diff options
Diffstat (limited to 'src/pkg/image/ycbcr/ycbcr.go')
-rw-r--r-- | src/pkg/image/ycbcr/ycbcr.go | 183 |
1 files changed, 183 insertions, 0 deletions
diff --git a/src/pkg/image/ycbcr/ycbcr.go b/src/pkg/image/ycbcr/ycbcr.go new file mode 100644 index 000000000..f2de3d6fb --- /dev/null +++ b/src/pkg/image/ycbcr/ycbcr.go @@ -0,0 +1,183 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package ycbcr provides images from the Y'CbCr color model. +// +// JPEG, VP8, the MPEG family and other codecs use this color model. Such +// codecs often use the terms YUV and Y'CbCr interchangeably, but strictly +// speaking, the term YUV applies only to analog video signals. +// +// Conversion between RGB and Y'CbCr is lossy and there are multiple, slightly +// different formulae for converting between the two. This package follows +// the JFIF specification at http://www.w3.org/Graphics/JPEG/jfif3.pdf. +package ycbcr + +import ( + "image" +) + +// RGBToYCbCr converts an RGB triple to a YCbCr triple. All components lie +// within the range [0, 255]. +func RGBToYCbCr(r, g, b uint8) (uint8, uint8, uint8) { + // The JFIF specification says: + // Y' = 0.2990*R + 0.5870*G + 0.1140*B + // Cb = -0.1687*R - 0.3313*G + 0.5000*B + 128 + // Cr = 0.5000*R - 0.4187*G - 0.0813*B + 128 + // http://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'. + r1 := int(r) + g1 := int(g) + b1 := int(b) + yy := (19595*r1 + 38470*g1 + 7471*b1 + 1<<15) >> 16 + cb := (-11056*r1 - 21712*g1 + 32768*b1 + 257<<15) >> 16 + cr := (32768*r1 - 27440*g1 - 5328*b1 + 257<<15) >> 16 + if yy < 0 { + yy = 0 + } else if yy > 255 { + yy = 255 + } + if cb < 0 { + cb = 0 + } else if cb > 255 { + cb = 255 + } + if cr < 0 { + cr = 0 + } else if cr > 255 { + cr = 255 + } + return uint8(yy), uint8(cb), uint8(cr) +} + +// YCbCrToRGB converts a YCbCr triple to an RGB triple. All components lie +// within the range [0, 255]. +func YCbCrToRGB(y, cb, cr uint8) (uint8, uint8, uint8) { + // The JFIF specification says: + // R = Y' + 1.40200*(Cr-128) + // G = Y' - 0.34414*(Cb-128) - 0.71414*(Cr-128) + // B = Y' + 1.77200*(Cb-128) + // http://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'. + yy1 := int(y)<<16 + 1<<15 + cb1 := int(cb) - 128 + cr1 := int(cr) - 128 + r := (yy1 + 91881*cr1) >> 16 + g := (yy1 - 22554*cb1 - 46802*cr1) >> 16 + b := (yy1 + 116130*cb1) >> 16 + if r < 0 { + r = 0 + } else if r > 255 { + r = 255 + } + if g < 0 { + g = 0 + } else if g > 255 { + g = 255 + } + if b < 0 { + b = 0 + } else if b > 255 { + b = 255 + } + return uint8(r), uint8(g), uint8(b) +} + +// YCbCrColor represents a fully opaque 24-bit Y'CbCr color, having 8 bits for +// each of one luma and two chroma components. +type YCbCrColor struct { + Y, Cb, Cr uint8 +} + +func (c YCbCrColor) RGBA() (uint32, uint32, uint32, uint32) { + r, g, b := YCbCrToRGB(c.Y, c.Cb, c.Cr) + return uint32(r) * 0x101, uint32(g) * 0x101, uint32(b) * 0x101, 0xffff +} + +func toYCbCrColor(c image.Color) image.Color { + if _, ok := c.(YCbCrColor); ok { + return c + } + r, g, b, _ := c.RGBA() + y, u, v := RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8)) + return YCbCrColor{y, u, v} +} + +// YCbCrColorModel is the color model for YCbCrColor. +var YCbCrColorModel image.ColorModel = image.ColorModelFunc(toYCbCrColor) + +// SubsampleRatio is the chroma subsample ratio used in a YCbCr image. +type SubsampleRatio int + +const ( + SubsampleRatio444 SubsampleRatio = iota + SubsampleRatio422 + SubsampleRatio420 +) + +// YCbCr is an in-memory image of YCbCr colors. There is one Y sample per pixel, +// but each Cb and Cr sample can span one or more pixels. +// YStride is the Y slice index delta between vertically adjacent pixels. +// CStride is the Cb and Cr slice index delta between vertically adjacent pixels +// that map to separate chroma samples. +// It is not an absolute requirement, but YStride and len(Y) are typically +// multiples of 8, and: +// For 4:4:4, CStride == YStride/1 && len(Cb) == len(Cr) == len(Y)/1. +// For 4:2:2, CStride == YStride/2 && len(Cb) == len(Cr) == len(Y)/2. +// For 4:2:0, CStride == YStride/2 && len(Cb) == len(Cr) == len(Y)/4. +type YCbCr struct { + Y []uint8 + Cb []uint8 + Cr []uint8 + YStride int + CStride int + SubsampleRatio SubsampleRatio + Rect image.Rectangle +} + +func (p *YCbCr) ColorModel() image.ColorModel { + return YCbCrColorModel +} + +func (p *YCbCr) Bounds() image.Rectangle { + return p.Rect +} + +func (p *YCbCr) At(x, y int) image.Color { + if !(image.Point{x, y}.In(p.Rect)) { + return YCbCrColor{} + } + switch p.SubsampleRatio { + case SubsampleRatio422: + i := x / 2 + return YCbCrColor{ + p.Y[y*p.YStride+x], + p.Cb[y*p.CStride+i], + p.Cr[y*p.CStride+i], + } + case SubsampleRatio420: + i, j := x/2, y/2 + return YCbCrColor{ + p.Y[y*p.YStride+x], + p.Cb[j*p.CStride+i], + p.Cr[j*p.CStride+i], + } + } + // Default to 4:4:4 subsampling. + return YCbCrColor{ + p.Y[y*p.YStride+x], + p.Cb[y*p.CStride+x], + p.Cr[y*p.CStride+x], + } +} + +// SubImage returns an image representing the portion of the image p visible +// through r. The returned value shares pixels with the original image. +func (p *YCbCr) SubImage(r image.Rectangle) image.Image { + q := new(YCbCr) + *q = *p + q.Rect = q.Rect.Intersect(r) + return q +} + +func (p *YCbCr) Opaque() bool { + return true +} |