBA64) SetNRGBA64(x, y int, c NRGBA64Color) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8
+ p.Pix[i+0] = uint8(c.R >> 8)
+ p.Pix[i+1] = uint8(c.R)
+ p.Pix[i+2] = uint8(c.G >> 8)
+ p.Pix[i+3] = uint8(c.G)
+ p.Pix[i+4] = uint8(c.B >> 8)
+ p.Pix[i+5] = uint8(c.B)
+ p.Pix[i+6] = uint8(c.A >> 8)
+ p.Pix[i+7] = uint8(c.A)
+}
+
+// SubImage returns an image representing the portion of the image p visible
+// through r. The returned value shares pixels with the original image.
+func (p *NRGBA64) SubImage(r Rectangle) Image {
+ r = r.Intersect(p.Rect)
+ // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
+ // either r1 or r2 if the intersection is empty. Without explicitly checking for
+ // this, the Pix[i:] expression below can panic.
+ if r.Empty() {
+ return &NRGBA64{}
+ }
+ i := (r.Min.Y-p.Rect.Min.Y)*p.Stride + (r.Min.X-p.Rect.Min.X)*8
+ return &NRGBA64{
+ Pix: p.Pix[i:],
+ Stride: p.Stride,
+ Rect: r,
+ }
+}
+
+// Opaque scans the entire image and returns whether or not it is fully opaque.
+func (p *NRGBA64) Opaque() bool {
+ if p.Rect.Empty() {
+ return true
+ }
+ i0, i1 := 6, p.Rect.Dx()*8
+ for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
+ for i := i0; i < i1; i += 8 {
+ if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff {
+ return false
+ }
+ }
+ i0 += p.Stride
+ i1 += p.Stride
+ }
+ return true
+}
+
+// NewNRGBA64 returns a new NRGBA64 with the given width and height.
+func NewNRGBA64(w, h int) *NRGBA64 {
+ pix := make([]uint8, 8*w*h)
+ return &NRGBA64{pix, 8 * w, Rectangle{ZP, Point{w, h}}}
+}
+
+// Alpha is an in-memory image of AlphaColor values.
+type Alpha struct {
+ // Pix holds the image's pixels, as alpha values. The pixel at
+ // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1].
+ Pix []uint8
+ // Stride is the Pix stride (in bytes) between vertically adjacent pixels.
+ Stride int
+ // Rect is the image's bounds.
+ Rect Rectangle
+}
+
+func (p *Alpha) ColorModel() ColorModel { return AlphaColorModel }
+
+func (p *Alpha) Bounds() Rectangle { return p.Rect }
+
+func (p *Alpha) At(x, y int) Color {
+ if !(Point{x, y}.In(p.Rect)) {
+ return AlphaColor{}
+ }
+ i := (y-p.Rect.Min.Y)*p.Stride + (x - p.Rect.Min.X)
+ return AlphaColor{p.Pix[i]}
+}
+
+func (p *Alpha) Set(x, y int, c Color) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := (y-p.Rect.Min.Y)*p.Stride + (x - p.Rect.Min.X)
+ p.Pix[i] = toAlphaColor(c).(AlphaColor).A
+}
+
+func (p *Alpha) SetAlpha(x, y int, c AlphaColor) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := (y-p.Rect.Min.Y)*p.Stride + (x - p.Rect.Min.X)
+ p.Pix[i] = c.A
+}
+
+// SubImage returns an image representing the portion of the image p visible
+// through r. The returned value shares pixels with the original image.
+func (p *Alpha) SubImage(r Rectangle) Image {
+ r = r.Intersect(p.Rect)
+ // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
+ // either r1 or r2 if the intersection is empty. Without explicitly checking for
+ // this, the Pix[i:] expression below can panic.
+ if r.Empty() {
+ return &Alpha{}
+ }
+ i := (r.Min.Y-p.Rect.Min.Y)*p.Stride + (r.Min.X-p.Rect.Min.X)*1
+ return &Alpha{
+ Pix: p.Pix[i:],
+ Stride: p.Stride,
+ Rect: r,
+ }
+}
+
+// Opaque scans the entire image and returns whether or not it is fully opaque.
+func (p *Alpha) Opaque() bool {
+ if p.Rect.Empty() {
+ return true
+ }
+ i0, i1 := 0, p.Rect.Dx()
+ for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
+ for i := i0; i < i1; i++ {
+ if p.Pix[i] != 0xff {
+ return false
+ }
+ }
+ i0 += p.Stride
+ i1 += p.Stride
+ }
+ return true
+}
+
+// NewAlpha returns a new Alpha with the given width and height.
+func NewAlpha(w, h int) *Alpha {
+ pix := make([]uint8, 1*w*h)
+ return &Alpha{pix, 1 * w, Rectangle{ZP, Point{w, h}}}
+}
+
+// Alpha16 is an in-memory image of Alpha16Color values.
+type Alpha16 struct {
+ // Pix holds the image's pixels, as alpha values in big-endian format. The pixel at
+ // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*2].
+ Pix []uint8
+ // Stride is the Pix stride (in bytes) between vertically adjacent pixels.
+ Stride int
+ // Rect is the image's bounds.
+ Rect Rectangle
+}
+
+func (p *Alpha16) ColorModel() ColorModel { return Alpha16ColorModel }
+
+func (p *Alpha16) Bounds() Rectangle { return p.Rect }
+
+func (p *Alpha16) At(x, y int) Color {
+ if !(Point{x, y}.In(p.Rect)) {
+ return Alpha16Color{}
+ }
+ i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2
+ return Alpha16Color{uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1])}
+}
+
+func (p *Alpha16) Set(x, y int, c Color) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2
+ c1 := toAlpha16Color(c).(Alpha16Color)
+ p.Pix[i+0] = uint8(c1.A >> 8)
+ p.Pix[i+1] = uint8(c1.A)
+}
+
+func (p *Alpha16) SetAlpha16(x, y int, c Alpha16Color) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2
+ p.Pix[i+0] = uint8(c.A >> 8)
+ p.Pix[i+1] = uint8(c.A)
+}
+
+// SubImage returns an image representing the portion of the image p visible
+// through r. The returned value shares pixels with the original image.
+func (p *Alpha16) SubImage(r Rectangle) Image {
+ r = r.Intersect(p.Rect)
+ // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
+ // either r1 or r2 if the intersection is empty. Without explicitly checking for
+ // this, the Pix[i:] expression below can panic.
+ if r.Empty() {
+ return &Alpha16{}
+ }
+ i := (r.Min.Y-p.Rect.Min.Y)*p.Stride + (r.Min.X-p.Rect.Min.X)*2
+ return &Alpha16{
+ Pix: p.Pix[i:],
+ Stride: p.Stride,
+ Rect: r,
+ }
+}
+
+// Opaque scans the entire image and returns whether or not it is fully opaque.
+func (p *Alpha16) Opaque() bool {
+ if p.Rect.Empty() {
+ return true
+ }
+ i0, i1 := 0, p.Rect.Dx()*2
+ for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
+ for i := i0; i < i1; i += 2 {
+ if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff {
+ return false
+ }
+ }
+ i0 += p.Stride
+ i1 += p.Stride
+ }
+ return true
+}
+
+// NewAlpha16 returns a new Alpha16 with the given width and height.
+func NewAlpha16(w, h int) *Alpha16 {
+ pix := make([]uint8, 2*w*h)
+ return &Alpha16{pix, 2 * w, Rectangle{ZP, Point{w, h}}}
+}
+
+// Gray is an in-memory image of GrayColor values.
+type Gray struct {
+ // Pix holds the image's pixels, as gray values. The pixel at
+ // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1].
+ Pix []uint8
+ // Stride is the Pix stride (in bytes) between vertically adjacent pixels.
+ Stride int
+ // Rect is the image's bounds.
+ Rect Rectangle
+}
+
+func (p *Gray) ColorModel() ColorModel { return GrayColorModel }
+
+func (p *Gray) Bounds() Rectangle { return p.Rect }
+
+func (p *Gray) At(x, y int) Color {
+ if !(Point{x, y}.In(p.Rect)) {
+ return GrayColor{}
+ }
+ i := (y-p.Rect.Min.Y)*p.Stride + (x - p.Rect.Min.X)
+ return GrayColor{p.Pix[i]}
+}
+
+func (p *Gray) Set(x, y int, c Color) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := (y-p.Rect.Min.Y)*p.Stride + (x - p.Rect.Min.X)
+ p.Pix[i] = toGrayColor(c).(GrayColor).Y
+}
+
+func (p *Gray) SetGray(x, y int, c GrayColor) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := (y-p.Rect.Min.Y)*p.Stride + (x - p.Rect.Min.X)
+ p.Pix[i] = c.Y
+}
+
+// SubImage returns an image representing the portion of the image p visible
+// through r. The returned value shares pixels with the original image.
+func (p *Gray) SubImage(r Rectangle) Image {
+ r = r.Intersect(p.Rect)
+ // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
+ // either r1 or r2 if the intersection is empty. Without explicitly checking for
+ // this, the Pix[i:] expression below can panic.
+ if r.Empty() {
+ return &Gray{}
+ }
+ i := (r.Min.Y-p.Rect.Min.Y)*p.Stride + (r.Min.X-p.Rect.Min.X)*1
+ return &Gray{
+ Pix: p.Pix[i:],
+ Stride: p.Stride,
+ Rect: r,
+ }
+}
+
+// Opaque scans the entire image and returns whether or not it is fully opaque.
+func (p *Gray) Opaque() bool {
+ return true
+}
+
+// NewGray returns a new Gray with the given width and height.
+func NewGray(w, h int) *Gray {
+ pix := make([]uint8, 1*w*h)
+ return &Gray{pix, 1 * w, Rectangle{ZP, Point{w, h}}}
+}
+
+// Gray16 is an in-memory image of Gray16Color values.
+type Gray16 struct {
+ // Pix holds the image's pixels, as gray values in big-endian format. The pixel at
+ // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*2].
+ Pix []uint8
+ // Stride is the Pix stride (in bytes) between vertically adjacent pixels.
+ Stride int
+ // Rect is the image's bounds.
+ Rect Rectangle
+}
+
+func (p *Gray16) ColorModel() ColorModel { return Gray16ColorModel }
+
+func (p *Gray16) Bounds() Rectangle { return p.Rect }
+
+func (p *Gray16) At(x, y int) Color {
+ if !(Point{x, y}.In(p.Rect)) {
+ return Gray16Color{}
+ }
+ i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2
+ return Gray16Color{uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1])}
+}
+
+func (p *Gray16) Set(x, y int, c Color) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2
+ c1 := toGray16Color(c).(Gray16Color)
+ p.Pix[i+0] = uint8(c1.Y >> 8)
+ p.Pix[i+1] = uint8(c1.Y)
+}
+
+func (p *Gray16) SetGray16(x, y int, c Gray16Color) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2
+ p.Pix[i+0] = uint8(c.Y >> 8)
+ p.Pix[i+1] = uint8(c.Y)
+}
+
+// SubImage returns an image representing the portion of the image p visible
+// through r. The returned value shares pixels with the original image.
+func (p *Gray16) SubImage(r Rectangle) Image {
+ r = r.Intersect(p.Rect)
+ // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
+ // either r1 or r2 if the intersection is empty. Without explicitly checking for
+ // this, the Pix[i:] expression below can panic.
+ if r.Empty() {
+ return &Gray16{}
+ }
+ i := (r.Min.Y-p.Rect.Min.Y)*p.Stride + (r.Min.X-p.Rect.Min.X)*2
+ return &Gray16{
+ Pix: p.Pix[i:],
+ Stride: p.Stride,
+ Rect: r,
+ }
+}
+
+// Opaque scans the entire image and returns whether or not it is fully opaque.
+func (p *Gray16) Opaque() bool {
+ return true
+}
+
+// NewGray16 returns a new Gray16 with the given width and height.
+func NewGray16(w, h int) *Gray16 {
+ pix := make([]uint8, 2*w*h)
+ return &Gray16{pix, 2 * w, Rectangle{ZP, Point{w, h}}}
+}
+
+// A PalettedColorModel represents a fixed palette of at most 256 colors.
+type PalettedColorModel []Color
+
+func diff(a, b uint32) uint32 {
+ if a > b {
+ return a - b
+ }
+ return b - a
+}
+
+// Convert returns the palette color closest to c in Euclidean R,G,B space.
+func (p PalettedColorModel) Convert(c Color) Color {
+ if len(p) == 0 {
+ return nil
+ }
+ return p[p.Index(c)]
+}
+
+// Index returns the index of the palette color closest to c in Euclidean
+// R,G,B space.
+func (p PalettedColorModel) Index(c Color) int {
+ cr, cg, cb, _ := c.RGBA()
+ // Shift by 1 bit to avoid potential uint32 overflow in sum-squared-difference.
+ cr >>= 1
+ cg >>= 1
+ cb >>= 1
+ ret, bestSSD := 0, uint32(1<<32-1)
+ for i, v := range p {
+ vr, vg, vb, _ := v.RGBA()
+ vr >>= 1
+ vg >>= 1
+ vb >>= 1
+ dr, dg, db := diff(cr, vr), diff(cg, vg), diff(cb, vb)
+ ssd := (dr * dr) + (dg * dg) + (db * db)
+ if ssd < bestSSD {
+ ret, bestSSD = i, ssd
+ }
+ }
+ return ret
+}
+
+// Paletted is an in-memory image of uint8 indices into a given palette.
+type Paletted struct {
+ // Pix holds the image's pixels, as palette indices. The pixel at
+ // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1].
+ Pix []uint8
+ // Stride is the Pix stride (in bytes) between vertically adjacent pixels.
+ Stride int
+ // Rect is the image's bounds.
+ Rect Rectangle
+ // Palette is the image's palette.
+ Palette PalettedColorModel
+}
+
+func (p *Paletted) ColorModel() ColorModel { return p.Palette }
+
+func (p *Paletted) Bounds() Rectangle { return p.Rect }
+
+func (p *Paletted) At(x, y int) Color {
+ if len(p.Palette) == 0 {
+ return nil
+ }
+ if !(Point{x, y}.In(p.Rect)) {
+ return p.Palette[0]
+ }
+ i := (y-p.Rect.Min.Y)*p.Stride + (x - p.Rect.Min.X)
+ return p.Palette[p.Pix[i]]
+}
+
+func (p *Paletted) Set(x, y int, c Color) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := (y-p.Rect.Min.Y)*p.Stride + (x - p.Rect.Min.X)
+ p.Pix[i] = uint8(p.Palette.Index(c))
+}
+
+func (p *Paletted) ColorIndexAt(x, y int) uint8 {
+ if !(Point{x, y}.In(p.Rect)) {
+ return 0
+ }
+ i := (y-p.Rect.Min.Y)*p.Stride + (x - p.Rect.Min.X)
+ return p.Pix[i]
+}
+
+func (p *Paletted) SetColorIndex(x, y int, index uint8) {
+ if !(Point{x, y}.In(p.Rect)) {
+ return
+ }
+ i := (y-p.Rect.Min.Y)*p.Stride + (x - p.Rect.Min.X)
+ p.Pix[i] = index
+}
+
+// SubImage returns an image representing the portion of the image p visible
+// through r. The returned value shares pixels with the original image.
+func (p *Paletted) SubImage(r Rectangle) Image {
+ r = r.Intersect(p.Rect)
+ // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
+ // either r1 or r2 if the intersection is empty. Without explicitly checking for
+ // this, the Pix[i:] expression below can panic.
+ if r.Empty() {
+ return &Paletted{
+ Palette: p.Palette,
+ }
+ }
+ i := (r.Min.Y-p.Rect.Min.Y)*p.Stride + (r.Min.X-p.Rect.Min.X)*1
+ return &Paletted{
+ Pix: p.Pix[i:],
+ Stride: p.Stride,
+ Rect: p.Rect.Intersect(r),
+ Palette: p.Palette,
+ }
+}
+
+// Opaque scans the entire image and returns whether or not it is fully opaque.
+func (p *Paletted) Opaque() bool {
+ var present [256]bool
+ i0, i1 := 0, p.Rect.Dx()
+ for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
+ for _, c := range p.Pix[i0:i1] {
+ present[c] = true
+ }
+ i0 += p.Stride
+ i1 += p.Stride
+ }
+ for i, c := range p.Palette {
+ if !present[i] {
+ continue
+ }
+ _, _, _, a := c.RGBA()
+ if a != 0xffff {
+ return false
+ }
+ }
+ return true
+}
+
+// NewPaletted returns a new Paletted with the given width, height and palette.
+func NewPaletted(w, h int, m PalettedColorModel) *Paletted {
+ pix := make([]uint8, 1*w*h)
+ return &Paletted{pix, 1 * w, Rectangle{ZP, Point{w, h}}, m}
+}