diff options
Diffstat (limited to 'src/pkg/index/suffixarray/qsufsort.go')
-rw-r--r-- | src/pkg/index/suffixarray/qsufsort.go | 168 |
1 files changed, 0 insertions, 168 deletions
diff --git a/src/pkg/index/suffixarray/qsufsort.go b/src/pkg/index/suffixarray/qsufsort.go deleted file mode 100644 index 9c36a98f8..000000000 --- a/src/pkg/index/suffixarray/qsufsort.go +++ /dev/null @@ -1,168 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// This algorithm is based on "Faster Suffix Sorting" -// by N. Jesper Larsson and Kunihiko Sadakane -// paper: http://www.larsson.dogma.net/ssrev-tr.pdf -// code: http://www.larsson.dogma.net/qsufsort.c - -// This algorithm computes the suffix array sa by computing its inverse. -// Consecutive groups of suffixes in sa are labeled as sorted groups or -// unsorted groups. For a given pass of the sorter, all suffixes are ordered -// up to their first h characters, and sa is h-ordered. Suffixes in their -// final positions and unambiguously sorted in h-order are in a sorted group. -// Consecutive groups of suffixes with identical first h characters are an -// unsorted group. In each pass of the algorithm, unsorted groups are sorted -// according to the group number of their following suffix. - -// In the implementation, if sa[i] is negative, it indicates that i is -// the first element of a sorted group of length -sa[i], and can be skipped. -// An unsorted group sa[i:k] is given the group number of the index of its -// last element, k-1. The group numbers are stored in the inverse slice (inv), -// and when all groups are sorted, this slice is the inverse suffix array. - -package suffixarray - -import "sort" - -func qsufsort(data []byte) []int { - // initial sorting by first byte of suffix - sa := sortedByFirstByte(data) - if len(sa) < 2 { - return sa - } - // initialize the group lookup table - // this becomes the inverse of the suffix array when all groups are sorted - inv := initGroups(sa, data) - - // the index starts 1-ordered - sufSortable := &suffixSortable{sa: sa, inv: inv, h: 1} - - for sa[0] > -len(sa) { // until all suffixes are one big sorted group - // The suffixes are h-ordered, make them 2*h-ordered - pi := 0 // pi is first position of first group - sl := 0 // sl is negated length of sorted groups - for pi < len(sa) { - if s := sa[pi]; s < 0 { // if pi starts sorted group - pi -= s // skip over sorted group - sl += s // add negated length to sl - } else { // if pi starts unsorted group - if sl != 0 { - sa[pi+sl] = sl // combine sorted groups before pi - sl = 0 - } - pk := inv[s] + 1 // pk-1 is last position of unsorted group - sufSortable.sa = sa[pi:pk] - sort.Sort(sufSortable) - sufSortable.updateGroups(pi) - pi = pk // next group - } - } - if sl != 0 { // if the array ends with a sorted group - sa[pi+sl] = sl // combine sorted groups at end of sa - } - - sufSortable.h *= 2 // double sorted depth - } - - for i := range sa { // reconstruct suffix array from inverse - sa[inv[i]] = i - } - return sa -} - -func sortedByFirstByte(data []byte) []int { - // total byte counts - var count [256]int - for _, b := range data { - count[b]++ - } - // make count[b] equal index of first occurrence of b in sorted array - sum := 0 - for b := range count { - count[b], sum = sum, count[b]+sum - } - // iterate through bytes, placing index into the correct spot in sa - sa := make([]int, len(data)) - for i, b := range data { - sa[count[b]] = i - count[b]++ - } - return sa -} - -func initGroups(sa []int, data []byte) []int { - // label contiguous same-letter groups with the same group number - inv := make([]int, len(data)) - prevGroup := len(sa) - 1 - groupByte := data[sa[prevGroup]] - for i := len(sa) - 1; i >= 0; i-- { - if b := data[sa[i]]; b < groupByte { - if prevGroup == i+1 { - sa[i+1] = -1 - } - groupByte = b - prevGroup = i - } - inv[sa[i]] = prevGroup - if prevGroup == 0 { - sa[0] = -1 - } - } - // Separate out the final suffix to the start of its group. - // This is necessary to ensure the suffix "a" is before "aba" - // when using a potentially unstable sort. - lastByte := data[len(data)-1] - s := -1 - for i := range sa { - if sa[i] >= 0 { - if data[sa[i]] == lastByte && s == -1 { - s = i - } - if sa[i] == len(sa)-1 { - sa[i], sa[s] = sa[s], sa[i] - inv[sa[s]] = s - sa[s] = -1 // mark it as an isolated sorted group - break - } - } - } - return inv -} - -type suffixSortable struct { - sa []int - inv []int - h int - buf []int // common scratch space -} - -func (x *suffixSortable) Len() int { return len(x.sa) } -func (x *suffixSortable) Less(i, j int) bool { return x.inv[x.sa[i]+x.h] < x.inv[x.sa[j]+x.h] } -func (x *suffixSortable) Swap(i, j int) { x.sa[i], x.sa[j] = x.sa[j], x.sa[i] } - -func (x *suffixSortable) updateGroups(offset int) { - bounds := x.buf[0:0] - group := x.inv[x.sa[0]+x.h] - for i := 1; i < len(x.sa); i++ { - if g := x.inv[x.sa[i]+x.h]; g > group { - bounds = append(bounds, i) - group = g - } - } - bounds = append(bounds, len(x.sa)) - x.buf = bounds - - // update the group numberings after all new groups are determined - prev := 0 - for _, b := range bounds { - for i := prev; i < b; i++ { - x.inv[x.sa[i]] = offset + b - 1 - } - if b-prev == 1 { - x.sa[prev] = -1 - } - prev = b - } -} |