diff options
Diffstat (limited to 'src/pkg/math/big/int.go')
-rw-r--r-- | src/pkg/math/big/int.go | 124 |
1 files changed, 113 insertions, 11 deletions
diff --git a/src/pkg/math/big/int.go b/src/pkg/math/big/int.go index cd2cd0e2d..bf2fd2009 100644 --- a/src/pkg/math/big/int.go +++ b/src/pkg/math/big/int.go @@ -51,6 +51,13 @@ func (z *Int) SetInt64(x int64) *Int { return z } +// SetUint64 sets z to x and returns z. +func (z *Int) SetUint64(x uint64) *Int { + z.abs = z.abs.setUint64(uint64(x)) + z.neg = false + return z +} + // NewInt allocates and returns a new Int set to x. func NewInt(x int64) *Int { return new(Int).SetInt64(x) @@ -412,7 +419,7 @@ func (x *Int) Format(s fmt.State, ch rune) { if precisionSet { switch { case len(digits) < precision: - zeroes = precision - len(digits) // count of zero padding + zeroes = precision - len(digits) // count of zero padding case digits == "0" && precision == 0: return // print nothing if zero value (x == 0) and zero precision ("." or ".0") } @@ -519,6 +526,19 @@ func (x *Int) Int64() int64 { return v } +// Uint64 returns the uint64 representation of x. +// If x cannot be represented in an uint64, the result is undefined. +func (x *Int) Uint64() uint64 { + if len(x.abs) == 0 { + return 0 + } + v := uint64(x.abs[0]) + if _W == 32 && len(x.abs) > 1 { + v |= uint64(x.abs[1]) << 32 + } + return v +} + // SetString sets z to the value of s, interpreted in the given base, // and returns z and a boolean indicating success. If SetString fails, // the value of z is undefined but the returned value is nil. @@ -561,19 +581,18 @@ func (x *Int) BitLen() int { return x.abs.bitLen() } -// Exp sets z = x**y mod m and returns z. If m is nil, z = x**y. +// Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z. +// If y <= 0, the result is 1; if m == nil or m == 0, z = x**y. // See Knuth, volume 2, section 4.6.3. func (z *Int) Exp(x, y, m *Int) *Int { if y.neg || len(y.abs) == 0 { - neg := x.neg - z.SetInt64(1) - z.neg = neg - return z + return z.SetInt64(1) } + // y > 0 var mWords nat if m != nil { - mWords = m.abs + mWords = m.abs // m.abs may be nil for m == 0 } z.abs = z.abs.expNN(x.abs, y.abs, mWords) @@ -581,12 +600,12 @@ func (z *Int) Exp(x, y, m *Int) *Int { return z } -// GCD sets z to the greatest common divisor of a and b, which must be -// positive numbers, and returns z. +// GCD sets z to the greatest common divisor of a and b, which both must +// be > 0, and returns z. // If x and y are not nil, GCD sets x and y such that z = a*x + b*y. -// If either a or b is not positive, GCD sets z = x = y = 0. +// If either a or b is <= 0, GCD sets z = x = y = 0. func (z *Int) GCD(x, y, a, b *Int) *Int { - if a.neg || b.neg { + if a.Sign() <= 0 || b.Sign() <= 0 { z.SetInt64(0) if x != nil { x.SetInt64(0) @@ -596,6 +615,9 @@ func (z *Int) GCD(x, y, a, b *Int) *Int { } return z } + if x == nil && y == nil { + return z.binaryGCD(a, b) + } A := new(Int).Set(a) B := new(Int).Set(b) @@ -640,6 +662,63 @@ func (z *Int) GCD(x, y, a, b *Int) *Int { return z } +// binaryGCD sets z to the greatest common divisor of a and b, which both must +// be > 0, and returns z. +// See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm B. +func (z *Int) binaryGCD(a, b *Int) *Int { + u := z + v := new(Int) + + // use one Euclidean iteration to ensure that u and v are approx. the same size + switch { + case len(a.abs) > len(b.abs): + u.Set(b) + v.Rem(a, b) + case len(a.abs) < len(b.abs): + u.Set(a) + v.Rem(b, a) + default: + u.Set(a) + v.Set(b) + } + + // v might be 0 now + if len(v.abs) == 0 { + return u + } + // u > 0 && v > 0 + + // determine largest k such that u = u' << k, v = v' << k + k := u.abs.trailingZeroBits() + if vk := v.abs.trailingZeroBits(); vk < k { + k = vk + } + u.Rsh(u, k) + v.Rsh(v, k) + + // determine t (we know that u > 0) + t := new(Int) + if u.abs[0]&1 != 0 { + // u is odd + t.Neg(v) + } else { + t.Set(u) + } + + for len(t.abs) > 0 { + // reduce t + t.Rsh(t, t.abs.trailingZeroBits()) + if t.neg { + v.Neg(t) + } else { + u.Set(t) + } + t.Sub(u, v) + } + + return u.Lsh(u, k) +} + // ProbablyPrime performs n Miller-Rabin tests to check whether x is prime. // If it returns true, x is prime with probability 1 - 1/4^n. // If it returns false, x is not prime. @@ -697,6 +776,13 @@ func (z *Int) Rsh(x *Int, n uint) *Int { // Bit returns the value of the i'th bit of x. That is, it // returns (x>>i)&1. The bit index i must be >= 0. func (x *Int) Bit(i int) uint { + if i == 0 { + // optimization for common case: odd/even test of x + if len(x.abs) > 0 { + return uint(x.abs[0] & 1) // bit 0 is same for -x + } + return 0 + } if i < 0 { panic("negative bit index") } @@ -894,3 +980,19 @@ func (z *Int) GobDecode(buf []byte) error { z.abs = z.abs.setBytes(buf[1:]) return nil } + +// MarshalJSON implements the json.Marshaler interface. +func (x *Int) MarshalJSON() ([]byte, error) { + // TODO(gri): get rid of the []byte/string conversions + return []byte(x.String()), nil +} + +// UnmarshalJSON implements the json.Unmarshaler interface. +func (z *Int) UnmarshalJSON(x []byte) error { + // TODO(gri): get rid of the []byte/string conversions + _, ok := z.SetString(string(x), 0) + if !ok { + return fmt.Errorf("math/big: cannot unmarshal %s into a *big.Int", x) + } + return nil +} |