summaryrefslogtreecommitdiff
path: root/src/pkg/image/jpeg/reader.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/image/jpeg/reader.go')
-rw-r--r--src/pkg/image/jpeg/reader.go246
1 files changed, 135 insertions, 111 deletions
diff --git a/src/pkg/image/jpeg/reader.go b/src/pkg/image/jpeg/reader.go
index 21a6fff96..ef8383a35 100644
--- a/src/pkg/image/jpeg/reader.go
+++ b/src/pkg/image/jpeg/reader.go
@@ -41,16 +41,22 @@ type block [blockSize]int
const (
blockSize = 64 // A DCT block is 8x8.
- dcTableClass = 0
- acTableClass = 1
- maxTc = 1
- maxTh = 3
- maxTq = 3
-
- // We only support 4:4:4, 4:2:2 and 4:2:0 downsampling, and assume that the components are Y, Cb, Cr.
- nComponent = 3
- maxH = 2
- maxV = 2
+ dcTable = 0
+ acTable = 1
+ maxTc = 1
+ maxTh = 3
+ maxTq = 3
+
+ // A grayscale JPEG image has only a Y component.
+ nGrayComponent = 1
+ // A color JPEG image has Y, Cb and Cr components.
+ nColorComponent = 3
+
+ // We only support 4:4:4, 4:2:2 and 4:2:0 downsampling, and therefore the
+ // number of luma samples per chroma sample is at most 2 in the horizontal
+ // and 2 in the vertical direction.
+ maxH = 2
+ maxV = 2
)
const (
@@ -90,13 +96,14 @@ type Reader interface {
type decoder struct {
r Reader
width, height int
- img *ycbcr.YCbCr
+ img1 *image.Gray
+ img3 *ycbcr.YCbCr
ri int // Restart Interval.
- comps [nComponent]component
+ nComp int
+ comp [nColorComponent]component
huff [maxTc + 1][maxTh + 1]huffman
quant [maxTq + 1]block
b bits
- blocks [nComponent][maxH * maxV]block
tmp [1024]byte
}
@@ -118,10 +125,15 @@ func (d *decoder) ignore(n int) os.Error {
// Specified in section B.2.2.
func (d *decoder) processSOF(n int) os.Error {
- if n != 6+3*nComponent {
+ switch n {
+ case 6 + 3*nGrayComponent:
+ d.nComp = nGrayComponent
+ case 6 + 3*nColorComponent:
+ d.nComp = nColorComponent
+ default:
return UnsupportedError("SOF has wrong length")
}
- _, err := io.ReadFull(d.r, d.tmp[0:6+3*nComponent])
+ _, err := io.ReadFull(d.r, d.tmp[:n])
if err != nil {
return err
}
@@ -131,26 +143,28 @@ func (d *decoder) processSOF(n int) os.Error {
}
d.height = int(d.tmp[1])<<8 + int(d.tmp[2])
d.width = int(d.tmp[3])<<8 + int(d.tmp[4])
- if d.tmp[5] != nComponent {
+ if int(d.tmp[5]) != d.nComp {
return UnsupportedError("SOF has wrong number of image components")
}
- for i := 0; i < nComponent; i++ {
+ for i := 0; i < d.nComp; i++ {
hv := d.tmp[7+3*i]
- d.comps[i].h = int(hv >> 4)
- d.comps[i].v = int(hv & 0x0f)
- d.comps[i].c = d.tmp[6+3*i]
- d.comps[i].tq = d.tmp[8+3*i]
- // We only support YCbCr images, and 4:4:4, 4:2:2 or 4:2:0 chroma downsampling ratios. This implies that
- // the (h, v) values for the Y component are either (1, 1), (2, 1) or (2, 2), and the
- // (h, v) values for the Cr and Cb components must be (1, 1).
+ d.comp[i].h = int(hv >> 4)
+ d.comp[i].v = int(hv & 0x0f)
+ d.comp[i].c = d.tmp[6+3*i]
+ d.comp[i].tq = d.tmp[8+3*i]
+ if d.nComp == nGrayComponent {
+ continue
+ }
+ // For color images, we only support 4:4:4, 4:2:2 or 4:2:0 chroma
+ // downsampling ratios. This implies that the (h, v) values for the Y
+ // component are either (1, 1), (2, 1) or (2, 2), and the (h, v)
+ // values for the Cr and Cb components must be (1, 1).
if i == 0 {
if hv != 0x11 && hv != 0x21 && hv != 0x22 {
return UnsupportedError("luma downsample ratio")
}
- } else {
- if hv != 0x11 {
- return UnsupportedError("chroma downsample ratio")
- }
+ } else if hv != 0x11 {
+ return UnsupportedError("chroma downsample ratio")
}
}
return nil
@@ -182,110 +196,88 @@ func (d *decoder) processDQT(n int) os.Error {
return nil
}
-// Clip x to the range [0, 255] inclusive.
-func clip(x int) uint8 {
- if x < 0 {
- return 0
+// makeImg allocates and initializes the destination image.
+func (d *decoder) makeImg(h0, v0, mxx, myy int) {
+ if d.nComp == nGrayComponent {
+ d.img1 = image.NewGray(8*mxx, 8*myy)
+ d.img1.Rect = image.Rect(0, 0, d.width, d.height)
+ return
}
- if x > 255 {
- return 255
+ var subsampleRatio ycbcr.SubsampleRatio
+ n := h0 * v0
+ switch n {
+ case 1:
+ subsampleRatio = ycbcr.SubsampleRatio444
+ case 2:
+ subsampleRatio = ycbcr.SubsampleRatio422
+ case 4:
+ subsampleRatio = ycbcr.SubsampleRatio420
+ default:
+ panic("unreachable")
}
- return uint8(x)
-}
-
-// Store the MCU to the image.
-func (d *decoder) storeMCU(mx, my int) {
- h0, v0 := d.comps[0].h, d.comps[0].v
- // Store the luma blocks.
- for v := 0; v < v0; v++ {
- for h := 0; h < h0; h++ {
- p := 8 * ((v0*my+v)*d.img.YStride + (h0*mx + h))
- for y := 0; y < 8; y++ {
- for x := 0; x < 8; x++ {
- d.img.Y[p] = clip(d.blocks[0][h0*v+h][8*y+x])
- p++
- }
- p += d.img.YStride - 8
- }
- }
- }
- // Store the chroma blocks.
- p := 8 * (my*d.img.CStride + mx)
- for y := 0; y < 8; y++ {
- for x := 0; x < 8; x++ {
- d.img.Cb[p] = clip(d.blocks[1][0][8*y+x])
- d.img.Cr[p] = clip(d.blocks[2][0][8*y+x])
- p++
- }
- p += d.img.CStride - 8
+ b := make([]byte, mxx*myy*(1*8*8*n+2*8*8))
+ d.img3 = &ycbcr.YCbCr{
+ Y: b[mxx*myy*(0*8*8*n+0*8*8) : mxx*myy*(1*8*8*n+0*8*8)],
+ Cb: b[mxx*myy*(1*8*8*n+0*8*8) : mxx*myy*(1*8*8*n+1*8*8)],
+ Cr: b[mxx*myy*(1*8*8*n+1*8*8) : mxx*myy*(1*8*8*n+2*8*8)],
+ SubsampleRatio: subsampleRatio,
+ YStride: mxx * 8 * h0,
+ CStride: mxx * 8,
+ Rect: image.Rect(0, 0, d.width, d.height),
}
}
// Specified in section B.2.3.
func (d *decoder) processSOS(n int) os.Error {
- if n != 4+2*nComponent {
+ if d.nComp == 0 {
+ return FormatError("missing SOF marker")
+ }
+ if n != 4+2*d.nComp {
return UnsupportedError("SOS has wrong length")
}
- _, err := io.ReadFull(d.r, d.tmp[0:4+2*nComponent])
+ _, err := io.ReadFull(d.r, d.tmp[0:4+2*d.nComp])
if err != nil {
return err
}
- if d.tmp[0] != nComponent {
+ if int(d.tmp[0]) != d.nComp {
return UnsupportedError("SOS has wrong number of image components")
}
- var scanComps [nComponent]struct {
+ var scan [nColorComponent]struct {
td uint8 // DC table selector.
ta uint8 // AC table selector.
}
- for i := 0; i < nComponent; i++ {
+ for i := 0; i < d.nComp; i++ {
cs := d.tmp[1+2*i] // Component selector.
- if cs != d.comps[i].c {
+ if cs != d.comp[i].c {
return UnsupportedError("scan components out of order")
}
- scanComps[i].td = d.tmp[2+2*i] >> 4
- scanComps[i].ta = d.tmp[2+2*i] & 0x0f
+ scan[i].td = d.tmp[2+2*i] >> 4
+ scan[i].ta = d.tmp[2+2*i] & 0x0f
}
// mxx and myy are the number of MCUs (Minimum Coded Units) in the image.
- h0, v0 := d.comps[0].h, d.comps[0].v // The h and v values from the Y components.
+ h0, v0 := d.comp[0].h, d.comp[0].v // The h and v values from the Y components.
mxx := (d.width + 8*h0 - 1) / (8 * h0)
myy := (d.height + 8*v0 - 1) / (8 * v0)
- if d.img == nil {
- var subsampleRatio ycbcr.SubsampleRatio
- n := h0 * v0
- switch n {
- case 1:
- subsampleRatio = ycbcr.SubsampleRatio444
- case 2:
- subsampleRatio = ycbcr.SubsampleRatio422
- case 4:
- subsampleRatio = ycbcr.SubsampleRatio420
- default:
- panic("unreachable")
- }
- b := make([]byte, mxx*myy*(1*8*8*n+2*8*8))
- d.img = &ycbcr.YCbCr{
- Y: b[mxx*myy*(0*8*8*n+0*8*8) : mxx*myy*(1*8*8*n+0*8*8)],
- Cb: b[mxx*myy*(1*8*8*n+0*8*8) : mxx*myy*(1*8*8*n+1*8*8)],
- Cr: b[mxx*myy*(1*8*8*n+1*8*8) : mxx*myy*(1*8*8*n+2*8*8)],
- SubsampleRatio: subsampleRatio,
- YStride: mxx * 8 * h0,
- CStride: mxx * 8,
- Rect: image.Rect(0, 0, d.width, d.height),
- }
+ if d.img1 == nil && d.img3 == nil {
+ d.makeImg(h0, v0, mxx, myy)
}
mcu, expectedRST := 0, uint8(rst0Marker)
- var allZeroes block
- var dc [nComponent]int
+ var (
+ b block
+ dc [nColorComponent]int
+ )
for my := 0; my < myy; my++ {
for mx := 0; mx < mxx; mx++ {
- for i := 0; i < nComponent; i++ {
- qt := &d.quant[d.comps[i].tq]
- for j := 0; j < d.comps[i].h*d.comps[i].v; j++ {
- d.blocks[i][j] = allZeroes
+ for i := 0; i < d.nComp; i++ {
+ qt := &d.quant[d.comp[i].tq]
+ for j := 0; j < d.comp[i].h*d.comp[i].v; j++ {
+ // TODO(nigeltao): make this a "var b block" once the compiler's escape
+ // analysis is good enough to allocate it on the stack, not the heap.
+ b = block{}
// Decode the DC coefficient, as specified in section F.2.2.1.
- value, err := d.decodeHuffman(&d.huff[dcTableClass][scanComps[i].td])
+ value, err := d.decodeHuffman(&d.huff[dcTable][scan[i].td])
if err != nil {
return err
}
@@ -297,11 +289,11 @@ func (d *decoder) processSOS(n int) os.Error {
return err
}
dc[i] += dcDelta
- d.blocks[i][j][0] = dc[i] * qt[0]
+ b[0] = dc[i] * qt[0]
// Decode the AC coefficients, as specified in section F.2.2.2.
for k := 1; k < blockSize; k++ {
- value, err := d.decodeHuffman(&d.huff[acTableClass][scanComps[i].ta])
+ value, err := d.decodeHuffman(&d.huff[acTable][scan[i].ta])
if err != nil {
return err
}
@@ -316,7 +308,7 @@ func (d *decoder) processSOS(n int) os.Error {
if err != nil {
return err
}
- d.blocks[i][j][unzig[k]] = ac * qt[k]
+ b[unzig[k]] = ac * qt[k]
} else {
if val0 != 0x0f {
break
@@ -325,10 +317,32 @@ func (d *decoder) processSOS(n int) os.Error {
}
}
- idct(&d.blocks[i][j])
+ // Perform the inverse DCT and store the MCU component to the image.
+ if d.nComp == nGrayComponent {
+ idct(d.tmp[:64], 8, &b)
+ // Convert from []uint8 to []image.GrayColor.
+ p := d.img1.Pix[8*(my*d.img1.Stride+mx):]
+ for y := 0; y < 8; y++ {
+ dst := p[y*d.img1.Stride:]
+ src := d.tmp[8*y:]
+ for x := 0; x < 8; x++ {
+ dst[x] = image.GrayColor{src[x]}
+ }
+ }
+ } else {
+ switch i {
+ case 0:
+ mx0 := h0*mx + (j % 2)
+ my0 := v0*my + (j / 2)
+ idct(d.img3.Y[8*(my0*d.img3.YStride+mx0):], d.img3.YStride, &b)
+ case 1:
+ idct(d.img3.Cb[8*(my*d.img3.CStride+mx):], d.img3.CStride, &b)
+ case 2:
+ idct(d.img3.Cr[8*(my*d.img3.CStride+mx):], d.img3.CStride, &b)
+ }
+ }
} // for j
} // for i
- d.storeMCU(mx, my)
mcu++
if d.ri > 0 && mcu%d.ri == 0 && mcu < mxx*myy {
// A more sophisticated decoder could use RST[0-7] markers to resynchronize from corrupt input,
@@ -347,9 +361,7 @@ func (d *decoder) processSOS(n int) os.Error {
// Reset the Huffman decoder.
d.b = bits{}
// Reset the DC components, as per section F.2.1.3.1.
- for i := 0; i < nComponent; i++ {
- dc[i] = 0
- }
+ dc = [nColorComponent]int{}
}
} // for mx
} // for my
@@ -437,7 +449,13 @@ func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, os.Error) {
return nil, err
}
}
- return d.img, nil
+ if d.img1 != nil {
+ return d.img1, nil
+ }
+ if d.img3 != nil {
+ return d.img3, nil
+ }
+ return nil, FormatError("missing SOS marker")
}
// Decode reads a JPEG image from r and returns it as an image.Image.
@@ -453,7 +471,13 @@ func DecodeConfig(r io.Reader) (image.Config, os.Error) {
if _, err := d.decode(r, true); err != nil {
return image.Config{}, err
}
- return image.Config{image.RGBAColorModel, d.width, d.height}, nil
+ switch d.nComp {
+ case nGrayComponent:
+ return image.Config{image.GrayColorModel, d.width, d.height}, nil
+ case nColorComponent:
+ return image.Config{ycbcr.YCbCrColorModel, d.width, d.height}, nil
+ }
+ return image.Config{}, FormatError("missing SOF marker")
}
func init() {