summaryrefslogtreecommitdiff
path: root/src/pkg/index/suffixarray/qsufsort.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/index/suffixarray/qsufsort.go')
-rw-r--r--src/pkg/index/suffixarray/qsufsort.go168
1 files changed, 0 insertions, 168 deletions
diff --git a/src/pkg/index/suffixarray/qsufsort.go b/src/pkg/index/suffixarray/qsufsort.go
deleted file mode 100644
index 9c36a98f8..000000000
--- a/src/pkg/index/suffixarray/qsufsort.go
+++ /dev/null
@@ -1,168 +0,0 @@
-// Copyright 2011 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// This algorithm is based on "Faster Suffix Sorting"
-// by N. Jesper Larsson and Kunihiko Sadakane
-// paper: http://www.larsson.dogma.net/ssrev-tr.pdf
-// code: http://www.larsson.dogma.net/qsufsort.c
-
-// This algorithm computes the suffix array sa by computing its inverse.
-// Consecutive groups of suffixes in sa are labeled as sorted groups or
-// unsorted groups. For a given pass of the sorter, all suffixes are ordered
-// up to their first h characters, and sa is h-ordered. Suffixes in their
-// final positions and unambiguously sorted in h-order are in a sorted group.
-// Consecutive groups of suffixes with identical first h characters are an
-// unsorted group. In each pass of the algorithm, unsorted groups are sorted
-// according to the group number of their following suffix.
-
-// In the implementation, if sa[i] is negative, it indicates that i is
-// the first element of a sorted group of length -sa[i], and can be skipped.
-// An unsorted group sa[i:k] is given the group number of the index of its
-// last element, k-1. The group numbers are stored in the inverse slice (inv),
-// and when all groups are sorted, this slice is the inverse suffix array.
-
-package suffixarray
-
-import "sort"
-
-func qsufsort(data []byte) []int {
- // initial sorting by first byte of suffix
- sa := sortedByFirstByte(data)
- if len(sa) < 2 {
- return sa
- }
- // initialize the group lookup table
- // this becomes the inverse of the suffix array when all groups are sorted
- inv := initGroups(sa, data)
-
- // the index starts 1-ordered
- sufSortable := &suffixSortable{sa: sa, inv: inv, h: 1}
-
- for sa[0] > -len(sa) { // until all suffixes are one big sorted group
- // The suffixes are h-ordered, make them 2*h-ordered
- pi := 0 // pi is first position of first group
- sl := 0 // sl is negated length of sorted groups
- for pi < len(sa) {
- if s := sa[pi]; s < 0 { // if pi starts sorted group
- pi -= s // skip over sorted group
- sl += s // add negated length to sl
- } else { // if pi starts unsorted group
- if sl != 0 {
- sa[pi+sl] = sl // combine sorted groups before pi
- sl = 0
- }
- pk := inv[s] + 1 // pk-1 is last position of unsorted group
- sufSortable.sa = sa[pi:pk]
- sort.Sort(sufSortable)
- sufSortable.updateGroups(pi)
- pi = pk // next group
- }
- }
- if sl != 0 { // if the array ends with a sorted group
- sa[pi+sl] = sl // combine sorted groups at end of sa
- }
-
- sufSortable.h *= 2 // double sorted depth
- }
-
- for i := range sa { // reconstruct suffix array from inverse
- sa[inv[i]] = i
- }
- return sa
-}
-
-func sortedByFirstByte(data []byte) []int {
- // total byte counts
- var count [256]int
- for _, b := range data {
- count[b]++
- }
- // make count[b] equal index of first occurrence of b in sorted array
- sum := 0
- for b := range count {
- count[b], sum = sum, count[b]+sum
- }
- // iterate through bytes, placing index into the correct spot in sa
- sa := make([]int, len(data))
- for i, b := range data {
- sa[count[b]] = i
- count[b]++
- }
- return sa
-}
-
-func initGroups(sa []int, data []byte) []int {
- // label contiguous same-letter groups with the same group number
- inv := make([]int, len(data))
- prevGroup := len(sa) - 1
- groupByte := data[sa[prevGroup]]
- for i := len(sa) - 1; i >= 0; i-- {
- if b := data[sa[i]]; b < groupByte {
- if prevGroup == i+1 {
- sa[i+1] = -1
- }
- groupByte = b
- prevGroup = i
- }
- inv[sa[i]] = prevGroup
- if prevGroup == 0 {
- sa[0] = -1
- }
- }
- // Separate out the final suffix to the start of its group.
- // This is necessary to ensure the suffix "a" is before "aba"
- // when using a potentially unstable sort.
- lastByte := data[len(data)-1]
- s := -1
- for i := range sa {
- if sa[i] >= 0 {
- if data[sa[i]] == lastByte && s == -1 {
- s = i
- }
- if sa[i] == len(sa)-1 {
- sa[i], sa[s] = sa[s], sa[i]
- inv[sa[s]] = s
- sa[s] = -1 // mark it as an isolated sorted group
- break
- }
- }
- }
- return inv
-}
-
-type suffixSortable struct {
- sa []int
- inv []int
- h int
- buf []int // common scratch space
-}
-
-func (x *suffixSortable) Len() int { return len(x.sa) }
-func (x *suffixSortable) Less(i, j int) bool { return x.inv[x.sa[i]+x.h] < x.inv[x.sa[j]+x.h] }
-func (x *suffixSortable) Swap(i, j int) { x.sa[i], x.sa[j] = x.sa[j], x.sa[i] }
-
-func (x *suffixSortable) updateGroups(offset int) {
- bounds := x.buf[0:0]
- group := x.inv[x.sa[0]+x.h]
- for i := 1; i < len(x.sa); i++ {
- if g := x.inv[x.sa[i]+x.h]; g > group {
- bounds = append(bounds, i)
- group = g
- }
- }
- bounds = append(bounds, len(x.sa))
- x.buf = bounds
-
- // update the group numberings after all new groups are determined
- prev := 0
- for _, b := range bounds {
- for i := prev; i < b; i++ {
- x.inv[x.sa[i]] = offset + b - 1
- }
- if b-prev == 1 {
- x.sa[prev] = -1
- }
- prev = b
- }
-}