diff options
Diffstat (limited to 'src/pkg/math/big/int.go')
| -rw-r--r-- | src/pkg/math/big/int.go | 873 | 
1 files changed, 873 insertions, 0 deletions
| diff --git a/src/pkg/math/big/int.go b/src/pkg/math/big/int.go new file mode 100644 index 000000000..35e2e2941 --- /dev/null +++ b/src/pkg/math/big/int.go @@ -0,0 +1,873 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// This file implements signed multi-precision integers. + +package big + +import ( +	"errors" +	"fmt" +	"io" +	"math/rand" +	"strings" +) + +// An Int represents a signed multi-precision integer. +// The zero value for an Int represents the value 0. +type Int struct { +	neg bool // sign +	abs nat  // absolute value of the integer +} + +var intOne = &Int{false, natOne} + +// Sign returns: +// +//	-1 if x <  0 +//	 0 if x == 0 +//	+1 if x >  0 +// +func (x *Int) Sign() int { +	if len(x.abs) == 0 { +		return 0 +	} +	if x.neg { +		return -1 +	} +	return 1 +} + +// SetInt64 sets z to x and returns z. +func (z *Int) SetInt64(x int64) *Int { +	neg := false +	if x < 0 { +		neg = true +		x = -x +	} +	z.abs = z.abs.setUint64(uint64(x)) +	z.neg = neg +	return z +} + +// NewInt allocates and returns a new Int set to x. +func NewInt(x int64) *Int { +	return new(Int).SetInt64(x) +} + +// Set sets z to x and returns z. +func (z *Int) Set(x *Int) *Int { +	if z != x { +		z.abs = z.abs.set(x.abs) +		z.neg = x.neg +	} +	return z +} + +// Abs sets z to |x| (the absolute value of x) and returns z. +func (z *Int) Abs(x *Int) *Int { +	z.Set(x) +	z.neg = false +	return z +} + +// Neg sets z to -x and returns z. +func (z *Int) Neg(x *Int) *Int { +	z.Set(x) +	z.neg = len(z.abs) > 0 && !z.neg // 0 has no sign +	return z +} + +// Add sets z to the sum x+y and returns z. +func (z *Int) Add(x, y *Int) *Int { +	neg := x.neg +	if x.neg == y.neg { +		// x + y == x + y +		// (-x) + (-y) == -(x + y) +		z.abs = z.abs.add(x.abs, y.abs) +	} else { +		// x + (-y) == x - y == -(y - x) +		// (-x) + y == y - x == -(x - y) +		if x.abs.cmp(y.abs) >= 0 { +			z.abs = z.abs.sub(x.abs, y.abs) +		} else { +			neg = !neg +			z.abs = z.abs.sub(y.abs, x.abs) +		} +	} +	z.neg = len(z.abs) > 0 && neg // 0 has no sign +	return z +} + +// Sub sets z to the difference x-y and returns z. +func (z *Int) Sub(x, y *Int) *Int { +	neg := x.neg +	if x.neg != y.neg { +		// x - (-y) == x + y +		// (-x) - y == -(x + y) +		z.abs = z.abs.add(x.abs, y.abs) +	} else { +		// x - y == x - y == -(y - x) +		// (-x) - (-y) == y - x == -(x - y) +		if x.abs.cmp(y.abs) >= 0 { +			z.abs = z.abs.sub(x.abs, y.abs) +		} else { +			neg = !neg +			z.abs = z.abs.sub(y.abs, x.abs) +		} +	} +	z.neg = len(z.abs) > 0 && neg // 0 has no sign +	return z +} + +// Mul sets z to the product x*y and returns z. +func (z *Int) Mul(x, y *Int) *Int { +	// x * y == x * y +	// x * (-y) == -(x * y) +	// (-x) * y == -(x * y) +	// (-x) * (-y) == x * y +	z.abs = z.abs.mul(x.abs, y.abs) +	z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign +	return z +} + +// MulRange sets z to the product of all integers +// in the range [a, b] inclusively and returns z. +// If a > b (empty range), the result is 1. +func (z *Int) MulRange(a, b int64) *Int { +	switch { +	case a > b: +		return z.SetInt64(1) // empty range +	case a <= 0 && b >= 0: +		return z.SetInt64(0) // range includes 0 +	} +	// a <= b && (b < 0 || a > 0) + +	neg := false +	if a < 0 { +		neg = (b-a)&1 == 0 +		a, b = -b, -a +	} + +	z.abs = z.abs.mulRange(uint64(a), uint64(b)) +	z.neg = neg +	return z +} + +// Binomial sets z to the binomial coefficient of (n, k) and returns z. +func (z *Int) Binomial(n, k int64) *Int { +	var a, b Int +	a.MulRange(n-k+1, n) +	b.MulRange(1, k) +	return z.Quo(&a, &b) +} + +// Quo sets z to the quotient x/y for y != 0 and returns z. +// If y == 0, a division-by-zero run-time panic occurs. +// Quo implements truncated division (like Go); see QuoRem for more details. +func (z *Int) Quo(x, y *Int) *Int { +	z.abs, _ = z.abs.div(nil, x.abs, y.abs) +	z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign +	return z +} + +// Rem sets z to the remainder x%y for y != 0 and returns z. +// If y == 0, a division-by-zero run-time panic occurs. +// Rem implements truncated modulus (like Go); see QuoRem for more details. +func (z *Int) Rem(x, y *Int) *Int { +	_, z.abs = nat(nil).div(z.abs, x.abs, y.abs) +	z.neg = len(z.abs) > 0 && x.neg // 0 has no sign +	return z +} + +// QuoRem sets z to the quotient x/y and r to the remainder x%y +// and returns the pair (z, r) for y != 0. +// If y == 0, a division-by-zero run-time panic occurs. +// +// QuoRem implements T-division and modulus (like Go): +// +//	q = x/y      with the result truncated to zero +//	r = x - y*q +// +// (See Daan Leijen, ``Division and Modulus for Computer Scientists''.) +// +func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) { +	z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs) +	z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign +	return z, r +} + +// Div sets z to the quotient x/y for y != 0 and returns z. +// If y == 0, a division-by-zero run-time panic occurs. +// Div implements Euclidean division (unlike Go); see DivMod for more details. +func (z *Int) Div(x, y *Int) *Int { +	y_neg := y.neg // z may be an alias for y +	var r Int +	z.QuoRem(x, y, &r) +	if r.neg { +		if y_neg { +			z.Add(z, intOne) +		} else { +			z.Sub(z, intOne) +		} +	} +	return z +} + +// Mod sets z to the modulus x%y for y != 0 and returns z. +// If y == 0, a division-by-zero run-time panic occurs. +// Mod implements Euclidean modulus (unlike Go); see DivMod for more details. +func (z *Int) Mod(x, y *Int) *Int { +	y0 := y // save y +	if z == y || alias(z.abs, y.abs) { +		y0 = new(Int).Set(y) +	} +	var q Int +	q.QuoRem(x, y, z) +	if z.neg { +		if y0.neg { +			z.Sub(z, y0) +		} else { +			z.Add(z, y0) +		} +	} +	return z +} + +// DivMod sets z to the quotient x div y and m to the modulus x mod y +// and returns the pair (z, m) for y != 0. +// If y == 0, a division-by-zero run-time panic occurs. +// +// DivMod implements Euclidean division and modulus (unlike Go): +// +//	q = x div y  such that +//	m = x - y*q  with 0 <= m < |q| +// +// (See Raymond T. Boute, ``The Euclidean definition of the functions +// div and mod''. ACM Transactions on Programming Languages and +// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992. +// ACM press.) +// +func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) { +	y0 := y // save y +	if z == y || alias(z.abs, y.abs) { +		y0 = new(Int).Set(y) +	} +	z.QuoRem(x, y, m) +	if m.neg { +		if y0.neg { +			z.Add(z, intOne) +			m.Sub(m, y0) +		} else { +			z.Sub(z, intOne) +			m.Add(m, y0) +		} +	} +	return z, m +} + +// Cmp compares x and y and returns: +// +//   -1 if x <  y +//    0 if x == y +//   +1 if x >  y +// +func (x *Int) Cmp(y *Int) (r int) { +	// x cmp y == x cmp y +	// x cmp (-y) == x +	// (-x) cmp y == y +	// (-x) cmp (-y) == -(x cmp y) +	switch { +	case x.neg == y.neg: +		r = x.abs.cmp(y.abs) +		if x.neg { +			r = -r +		} +	case x.neg: +		r = -1 +	default: +		r = 1 +	} +	return +} + +func (x *Int) String() string { +	switch { +	case x == nil: +		return "<nil>" +	case x.neg: +		return "-" + x.abs.decimalString() +	} +	return x.abs.decimalString() +} + +func charset(ch rune) string { +	switch ch { +	case 'b': +		return lowercaseDigits[0:2] +	case 'o': +		return lowercaseDigits[0:8] +	case 'd', 's', 'v': +		return lowercaseDigits[0:10] +	case 'x': +		return lowercaseDigits[0:16] +	case 'X': +		return uppercaseDigits[0:16] +	} +	return "" // unknown format +} + +// write count copies of text to s +func writeMultiple(s fmt.State, text string, count int) { +	if len(text) > 0 { +		b := []byte(text) +		for ; count > 0; count-- { +			s.Write(b) +		} +	} +} + +// Format is a support routine for fmt.Formatter. It accepts +// the formats 'b' (binary), 'o' (octal), 'd' (decimal), 'x' +// (lowercase hexadecimal), and 'X' (uppercase hexadecimal). +// Also supported are the full suite of package fmt's format +// verbs for integral types, including '+', '-', and ' ' +// for sign control, '#' for leading zero in octal and for +// hexadecimal, a leading "0x" or "0X" for "%#x" and "%#X" +// respectively, specification of minimum digits precision, +// output field width, space or zero padding, and left or +// right justification. +// +func (x *Int) Format(s fmt.State, ch rune) { +	cs := charset(ch) + +	// special cases +	switch { +	case cs == "": +		// unknown format +		fmt.Fprintf(s, "%%!%c(big.Int=%s)", ch, x.String()) +		return +	case x == nil: +		fmt.Fprint(s, "<nil>") +		return +	} + +	// determine sign character +	sign := "" +	switch { +	case x.neg: +		sign = "-" +	case s.Flag('+'): // supersedes ' ' when both specified +		sign = "+" +	case s.Flag(' '): +		sign = " " +	} + +	// determine prefix characters for indicating output base +	prefix := "" +	if s.Flag('#') { +		switch ch { +		case 'o': // octal +			prefix = "0" +		case 'x': // hexadecimal +			prefix = "0x" +		case 'X': +			prefix = "0X" +		} +	} + +	// determine digits with base set by len(cs) and digit characters from cs +	digits := x.abs.string(cs) + +	// number of characters for the three classes of number padding +	var left int   // space characters to left of digits for right justification ("%8d") +	var zeroes int // zero characters (actually cs[0]) as left-most digits ("%.8d") +	var right int  // space characters to right of digits for left justification ("%-8d") + +	// determine number padding from precision: the least number of digits to output +	precision, precisionSet := s.Precision() +	if precisionSet { +		switch { +		case len(digits) < precision: +			zeroes = precision - len(digits) // count of zero padding  +		case digits == "0" && precision == 0: +			return // print nothing if zero value (x == 0) and zero precision ("." or ".0") +		} +	} + +	// determine field pad from width: the least number of characters to output +	length := len(sign) + len(prefix) + zeroes + len(digits) +	if width, widthSet := s.Width(); widthSet && length < width { // pad as specified +		switch d := width - length; { +		case s.Flag('-'): +			// pad on the right with spaces; supersedes '0' when both specified +			right = d +		case s.Flag('0') && !precisionSet: +			// pad with zeroes unless precision also specified +			zeroes = d +		default: +			// pad on the left with spaces +			left = d +		} +	} + +	// print number as [left pad][sign][prefix][zero pad][digits][right pad] +	writeMultiple(s, " ", left) +	writeMultiple(s, sign, 1) +	writeMultiple(s, prefix, 1) +	writeMultiple(s, "0", zeroes) +	writeMultiple(s, digits, 1) +	writeMultiple(s, " ", right) +} + +// scan sets z to the integer value corresponding to the longest possible prefix +// read from r representing a signed integer number in a given conversion base. +// It returns z, the actual conversion base used, and an error, if any. In the +// error case, the value of z is undefined but the returned value is nil. The +// syntax follows the syntax of integer literals in Go. +// +// The base argument must be 0 or a value from 2 through MaxBase. If the base +// is 0, the string prefix determines the actual conversion base. A prefix of +// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a +// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10. +// +func (z *Int) scan(r io.RuneScanner, base int) (*Int, int, error) { +	// determine sign +	ch, _, err := r.ReadRune() +	if err != nil { +		return nil, 0, err +	} +	neg := false +	switch ch { +	case '-': +		neg = true +	case '+': // nothing to do +	default: +		r.UnreadRune() +	} + +	// determine mantissa +	z.abs, base, err = z.abs.scan(r, base) +	if err != nil { +		return nil, base, err +	} +	z.neg = len(z.abs) > 0 && neg // 0 has no sign + +	return z, base, nil +} + +// Scan is a support routine for fmt.Scanner; it sets z to the value of +// the scanned number. It accepts the formats 'b' (binary), 'o' (octal), +// 'd' (decimal), 'x' (lowercase hexadecimal), and 'X' (uppercase hexadecimal). +func (z *Int) Scan(s fmt.ScanState, ch rune) error { +	s.SkipSpace() // skip leading space characters +	base := 0 +	switch ch { +	case 'b': +		base = 2 +	case 'o': +		base = 8 +	case 'd': +		base = 10 +	case 'x', 'X': +		base = 16 +	case 's', 'v': +		// let scan determine the base +	default: +		return errors.New("Int.Scan: invalid verb") +	} +	_, _, err := z.scan(s, base) +	return err +} + +// Int64 returns the int64 representation of x. +// If x cannot be represented in an int64, the result is undefined. +func (x *Int) Int64() int64 { +	if len(x.abs) == 0 { +		return 0 +	} +	v := int64(x.abs[0]) +	if _W == 32 && len(x.abs) > 1 { +		v |= int64(x.abs[1]) << 32 +	} +	if x.neg { +		v = -v +	} +	return v +} + +// SetString sets z to the value of s, interpreted in the given base, +// and returns z and a boolean indicating success. If SetString fails, +// the value of z is undefined but the returned value is nil. +// +// The base argument must be 0 or a value from 2 through MaxBase. If the base +// is 0, the string prefix determines the actual conversion base. A prefix of +// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a +// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10. +// +func (z *Int) SetString(s string, base int) (*Int, bool) { +	r := strings.NewReader(s) +	_, _, err := z.scan(r, base) +	if err != nil { +		return nil, false +	} +	_, _, err = r.ReadRune() +	if err != io.EOF { +		return nil, false +	} +	return z, true // err == io.EOF => scan consumed all of s +} + +// SetBytes interprets buf as the bytes of a big-endian unsigned +// integer, sets z to that value, and returns z. +func (z *Int) SetBytes(buf []byte) *Int { +	z.abs = z.abs.setBytes(buf) +	z.neg = false +	return z +} + +// Bytes returns the absolute value of z as a big-endian byte slice. +func (z *Int) Bytes() []byte { +	buf := make([]byte, len(z.abs)*_S) +	return buf[z.abs.bytes(buf):] +} + +// BitLen returns the length of the absolute value of z in bits. +// The bit length of 0 is 0. +func (z *Int) BitLen() int { +	return z.abs.bitLen() +} + +// Exp sets z = x**y mod m. If m is nil, z = x**y. +// See Knuth, volume 2, section 4.6.3. +func (z *Int) Exp(x, y, m *Int) *Int { +	if y.neg || len(y.abs) == 0 { +		neg := x.neg +		z.SetInt64(1) +		z.neg = neg +		return z +	} + +	var mWords nat +	if m != nil { +		mWords = m.abs +	} + +	z.abs = z.abs.expNN(x.abs, y.abs, mWords) +	z.neg = len(z.abs) > 0 && x.neg && y.abs[0]&1 == 1 // 0 has no sign +	return z +} + +// GcdInt sets d to the greatest common divisor of a and b, which must be +// positive numbers. +// If x and y are not nil, GcdInt sets x and y such that d = a*x + b*y. +// If either a or b is not positive, GcdInt sets d = x = y = 0. +func GcdInt(d, x, y, a, b *Int) { +	if a.neg || b.neg { +		d.SetInt64(0) +		if x != nil { +			x.SetInt64(0) +		} +		if y != nil { +			y.SetInt64(0) +		} +		return +	} + +	A := new(Int).Set(a) +	B := new(Int).Set(b) + +	X := new(Int) +	Y := new(Int).SetInt64(1) + +	lastX := new(Int).SetInt64(1) +	lastY := new(Int) + +	q := new(Int) +	temp := new(Int) + +	for len(B.abs) > 0 { +		r := new(Int) +		q, r = q.QuoRem(A, B, r) + +		A, B = B, r + +		temp.Set(X) +		X.Mul(X, q) +		X.neg = !X.neg +		X.Add(X, lastX) +		lastX.Set(temp) + +		temp.Set(Y) +		Y.Mul(Y, q) +		Y.neg = !Y.neg +		Y.Add(Y, lastY) +		lastY.Set(temp) +	} + +	if x != nil { +		*x = *lastX +	} + +	if y != nil { +		*y = *lastY +	} + +	*d = *A +} + +// ProbablyPrime performs n Miller-Rabin tests to check whether z is prime. +// If it returns true, z is prime with probability 1 - 1/4^n. +// If it returns false, z is not prime. +func ProbablyPrime(z *Int, n int) bool { +	return !z.neg && z.abs.probablyPrime(n) +} + +// Rand sets z to a pseudo-random number in [0, n) and returns z. +func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int { +	z.neg = false +	if n.neg == true || len(n.abs) == 0 { +		z.abs = nil +		return z +	} +	z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen()) +	return z +} + +// ModInverse sets z to the multiplicative inverse of g in the group ℤ/pℤ (where +// p is a prime) and returns z. +func (z *Int) ModInverse(g, p *Int) *Int { +	var d Int +	GcdInt(&d, z, nil, g, p) +	// x and y are such that g*x + p*y = d. Since p is prime, d = 1. Taking +	// that modulo p results in g*x = 1, therefore x is the inverse element. +	if z.neg { +		z.Add(z, p) +	} +	return z +} + +// Lsh sets z = x << n and returns z. +func (z *Int) Lsh(x *Int, n uint) *Int { +	z.abs = z.abs.shl(x.abs, n) +	z.neg = x.neg +	return z +} + +// Rsh sets z = x >> n and returns z. +func (z *Int) Rsh(x *Int, n uint) *Int { +	if x.neg { +		// (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1) +		t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0 +		t = t.shr(t, n) +		z.abs = t.add(t, natOne) +		z.neg = true // z cannot be zero if x is negative +		return z +	} + +	z.abs = z.abs.shr(x.abs, n) +	z.neg = false +	return z +} + +// Bit returns the value of the i'th bit of z. That is, it +// returns (z>>i)&1. The bit index i must be >= 0. +func (z *Int) Bit(i int) uint { +	if i < 0 { +		panic("negative bit index") +	} +	if z.neg { +		t := nat(nil).sub(z.abs, natOne) +		return t.bit(uint(i)) ^ 1 +	} + +	return z.abs.bit(uint(i)) +} + +// SetBit sets z to x, with x's i'th bit set to b (0 or 1). +// That is, if bit is 1 SetBit sets z = x | (1 << i); +// if bit is 0 it sets z = x &^ (1 << i). If bit is not 0 or 1, +// SetBit will panic. +func (z *Int) SetBit(x *Int, i int, b uint) *Int { +	if i < 0 { +		panic("negative bit index") +	} +	if x.neg { +		t := z.abs.sub(x.abs, natOne) +		t = t.setBit(t, uint(i), b^1) +		z.abs = t.add(t, natOne) +		z.neg = len(z.abs) > 0 +		return z +	} +	z.abs = z.abs.setBit(x.abs, uint(i), b) +	z.neg = false +	return z +} + +// And sets z = x & y and returns z. +func (z *Int) And(x, y *Int) *Int { +	if x.neg == y.neg { +		if x.neg { +			// (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1) +			x1 := nat(nil).sub(x.abs, natOne) +			y1 := nat(nil).sub(y.abs, natOne) +			z.abs = z.abs.add(z.abs.or(x1, y1), natOne) +			z.neg = true // z cannot be zero if x and y are negative +			return z +		} + +		// x & y == x & y +		z.abs = z.abs.and(x.abs, y.abs) +		z.neg = false +		return z +	} + +	// x.neg != y.neg +	if x.neg { +		x, y = y, x // & is symmetric +	} + +	// x & (-y) == x & ^(y-1) == x &^ (y-1) +	y1 := nat(nil).sub(y.abs, natOne) +	z.abs = z.abs.andNot(x.abs, y1) +	z.neg = false +	return z +} + +// AndNot sets z = x &^ y and returns z. +func (z *Int) AndNot(x, y *Int) *Int { +	if x.neg == y.neg { +		if x.neg { +			// (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1) +			x1 := nat(nil).sub(x.abs, natOne) +			y1 := nat(nil).sub(y.abs, natOne) +			z.abs = z.abs.andNot(y1, x1) +			z.neg = false +			return z +		} + +		// x &^ y == x &^ y +		z.abs = z.abs.andNot(x.abs, y.abs) +		z.neg = false +		return z +	} + +	if x.neg { +		// (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1) +		x1 := nat(nil).sub(x.abs, natOne) +		z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne) +		z.neg = true // z cannot be zero if x is negative and y is positive +		return z +	} + +	// x &^ (-y) == x &^ ^(y-1) == x & (y-1) +	y1 := nat(nil).add(y.abs, natOne) +	z.abs = z.abs.and(x.abs, y1) +	z.neg = false +	return z +} + +// Or sets z = x | y and returns z. +func (z *Int) Or(x, y *Int) *Int { +	if x.neg == y.neg { +		if x.neg { +			// (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1) +			x1 := nat(nil).sub(x.abs, natOne) +			y1 := nat(nil).sub(y.abs, natOne) +			z.abs = z.abs.add(z.abs.and(x1, y1), natOne) +			z.neg = true // z cannot be zero if x and y are negative +			return z +		} + +		// x | y == x | y +		z.abs = z.abs.or(x.abs, y.abs) +		z.neg = false +		return z +	} + +	// x.neg != y.neg +	if x.neg { +		x, y = y, x // | is symmetric +	} + +	// x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1) +	y1 := nat(nil).sub(y.abs, natOne) +	z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne) +	z.neg = true // z cannot be zero if one of x or y is negative +	return z +} + +// Xor sets z = x ^ y and returns z. +func (z *Int) Xor(x, y *Int) *Int { +	if x.neg == y.neg { +		if x.neg { +			// (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1) +			x1 := nat(nil).sub(x.abs, natOne) +			y1 := nat(nil).sub(y.abs, natOne) +			z.abs = z.abs.xor(x1, y1) +			z.neg = false +			return z +		} + +		// x ^ y == x ^ y +		z.abs = z.abs.xor(x.abs, y.abs) +		z.neg = false +		return z +	} + +	// x.neg != y.neg +	if x.neg { +		x, y = y, x // ^ is symmetric +	} + +	// x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1) +	y1 := nat(nil).sub(y.abs, natOne) +	z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne) +	z.neg = true // z cannot be zero if only one of x or y is negative +	return z +} + +// Not sets z = ^x and returns z. +func (z *Int) Not(x *Int) *Int { +	if x.neg { +		// ^(-x) == ^(^(x-1)) == x-1 +		z.abs = z.abs.sub(x.abs, natOne) +		z.neg = false +		return z +	} + +	// ^x == -x-1 == -(x+1) +	z.abs = z.abs.add(x.abs, natOne) +	z.neg = true // z cannot be zero if x is positive +	return z +} + +// Gob codec version. Permits backward-compatible changes to the encoding. +const intGobVersion byte = 1 + +// GobEncode implements the gob.GobEncoder interface. +func (z *Int) GobEncode() ([]byte, error) { +	buf := make([]byte, 1+len(z.abs)*_S) // extra byte for version and sign bit +	i := z.abs.bytes(buf) - 1            // i >= 0 +	b := intGobVersion << 1              // make space for sign bit +	if z.neg { +		b |= 1 +	} +	buf[i] = b +	return buf[i:], nil +} + +// GobDecode implements the gob.GobDecoder interface. +func (z *Int) GobDecode(buf []byte) error { +	if len(buf) == 0 { +		return errors.New("Int.GobDecode: no data") +	} +	b := buf[0] +	if b>>1 != intGobVersion { +		return errors.New(fmt.Sprintf("Int.GobDecode: encoding version %d not supported", b>>1)) +	} +	z.neg = b&1 != 0 +	z.abs = z.abs.setBytes(buf[1:]) +	return nil +} | 
