diff options
Diffstat (limited to 'src/pkg/math/big/int.go')
-rw-r--r-- | src/pkg/math/big/int.go | 1011 |
1 files changed, 0 insertions, 1011 deletions
diff --git a/src/pkg/math/big/int.go b/src/pkg/math/big/int.go deleted file mode 100644 index 269949d61..000000000 --- a/src/pkg/math/big/int.go +++ /dev/null @@ -1,1011 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// This file implements signed multi-precision integers. - -package big - -import ( - "errors" - "fmt" - "io" - "math/rand" - "strings" -) - -// An Int represents a signed multi-precision integer. -// The zero value for an Int represents the value 0. -type Int struct { - neg bool // sign - abs nat // absolute value of the integer -} - -var intOne = &Int{false, natOne} - -// Sign returns: -// -// -1 if x < 0 -// 0 if x == 0 -// +1 if x > 0 -// -func (x *Int) Sign() int { - if len(x.abs) == 0 { - return 0 - } - if x.neg { - return -1 - } - return 1 -} - -// SetInt64 sets z to x and returns z. -func (z *Int) SetInt64(x int64) *Int { - neg := false - if x < 0 { - neg = true - x = -x - } - z.abs = z.abs.setUint64(uint64(x)) - z.neg = neg - return z -} - -// SetUint64 sets z to x and returns z. -func (z *Int) SetUint64(x uint64) *Int { - z.abs = z.abs.setUint64(x) - z.neg = false - return z -} - -// NewInt allocates and returns a new Int set to x. -func NewInt(x int64) *Int { - return new(Int).SetInt64(x) -} - -// Set sets z to x and returns z. -func (z *Int) Set(x *Int) *Int { - if z != x { - z.abs = z.abs.set(x.abs) - z.neg = x.neg - } - return z -} - -// Bits provides raw (unchecked but fast) access to x by returning its -// absolute value as a little-endian Word slice. The result and x share -// the same underlying array. -// Bits is intended to support implementation of missing low-level Int -// functionality outside this package; it should be avoided otherwise. -func (x *Int) Bits() []Word { - return x.abs -} - -// SetBits provides raw (unchecked but fast) access to z by setting its -// value to abs, interpreted as a little-endian Word slice, and returning -// z. The result and abs share the same underlying array. -// SetBits is intended to support implementation of missing low-level Int -// functionality outside this package; it should be avoided otherwise. -func (z *Int) SetBits(abs []Word) *Int { - z.abs = nat(abs).norm() - z.neg = false - return z -} - -// Abs sets z to |x| (the absolute value of x) and returns z. -func (z *Int) Abs(x *Int) *Int { - z.Set(x) - z.neg = false - return z -} - -// Neg sets z to -x and returns z. -func (z *Int) Neg(x *Int) *Int { - z.Set(x) - z.neg = len(z.abs) > 0 && !z.neg // 0 has no sign - return z -} - -// Add sets z to the sum x+y and returns z. -func (z *Int) Add(x, y *Int) *Int { - neg := x.neg - if x.neg == y.neg { - // x + y == x + y - // (-x) + (-y) == -(x + y) - z.abs = z.abs.add(x.abs, y.abs) - } else { - // x + (-y) == x - y == -(y - x) - // (-x) + y == y - x == -(x - y) - if x.abs.cmp(y.abs) >= 0 { - z.abs = z.abs.sub(x.abs, y.abs) - } else { - neg = !neg - z.abs = z.abs.sub(y.abs, x.abs) - } - } - z.neg = len(z.abs) > 0 && neg // 0 has no sign - return z -} - -// Sub sets z to the difference x-y and returns z. -func (z *Int) Sub(x, y *Int) *Int { - neg := x.neg - if x.neg != y.neg { - // x - (-y) == x + y - // (-x) - y == -(x + y) - z.abs = z.abs.add(x.abs, y.abs) - } else { - // x - y == x - y == -(y - x) - // (-x) - (-y) == y - x == -(x - y) - if x.abs.cmp(y.abs) >= 0 { - z.abs = z.abs.sub(x.abs, y.abs) - } else { - neg = !neg - z.abs = z.abs.sub(y.abs, x.abs) - } - } - z.neg = len(z.abs) > 0 && neg // 0 has no sign - return z -} - -// Mul sets z to the product x*y and returns z. -func (z *Int) Mul(x, y *Int) *Int { - // x * y == x * y - // x * (-y) == -(x * y) - // (-x) * y == -(x * y) - // (-x) * (-y) == x * y - z.abs = z.abs.mul(x.abs, y.abs) - z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign - return z -} - -// MulRange sets z to the product of all integers -// in the range [a, b] inclusively and returns z. -// If a > b (empty range), the result is 1. -func (z *Int) MulRange(a, b int64) *Int { - switch { - case a > b: - return z.SetInt64(1) // empty range - case a <= 0 && b >= 0: - return z.SetInt64(0) // range includes 0 - } - // a <= b && (b < 0 || a > 0) - - neg := false - if a < 0 { - neg = (b-a)&1 == 0 - a, b = -b, -a - } - - z.abs = z.abs.mulRange(uint64(a), uint64(b)) - z.neg = neg - return z -} - -// Binomial sets z to the binomial coefficient of (n, k) and returns z. -func (z *Int) Binomial(n, k int64) *Int { - var a, b Int - a.MulRange(n-k+1, n) - b.MulRange(1, k) - return z.Quo(&a, &b) -} - -// Quo sets z to the quotient x/y for y != 0 and returns z. -// If y == 0, a division-by-zero run-time panic occurs. -// Quo implements truncated division (like Go); see QuoRem for more details. -func (z *Int) Quo(x, y *Int) *Int { - z.abs, _ = z.abs.div(nil, x.abs, y.abs) - z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign - return z -} - -// Rem sets z to the remainder x%y for y != 0 and returns z. -// If y == 0, a division-by-zero run-time panic occurs. -// Rem implements truncated modulus (like Go); see QuoRem for more details. -func (z *Int) Rem(x, y *Int) *Int { - _, z.abs = nat(nil).div(z.abs, x.abs, y.abs) - z.neg = len(z.abs) > 0 && x.neg // 0 has no sign - return z -} - -// QuoRem sets z to the quotient x/y and r to the remainder x%y -// and returns the pair (z, r) for y != 0. -// If y == 0, a division-by-zero run-time panic occurs. -// -// QuoRem implements T-division and modulus (like Go): -// -// q = x/y with the result truncated to zero -// r = x - y*q -// -// (See Daan Leijen, ``Division and Modulus for Computer Scientists''.) -// See DivMod for Euclidean division and modulus (unlike Go). -// -func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) { - z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs) - z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign - return z, r -} - -// Div sets z to the quotient x/y for y != 0 and returns z. -// If y == 0, a division-by-zero run-time panic occurs. -// Div implements Euclidean division (unlike Go); see DivMod for more details. -func (z *Int) Div(x, y *Int) *Int { - y_neg := y.neg // z may be an alias for y - var r Int - z.QuoRem(x, y, &r) - if r.neg { - if y_neg { - z.Add(z, intOne) - } else { - z.Sub(z, intOne) - } - } - return z -} - -// Mod sets z to the modulus x%y for y != 0 and returns z. -// If y == 0, a division-by-zero run-time panic occurs. -// Mod implements Euclidean modulus (unlike Go); see DivMod for more details. -func (z *Int) Mod(x, y *Int) *Int { - y0 := y // save y - if z == y || alias(z.abs, y.abs) { - y0 = new(Int).Set(y) - } - var q Int - q.QuoRem(x, y, z) - if z.neg { - if y0.neg { - z.Sub(z, y0) - } else { - z.Add(z, y0) - } - } - return z -} - -// DivMod sets z to the quotient x div y and m to the modulus x mod y -// and returns the pair (z, m) for y != 0. -// If y == 0, a division-by-zero run-time panic occurs. -// -// DivMod implements Euclidean division and modulus (unlike Go): -// -// q = x div y such that -// m = x - y*q with 0 <= m < |q| -// -// (See Raymond T. Boute, ``The Euclidean definition of the functions -// div and mod''. ACM Transactions on Programming Languages and -// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992. -// ACM press.) -// See QuoRem for T-division and modulus (like Go). -// -func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) { - y0 := y // save y - if z == y || alias(z.abs, y.abs) { - y0 = new(Int).Set(y) - } - z.QuoRem(x, y, m) - if m.neg { - if y0.neg { - z.Add(z, intOne) - m.Sub(m, y0) - } else { - z.Sub(z, intOne) - m.Add(m, y0) - } - } - return z, m -} - -// Cmp compares x and y and returns: -// -// -1 if x < y -// 0 if x == y -// +1 if x > y -// -func (x *Int) Cmp(y *Int) (r int) { - // x cmp y == x cmp y - // x cmp (-y) == x - // (-x) cmp y == y - // (-x) cmp (-y) == -(x cmp y) - switch { - case x.neg == y.neg: - r = x.abs.cmp(y.abs) - if x.neg { - r = -r - } - case x.neg: - r = -1 - default: - r = 1 - } - return -} - -func (x *Int) String() string { - switch { - case x == nil: - return "<nil>" - case x.neg: - return "-" + x.abs.decimalString() - } - return x.abs.decimalString() -} - -func charset(ch rune) string { - switch ch { - case 'b': - return lowercaseDigits[0:2] - case 'o': - return lowercaseDigits[0:8] - case 'd', 's', 'v': - return lowercaseDigits[0:10] - case 'x': - return lowercaseDigits[0:16] - case 'X': - return uppercaseDigits[0:16] - } - return "" // unknown format -} - -// write count copies of text to s -func writeMultiple(s fmt.State, text string, count int) { - if len(text) > 0 { - b := []byte(text) - for ; count > 0; count-- { - s.Write(b) - } - } -} - -// Format is a support routine for fmt.Formatter. It accepts -// the formats 'b' (binary), 'o' (octal), 'd' (decimal), 'x' -// (lowercase hexadecimal), and 'X' (uppercase hexadecimal). -// Also supported are the full suite of package fmt's format -// verbs for integral types, including '+', '-', and ' ' -// for sign control, '#' for leading zero in octal and for -// hexadecimal, a leading "0x" or "0X" for "%#x" and "%#X" -// respectively, specification of minimum digits precision, -// output field width, space or zero padding, and left or -// right justification. -// -func (x *Int) Format(s fmt.State, ch rune) { - cs := charset(ch) - - // special cases - switch { - case cs == "": - // unknown format - fmt.Fprintf(s, "%%!%c(big.Int=%s)", ch, x.String()) - return - case x == nil: - fmt.Fprint(s, "<nil>") - return - } - - // determine sign character - sign := "" - switch { - case x.neg: - sign = "-" - case s.Flag('+'): // supersedes ' ' when both specified - sign = "+" - case s.Flag(' '): - sign = " " - } - - // determine prefix characters for indicating output base - prefix := "" - if s.Flag('#') { - switch ch { - case 'o': // octal - prefix = "0" - case 'x': // hexadecimal - prefix = "0x" - case 'X': - prefix = "0X" - } - } - - // determine digits with base set by len(cs) and digit characters from cs - digits := x.abs.string(cs) - - // number of characters for the three classes of number padding - var left int // space characters to left of digits for right justification ("%8d") - var zeroes int // zero characters (actually cs[0]) as left-most digits ("%.8d") - var right int // space characters to right of digits for left justification ("%-8d") - - // determine number padding from precision: the least number of digits to output - precision, precisionSet := s.Precision() - if precisionSet { - switch { - case len(digits) < precision: - zeroes = precision - len(digits) // count of zero padding - case digits == "0" && precision == 0: - return // print nothing if zero value (x == 0) and zero precision ("." or ".0") - } - } - - // determine field pad from width: the least number of characters to output - length := len(sign) + len(prefix) + zeroes + len(digits) - if width, widthSet := s.Width(); widthSet && length < width { // pad as specified - switch d := width - length; { - case s.Flag('-'): - // pad on the right with spaces; supersedes '0' when both specified - right = d - case s.Flag('0') && !precisionSet: - // pad with zeroes unless precision also specified - zeroes = d - default: - // pad on the left with spaces - left = d - } - } - - // print number as [left pad][sign][prefix][zero pad][digits][right pad] - writeMultiple(s, " ", left) - writeMultiple(s, sign, 1) - writeMultiple(s, prefix, 1) - writeMultiple(s, "0", zeroes) - writeMultiple(s, digits, 1) - writeMultiple(s, " ", right) -} - -// scan sets z to the integer value corresponding to the longest possible prefix -// read from r representing a signed integer number in a given conversion base. -// It returns z, the actual conversion base used, and an error, if any. In the -// error case, the value of z is undefined but the returned value is nil. The -// syntax follows the syntax of integer literals in Go. -// -// The base argument must be 0 or a value from 2 through MaxBase. If the base -// is 0, the string prefix determines the actual conversion base. A prefix of -// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a -// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10. -// -func (z *Int) scan(r io.RuneScanner, base int) (*Int, int, error) { - // determine sign - ch, _, err := r.ReadRune() - if err != nil { - return nil, 0, err - } - neg := false - switch ch { - case '-': - neg = true - case '+': // nothing to do - default: - r.UnreadRune() - } - - // determine mantissa - z.abs, base, err = z.abs.scan(r, base) - if err != nil { - return nil, base, err - } - z.neg = len(z.abs) > 0 && neg // 0 has no sign - - return z, base, nil -} - -// Scan is a support routine for fmt.Scanner; it sets z to the value of -// the scanned number. It accepts the formats 'b' (binary), 'o' (octal), -// 'd' (decimal), 'x' (lowercase hexadecimal), and 'X' (uppercase hexadecimal). -func (z *Int) Scan(s fmt.ScanState, ch rune) error { - s.SkipSpace() // skip leading space characters - base := 0 - switch ch { - case 'b': - base = 2 - case 'o': - base = 8 - case 'd': - base = 10 - case 'x', 'X': - base = 16 - case 's', 'v': - // let scan determine the base - default: - return errors.New("Int.Scan: invalid verb") - } - _, _, err := z.scan(s, base) - return err -} - -// Int64 returns the int64 representation of x. -// If x cannot be represented in an int64, the result is undefined. -func (x *Int) Int64() int64 { - v := int64(x.Uint64()) - if x.neg { - v = -v - } - return v -} - -// Uint64 returns the uint64 representation of x. -// If x cannot be represented in a uint64, the result is undefined. -func (x *Int) Uint64() uint64 { - if len(x.abs) == 0 { - return 0 - } - v := uint64(x.abs[0]) - if _W == 32 && len(x.abs) > 1 { - v |= uint64(x.abs[1]) << 32 - } - return v -} - -// SetString sets z to the value of s, interpreted in the given base, -// and returns z and a boolean indicating success. If SetString fails, -// the value of z is undefined but the returned value is nil. -// -// The base argument must be 0 or a value from 2 through MaxBase. If the base -// is 0, the string prefix determines the actual conversion base. A prefix of -// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a -// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10. -// -func (z *Int) SetString(s string, base int) (*Int, bool) { - r := strings.NewReader(s) - _, _, err := z.scan(r, base) - if err != nil { - return nil, false - } - _, _, err = r.ReadRune() - if err != io.EOF { - return nil, false - } - return z, true // err == io.EOF => scan consumed all of s -} - -// SetBytes interprets buf as the bytes of a big-endian unsigned -// integer, sets z to that value, and returns z. -func (z *Int) SetBytes(buf []byte) *Int { - z.abs = z.abs.setBytes(buf) - z.neg = false - return z -} - -// Bytes returns the absolute value of x as a big-endian byte slice. -func (x *Int) Bytes() []byte { - buf := make([]byte, len(x.abs)*_S) - return buf[x.abs.bytes(buf):] -} - -// BitLen returns the length of the absolute value of x in bits. -// The bit length of 0 is 0. -func (x *Int) BitLen() int { - return x.abs.bitLen() -} - -// Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z. -// If y <= 0, the result is 1 mod |m|; if m == nil or m == 0, z = x**y. -// See Knuth, volume 2, section 4.6.3. -func (z *Int) Exp(x, y, m *Int) *Int { - var yWords nat - if !y.neg { - yWords = y.abs - } - // y >= 0 - - var mWords nat - if m != nil { - mWords = m.abs // m.abs may be nil for m == 0 - } - - z.abs = z.abs.expNN(x.abs, yWords, mWords) - z.neg = len(z.abs) > 0 && x.neg && len(yWords) > 0 && yWords[0]&1 == 1 // 0 has no sign - return z -} - -// GCD sets z to the greatest common divisor of a and b, which both must -// be > 0, and returns z. -// If x and y are not nil, GCD sets x and y such that z = a*x + b*y. -// If either a or b is <= 0, GCD sets z = x = y = 0. -func (z *Int) GCD(x, y, a, b *Int) *Int { - if a.Sign() <= 0 || b.Sign() <= 0 { - z.SetInt64(0) - if x != nil { - x.SetInt64(0) - } - if y != nil { - y.SetInt64(0) - } - return z - } - if x == nil && y == nil { - return z.binaryGCD(a, b) - } - - A := new(Int).Set(a) - B := new(Int).Set(b) - - X := new(Int) - Y := new(Int).SetInt64(1) - - lastX := new(Int).SetInt64(1) - lastY := new(Int) - - q := new(Int) - temp := new(Int) - - for len(B.abs) > 0 { - r := new(Int) - q, r = q.QuoRem(A, B, r) - - A, B = B, r - - temp.Set(X) - X.Mul(X, q) - X.neg = !X.neg - X.Add(X, lastX) - lastX.Set(temp) - - temp.Set(Y) - Y.Mul(Y, q) - Y.neg = !Y.neg - Y.Add(Y, lastY) - lastY.Set(temp) - } - - if x != nil { - *x = *lastX - } - - if y != nil { - *y = *lastY - } - - *z = *A - return z -} - -// binaryGCD sets z to the greatest common divisor of a and b, which both must -// be > 0, and returns z. -// See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm B. -func (z *Int) binaryGCD(a, b *Int) *Int { - u := z - v := new(Int) - - // use one Euclidean iteration to ensure that u and v are approx. the same size - switch { - case len(a.abs) > len(b.abs): - u.Set(b) - v.Rem(a, b) - case len(a.abs) < len(b.abs): - u.Set(a) - v.Rem(b, a) - default: - u.Set(a) - v.Set(b) - } - - // v might be 0 now - if len(v.abs) == 0 { - return u - } - // u > 0 && v > 0 - - // determine largest k such that u = u' << k, v = v' << k - k := u.abs.trailingZeroBits() - if vk := v.abs.trailingZeroBits(); vk < k { - k = vk - } - u.Rsh(u, k) - v.Rsh(v, k) - - // determine t (we know that u > 0) - t := new(Int) - if u.abs[0]&1 != 0 { - // u is odd - t.Neg(v) - } else { - t.Set(u) - } - - for len(t.abs) > 0 { - // reduce t - t.Rsh(t, t.abs.trailingZeroBits()) - if t.neg { - v, t = t, v - v.neg = len(v.abs) > 0 && !v.neg // 0 has no sign - } else { - u, t = t, u - } - t.Sub(u, v) - } - - return z.Lsh(u, k) -} - -// ProbablyPrime performs n Miller-Rabin tests to check whether x is prime. -// If it returns true, x is prime with probability 1 - 1/4^n. -// If it returns false, x is not prime. -func (x *Int) ProbablyPrime(n int) bool { - return !x.neg && x.abs.probablyPrime(n) -} - -// Rand sets z to a pseudo-random number in [0, n) and returns z. -func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int { - z.neg = false - if n.neg == true || len(n.abs) == 0 { - z.abs = nil - return z - } - z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen()) - return z -} - -// ModInverse sets z to the multiplicative inverse of g in the group ℤ/pℤ (where -// p is a prime) and returns z. -func (z *Int) ModInverse(g, p *Int) *Int { - var d Int - d.GCD(z, nil, g, p) - // x and y are such that g*x + p*y = d. Since p is prime, d = 1. Taking - // that modulo p results in g*x = 1, therefore x is the inverse element. - if z.neg { - z.Add(z, p) - } - return z -} - -// Lsh sets z = x << n and returns z. -func (z *Int) Lsh(x *Int, n uint) *Int { - z.abs = z.abs.shl(x.abs, n) - z.neg = x.neg - return z -} - -// Rsh sets z = x >> n and returns z. -func (z *Int) Rsh(x *Int, n uint) *Int { - if x.neg { - // (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1) - t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0 - t = t.shr(t, n) - z.abs = t.add(t, natOne) - z.neg = true // z cannot be zero if x is negative - return z - } - - z.abs = z.abs.shr(x.abs, n) - z.neg = false - return z -} - -// Bit returns the value of the i'th bit of x. That is, it -// returns (x>>i)&1. The bit index i must be >= 0. -func (x *Int) Bit(i int) uint { - if i == 0 { - // optimization for common case: odd/even test of x - if len(x.abs) > 0 { - return uint(x.abs[0] & 1) // bit 0 is same for -x - } - return 0 - } - if i < 0 { - panic("negative bit index") - } - if x.neg { - t := nat(nil).sub(x.abs, natOne) - return t.bit(uint(i)) ^ 1 - } - - return x.abs.bit(uint(i)) -} - -// SetBit sets z to x, with x's i'th bit set to b (0 or 1). -// That is, if b is 1 SetBit sets z = x | (1 << i); -// if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1, -// SetBit will panic. -func (z *Int) SetBit(x *Int, i int, b uint) *Int { - if i < 0 { - panic("negative bit index") - } - if x.neg { - t := z.abs.sub(x.abs, natOne) - t = t.setBit(t, uint(i), b^1) - z.abs = t.add(t, natOne) - z.neg = len(z.abs) > 0 - return z - } - z.abs = z.abs.setBit(x.abs, uint(i), b) - z.neg = false - return z -} - -// And sets z = x & y and returns z. -func (z *Int) And(x, y *Int) *Int { - if x.neg == y.neg { - if x.neg { - // (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1) - x1 := nat(nil).sub(x.abs, natOne) - y1 := nat(nil).sub(y.abs, natOne) - z.abs = z.abs.add(z.abs.or(x1, y1), natOne) - z.neg = true // z cannot be zero if x and y are negative - return z - } - - // x & y == x & y - z.abs = z.abs.and(x.abs, y.abs) - z.neg = false - return z - } - - // x.neg != y.neg - if x.neg { - x, y = y, x // & is symmetric - } - - // x & (-y) == x & ^(y-1) == x &^ (y-1) - y1 := nat(nil).sub(y.abs, natOne) - z.abs = z.abs.andNot(x.abs, y1) - z.neg = false - return z -} - -// AndNot sets z = x &^ y and returns z. -func (z *Int) AndNot(x, y *Int) *Int { - if x.neg == y.neg { - if x.neg { - // (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1) - x1 := nat(nil).sub(x.abs, natOne) - y1 := nat(nil).sub(y.abs, natOne) - z.abs = z.abs.andNot(y1, x1) - z.neg = false - return z - } - - // x &^ y == x &^ y - z.abs = z.abs.andNot(x.abs, y.abs) - z.neg = false - return z - } - - if x.neg { - // (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1) - x1 := nat(nil).sub(x.abs, natOne) - z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne) - z.neg = true // z cannot be zero if x is negative and y is positive - return z - } - - // x &^ (-y) == x &^ ^(y-1) == x & (y-1) - y1 := nat(nil).add(y.abs, natOne) - z.abs = z.abs.and(x.abs, y1) - z.neg = false - return z -} - -// Or sets z = x | y and returns z. -func (z *Int) Or(x, y *Int) *Int { - if x.neg == y.neg { - if x.neg { - // (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1) - x1 := nat(nil).sub(x.abs, natOne) - y1 := nat(nil).sub(y.abs, natOne) - z.abs = z.abs.add(z.abs.and(x1, y1), natOne) - z.neg = true // z cannot be zero if x and y are negative - return z - } - - // x | y == x | y - z.abs = z.abs.or(x.abs, y.abs) - z.neg = false - return z - } - - // x.neg != y.neg - if x.neg { - x, y = y, x // | is symmetric - } - - // x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1) - y1 := nat(nil).sub(y.abs, natOne) - z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne) - z.neg = true // z cannot be zero if one of x or y is negative - return z -} - -// Xor sets z = x ^ y and returns z. -func (z *Int) Xor(x, y *Int) *Int { - if x.neg == y.neg { - if x.neg { - // (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1) - x1 := nat(nil).sub(x.abs, natOne) - y1 := nat(nil).sub(y.abs, natOne) - z.abs = z.abs.xor(x1, y1) - z.neg = false - return z - } - - // x ^ y == x ^ y - z.abs = z.abs.xor(x.abs, y.abs) - z.neg = false - return z - } - - // x.neg != y.neg - if x.neg { - x, y = y, x // ^ is symmetric - } - - // x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1) - y1 := nat(nil).sub(y.abs, natOne) - z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne) - z.neg = true // z cannot be zero if only one of x or y is negative - return z -} - -// Not sets z = ^x and returns z. -func (z *Int) Not(x *Int) *Int { - if x.neg { - // ^(-x) == ^(^(x-1)) == x-1 - z.abs = z.abs.sub(x.abs, natOne) - z.neg = false - return z - } - - // ^x == -x-1 == -(x+1) - z.abs = z.abs.add(x.abs, natOne) - z.neg = true // z cannot be zero if x is positive - return z -} - -// Gob codec version. Permits backward-compatible changes to the encoding. -const intGobVersion byte = 1 - -// GobEncode implements the gob.GobEncoder interface. -func (x *Int) GobEncode() ([]byte, error) { - if x == nil { - return nil, nil - } - buf := make([]byte, 1+len(x.abs)*_S) // extra byte for version and sign bit - i := x.abs.bytes(buf) - 1 // i >= 0 - b := intGobVersion << 1 // make space for sign bit - if x.neg { - b |= 1 - } - buf[i] = b - return buf[i:], nil -} - -// GobDecode implements the gob.GobDecoder interface. -func (z *Int) GobDecode(buf []byte) error { - if len(buf) == 0 { - // Other side sent a nil or default value. - *z = Int{} - return nil - } - b := buf[0] - if b>>1 != intGobVersion { - return errors.New(fmt.Sprintf("Int.GobDecode: encoding version %d not supported", b>>1)) - } - z.neg = b&1 != 0 - z.abs = z.abs.setBytes(buf[1:]) - return nil -} - -// MarshalJSON implements the json.Marshaler interface. -func (z *Int) MarshalJSON() ([]byte, error) { - // TODO(gri): get rid of the []byte/string conversions - return []byte(z.String()), nil -} - -// UnmarshalJSON implements the json.Unmarshaler interface. -func (z *Int) UnmarshalJSON(text []byte) error { - // TODO(gri): get rid of the []byte/string conversions - if _, ok := z.SetString(string(text), 0); !ok { - return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Int", text) - } - return nil -} - -// MarshalText implements the encoding.TextMarshaler interface -func (z *Int) MarshalText() (text []byte, err error) { - return []byte(z.String()), nil -} - -// UnmarshalText implements the encoding.TextUnmarshaler interface -func (z *Int) UnmarshalText(text []byte) error { - if _, ok := z.SetString(string(text), 0); !ok { - return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Int", text) - } - return nil -} |