diff options
Diffstat (limited to 'src/pkg/math/big/rat.go')
-rw-r--r-- | src/pkg/math/big/rat.go | 269 |
1 files changed, 209 insertions, 60 deletions
diff --git a/src/pkg/math/big/rat.go b/src/pkg/math/big/rat.go index 7bd83fc0f..3e6473d92 100644 --- a/src/pkg/math/big/rat.go +++ b/src/pkg/math/big/rat.go @@ -10,14 +10,17 @@ import ( "encoding/binary" "errors" "fmt" + "math" "strings" ) // A Rat represents a quotient a/b of arbitrary precision. // The zero value for a Rat represents the value 0. type Rat struct { - a Int - b nat // len(b) == 0 acts like b == 1 + // To make zero values for Rat work w/o initialization, + // a zero value of b (len(b) == 0) acts like b == 1. + // a.neg determines the sign of the Rat, b.neg is ignored. + a, b Int } // NewRat creates a new Rat with numerator a and denominator b. @@ -25,6 +28,156 @@ func NewRat(a, b int64) *Rat { return new(Rat).SetFrac64(a, b) } +// SetFloat64 sets z to exactly f and returns z. +// If f is not finite, SetFloat returns nil. +func (z *Rat) SetFloat64(f float64) *Rat { + const expMask = 1<<11 - 1 + bits := math.Float64bits(f) + mantissa := bits & (1<<52 - 1) + exp := int((bits >> 52) & expMask) + switch exp { + case expMask: // non-finite + return nil + case 0: // denormal + exp -= 1022 + default: // normal + mantissa |= 1 << 52 + exp -= 1023 + } + + shift := 52 - exp + + // Optimisation (?): partially pre-normalise. + for mantissa&1 == 0 && shift > 0 { + mantissa >>= 1 + shift-- + } + + z.a.SetUint64(mantissa) + z.a.neg = f < 0 + z.b.Set(intOne) + if shift > 0 { + z.b.Lsh(&z.b, uint(shift)) + } else { + z.a.Lsh(&z.a, uint(-shift)) + } + return z.norm() +} + +// isFinite reports whether f represents a finite rational value. +// It is equivalent to !math.IsNan(f) && !math.IsInf(f, 0). +func isFinite(f float64) bool { + return math.Abs(f) <= math.MaxFloat64 +} + +// low64 returns the least significant 64 bits of natural number z. +func low64(z nat) uint64 { + if len(z) == 0 { + return 0 + } + if _W == 32 && len(z) > 1 { + return uint64(z[1])<<32 | uint64(z[0]) + } + return uint64(z[0]) +} + +// quotToFloat returns the non-negative IEEE 754 double-precision +// value nearest to the quotient a/b, using round-to-even in halfway +// cases. It does not mutate its arguments. +// Preconditions: b is non-zero; a and b have no common factors. +func quotToFloat(a, b nat) (f float64, exact bool) { + // TODO(adonovan): specialize common degenerate cases: 1.0, integers. + alen := a.bitLen() + if alen == 0 { + return 0, true + } + blen := b.bitLen() + if blen == 0 { + panic("division by zero") + } + + // 1. Left-shift A or B such that quotient A/B is in [1<<53, 1<<55). + // (54 bits if A<B when they are left-aligned, 55 bits if A>=B.) + // This is 2 or 3 more than the float64 mantissa field width of 52: + // - the optional extra bit is shifted away in step 3 below. + // - the high-order 1 is omitted in float64 "normal" representation; + // - the low-order 1 will be used during rounding then discarded. + exp := alen - blen + var a2, b2 nat + a2 = a2.set(a) + b2 = b2.set(b) + if shift := 54 - exp; shift > 0 { + a2 = a2.shl(a2, uint(shift)) + } else if shift < 0 { + b2 = b2.shl(b2, uint(-shift)) + } + + // 2. Compute quotient and remainder (q, r). NB: due to the + // extra shift, the low-order bit of q is logically the + // high-order bit of r. + var q nat + q, r := q.div(a2, a2, b2) // (recycle a2) + mantissa := low64(q) + haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half + + // 3. If quotient didn't fit in 54 bits, re-do division by b2<<1 + // (in effect---we accomplish this incrementally). + if mantissa>>54 == 1 { + if mantissa&1 == 1 { + haveRem = true + } + mantissa >>= 1 + exp++ + } + if mantissa>>53 != 1 { + panic("expected exactly 54 bits of result") + } + + // 4. Rounding. + if -1022-52 <= exp && exp <= -1022 { + // Denormal case; lose 'shift' bits of precision. + shift := uint64(-1022 - (exp - 1)) // [1..53) + lostbits := mantissa & (1<<shift - 1) + haveRem = haveRem || lostbits != 0 + mantissa >>= shift + exp = -1023 + 2 + } + // Round q using round-half-to-even. + exact = !haveRem + if mantissa&1 != 0 { + exact = false + if haveRem || mantissa&2 != 0 { + if mantissa++; mantissa >= 1<<54 { + // Complete rollover 11...1 => 100...0, so shift is safe + mantissa >>= 1 + exp++ + } + } + } + mantissa >>= 1 // discard rounding bit. Mantissa now scaled by 2^53. + + f = math.Ldexp(float64(mantissa), exp-53) + if math.IsInf(f, 0) { + exact = false + } + return +} + +// Float64 returns the nearest float64 value to z. +// If z is exactly representable as a float64, Float64 returns exact=true. +// If z is negative, so too is f, even if f==0. +func (z *Rat) Float64() (f float64, exact bool) { + b := z.b.abs + if len(b) == 0 { + b = b.set(natOne) // materialize denominator + } + f, exact = quotToFloat(z.a.abs, b) + if z.a.neg { + f = -f + } + return +} + // SetFrac sets z to a/b and returns z. func (z *Rat) SetFrac(a, b *Int) *Rat { z.a.neg = a.neg != b.neg @@ -36,7 +189,7 @@ func (z *Rat) SetFrac(a, b *Int) *Rat { babs = nat(nil).set(babs) // make a copy } z.a.abs = z.a.abs.set(a.abs) - z.b = z.b.set(babs) + z.b.abs = z.b.abs.set(babs) return z.norm() } @@ -50,21 +203,21 @@ func (z *Rat) SetFrac64(a, b int64) *Rat { b = -b z.a.neg = !z.a.neg } - z.b = z.b.setUint64(uint64(b)) + z.b.abs = z.b.abs.setUint64(uint64(b)) return z.norm() } // SetInt sets z to x (by making a copy of x) and returns z. func (z *Rat) SetInt(x *Int) *Rat { z.a.Set(x) - z.b = z.b.make(0) + z.b.abs = z.b.abs.make(0) return z } // SetInt64 sets z to x and returns z. func (z *Rat) SetInt64(x int64) *Rat { z.a.SetInt64(x) - z.b = z.b.make(0) + z.b.abs = z.b.abs.make(0) return z } @@ -72,7 +225,7 @@ func (z *Rat) SetInt64(x int64) *Rat { func (z *Rat) Set(x *Rat) *Rat { if z != x { z.a.Set(&x.a) - z.b = z.b.set(x.b) + z.b.Set(&x.b) } return z } @@ -97,15 +250,15 @@ func (z *Rat) Inv(x *Rat) *Rat { panic("division by zero") } z.Set(x) - a := z.b + a := z.b.abs if len(a) == 0 { - a = a.setWord(1) // materialize numerator + a = a.set(natOne) // materialize numerator } b := z.a.abs if b.cmp(natOne) == 0 { b = b.make(0) // normalize denominator } - z.a.abs, z.b = a, b // sign doesn't change + z.a.abs, z.b.abs = a, b // sign doesn't change return z } @@ -121,38 +274,26 @@ func (x *Rat) Sign() int { // IsInt returns true if the denominator of x is 1. func (x *Rat) IsInt() bool { - return len(x.b) == 0 || x.b.cmp(natOne) == 0 + return len(x.b.abs) == 0 || x.b.abs.cmp(natOne) == 0 } // Num returns the numerator of x; it may be <= 0. // The result is a reference to x's numerator; it -// may change if a new value is assigned to x. +// may change if a new value is assigned to x, and vice versa. +// The sign of the numerator corresponds to the sign of x. func (x *Rat) Num() *Int { return &x.a } // Denom returns the denominator of x; it is always > 0. // The result is a reference to x's denominator; it -// may change if a new value is assigned to x. +// may change if a new value is assigned to x, and vice versa. func (x *Rat) Denom() *Int { - if len(x.b) == 0 { - return &Int{abs: nat{1}} + x.b.neg = false // the result is always >= 0 + if len(x.b.abs) == 0 { + x.b.abs = x.b.abs.set(natOne) // materialize denominator } - return &Int{abs: x.b} -} - -func gcd(x, y nat) nat { - // Euclidean algorithm. - var a, b nat - a = a.set(x) - b = b.set(y) - for len(b) != 0 { - var q, r nat - _, r = q.div(r, a, b) - a = b - b = r - } - return a + return &x.b } func (z *Rat) norm() *Rat { @@ -160,17 +301,25 @@ func (z *Rat) norm() *Rat { case len(z.a.abs) == 0: // z == 0 - normalize sign and denominator z.a.neg = false - z.b = z.b.make(0) - case len(z.b) == 0: + z.b.abs = z.b.abs.make(0) + case len(z.b.abs) == 0: // z is normalized int - nothing to do - case z.b.cmp(natOne) == 0: + case z.b.abs.cmp(natOne) == 0: // z is int - normalize denominator - z.b = z.b.make(0) + z.b.abs = z.b.abs.make(0) default: - if f := gcd(z.a.abs, z.b); f.cmp(natOne) != 0 { - z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f) - z.b, _ = z.b.div(nil, z.b, f) + neg := z.a.neg + z.a.neg = false + z.b.neg = false + if f := NewInt(0).binaryGCD(&z.a, &z.b); f.Cmp(intOne) != 0 { + z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f.abs) + z.b.abs, _ = z.b.abs.div(nil, z.b.abs, f.abs) + if z.b.abs.cmp(natOne) == 0 { + // z is int - normalize denominator + z.b.abs = z.b.abs.make(0) + } } + z.a.neg = neg } return z } @@ -207,31 +356,31 @@ func scaleDenom(x *Int, f nat) *Int { // +1 if x > y // func (x *Rat) Cmp(y *Rat) int { - return scaleDenom(&x.a, y.b).Cmp(scaleDenom(&y.a, x.b)) + return scaleDenom(&x.a, y.b.abs).Cmp(scaleDenom(&y.a, x.b.abs)) } // Add sets z to the sum x+y and returns z. func (z *Rat) Add(x, y *Rat) *Rat { - a1 := scaleDenom(&x.a, y.b) - a2 := scaleDenom(&y.a, x.b) + a1 := scaleDenom(&x.a, y.b.abs) + a2 := scaleDenom(&y.a, x.b.abs) z.a.Add(a1, a2) - z.b = mulDenom(z.b, x.b, y.b) + z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs) return z.norm() } // Sub sets z to the difference x-y and returns z. func (z *Rat) Sub(x, y *Rat) *Rat { - a1 := scaleDenom(&x.a, y.b) - a2 := scaleDenom(&y.a, x.b) + a1 := scaleDenom(&x.a, y.b.abs) + a2 := scaleDenom(&y.a, x.b.abs) z.a.Sub(a1, a2) - z.b = mulDenom(z.b, x.b, y.b) + z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs) return z.norm() } // Mul sets z to the product x*y and returns z. func (z *Rat) Mul(x, y *Rat) *Rat { z.a.Mul(&x.a, &y.a) - z.b = mulDenom(z.b, x.b, y.b) + z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs) return z.norm() } @@ -241,10 +390,10 @@ func (z *Rat) Quo(x, y *Rat) *Rat { if len(y.a.abs) == 0 { panic("division by zero") } - a := scaleDenom(&x.a, y.b) - b := scaleDenom(&y.a, x.b) + a := scaleDenom(&x.a, y.b.abs) + b := scaleDenom(&y.a, x.b.abs) z.a.abs = a.abs - z.b = b.abs + z.b.abs = b.abs z.a.neg = a.neg != b.neg return z.norm() } @@ -286,7 +435,7 @@ func (z *Rat) SetString(s string) (*Rat, bool) { } s = s[sep+1:] var err error - if z.b, _, err = z.b.scan(strings.NewReader(s), 10); err != nil { + if z.b.abs, _, err = z.b.abs.scan(strings.NewReader(s), 10); err != nil { return nil, false } return z.norm(), true @@ -317,11 +466,11 @@ func (z *Rat) SetString(s string) (*Rat, bool) { } powTen := nat(nil).expNN(natTen, exp.abs, nil) if exp.neg { - z.b = powTen + z.b.abs = powTen z.norm() } else { z.a.abs = z.a.abs.mul(z.a.abs, powTen) - z.b = z.b.make(0) + z.b.abs = z.b.abs.make(0) } return z, true @@ -330,8 +479,8 @@ func (z *Rat) SetString(s string) (*Rat, bool) { // String returns a string representation of z in the form "a/b" (even if b == 1). func (x *Rat) String() string { s := "/1" - if len(x.b) != 0 { - s = "/" + x.b.decimalString() + if len(x.b.abs) != 0 { + s = "/" + x.b.abs.decimalString() } return x.a.String() + s } @@ -355,9 +504,9 @@ func (x *Rat) FloatString(prec int) string { } return s } - // x.b != 0 + // x.b.abs != 0 - q, r := nat(nil).div(nat(nil), x.a.abs, x.b) + q, r := nat(nil).div(nat(nil), x.a.abs, x.b.abs) p := natOne if prec > 0 { @@ -365,11 +514,11 @@ func (x *Rat) FloatString(prec int) string { } r = r.mul(r, p) - r, r2 := r.div(nat(nil), r, x.b) + r, r2 := r.div(nat(nil), r, x.b.abs) // see if we need to round up r2 = r2.add(r2, r2) - if x.b.cmp(r2) <= 0 { + if x.b.abs.cmp(r2) <= 0 { r = r.add(r, natOne) if r.cmp(p) >= 0 { q = nat(nil).add(q, natOne) @@ -396,8 +545,8 @@ const ratGobVersion byte = 1 // GobEncode implements the gob.GobEncoder interface. func (x *Rat) GobEncode() ([]byte, error) { - buf := make([]byte, 1+4+(len(x.a.abs)+len(x.b))*_S) // extra bytes for version and sign bit (1), and numerator length (4) - i := x.b.bytes(buf) + buf := make([]byte, 1+4+(len(x.a.abs)+len(x.b.abs))*_S) // extra bytes for version and sign bit (1), and numerator length (4) + i := x.b.abs.bytes(buf) j := x.a.abs.bytes(buf[0:i]) n := i - j if int(uint32(n)) != n { @@ -427,6 +576,6 @@ func (z *Rat) GobDecode(buf []byte) error { i := j + binary.BigEndian.Uint32(buf[j-4:j]) z.a.neg = b&1 != 0 z.a.abs = z.a.abs.setBytes(buf[j:i]) - z.b = z.b.setBytes(buf[i:]) + z.b.abs = z.b.abs.setBytes(buf[i:]) return nil } |