summaryrefslogtreecommitdiff
path: root/src/pkg/math/big/rat.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/math/big/rat.go')
-rw-r--r--src/pkg/math/big/rat.go600
1 files changed, 0 insertions, 600 deletions
diff --git a/src/pkg/math/big/rat.go b/src/pkg/math/big/rat.go
deleted file mode 100644
index f0973b390..000000000
--- a/src/pkg/math/big/rat.go
+++ /dev/null
@@ -1,600 +0,0 @@
-// Copyright 2010 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// This file implements multi-precision rational numbers.
-
-package big
-
-import (
- "encoding/binary"
- "errors"
- "fmt"
- "math"
- "strings"
-)
-
-// A Rat represents a quotient a/b of arbitrary precision.
-// The zero value for a Rat represents the value 0.
-type Rat struct {
- // To make zero values for Rat work w/o initialization,
- // a zero value of b (len(b) == 0) acts like b == 1.
- // a.neg determines the sign of the Rat, b.neg is ignored.
- a, b Int
-}
-
-// NewRat creates a new Rat with numerator a and denominator b.
-func NewRat(a, b int64) *Rat {
- return new(Rat).SetFrac64(a, b)
-}
-
-// SetFloat64 sets z to exactly f and returns z.
-// If f is not finite, SetFloat returns nil.
-func (z *Rat) SetFloat64(f float64) *Rat {
- const expMask = 1<<11 - 1
- bits := math.Float64bits(f)
- mantissa := bits & (1<<52 - 1)
- exp := int((bits >> 52) & expMask)
- switch exp {
- case expMask: // non-finite
- return nil
- case 0: // denormal
- exp -= 1022
- default: // normal
- mantissa |= 1 << 52
- exp -= 1023
- }
-
- shift := 52 - exp
-
- // Optimization (?): partially pre-normalise.
- for mantissa&1 == 0 && shift > 0 {
- mantissa >>= 1
- shift--
- }
-
- z.a.SetUint64(mantissa)
- z.a.neg = f < 0
- z.b.Set(intOne)
- if shift > 0 {
- z.b.Lsh(&z.b, uint(shift))
- } else {
- z.a.Lsh(&z.a, uint(-shift))
- }
- return z.norm()
-}
-
-// isFinite reports whether f represents a finite rational value.
-// It is equivalent to !math.IsNan(f) && !math.IsInf(f, 0).
-func isFinite(f float64) bool {
- return math.Abs(f) <= math.MaxFloat64
-}
-
-// low64 returns the least significant 64 bits of natural number z.
-func low64(z nat) uint64 {
- if len(z) == 0 {
- return 0
- }
- if _W == 32 && len(z) > 1 {
- return uint64(z[1])<<32 | uint64(z[0])
- }
- return uint64(z[0])
-}
-
-// quotToFloat returns the non-negative IEEE 754 double-precision
-// value nearest to the quotient a/b, using round-to-even in halfway
-// cases. It does not mutate its arguments.
-// Preconditions: b is non-zero; a and b have no common factors.
-func quotToFloat(a, b nat) (f float64, exact bool) {
- // TODO(adonovan): specialize common degenerate cases: 1.0, integers.
- alen := a.bitLen()
- if alen == 0 {
- return 0, true
- }
- blen := b.bitLen()
- if blen == 0 {
- panic("division by zero")
- }
-
- // 1. Left-shift A or B such that quotient A/B is in [1<<53, 1<<55).
- // (54 bits if A<B when they are left-aligned, 55 bits if A>=B.)
- // This is 2 or 3 more than the float64 mantissa field width of 52:
- // - the optional extra bit is shifted away in step 3 below.
- // - the high-order 1 is omitted in float64 "normal" representation;
- // - the low-order 1 will be used during rounding then discarded.
- exp := alen - blen
- var a2, b2 nat
- a2 = a2.set(a)
- b2 = b2.set(b)
- if shift := 54 - exp; shift > 0 {
- a2 = a2.shl(a2, uint(shift))
- } else if shift < 0 {
- b2 = b2.shl(b2, uint(-shift))
- }
-
- // 2. Compute quotient and remainder (q, r). NB: due to the
- // extra shift, the low-order bit of q is logically the
- // high-order bit of r.
- var q nat
- q, r := q.div(a2, a2, b2) // (recycle a2)
- mantissa := low64(q)
- haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half
-
- // 3. If quotient didn't fit in 54 bits, re-do division by b2<<1
- // (in effect---we accomplish this incrementally).
- if mantissa>>54 == 1 {
- if mantissa&1 == 1 {
- haveRem = true
- }
- mantissa >>= 1
- exp++
- }
- if mantissa>>53 != 1 {
- panic("expected exactly 54 bits of result")
- }
-
- // 4. Rounding.
- if -1022-52 <= exp && exp <= -1022 {
- // Denormal case; lose 'shift' bits of precision.
- shift := uint64(-1022 - (exp - 1)) // [1..53)
- lostbits := mantissa & (1<<shift - 1)
- haveRem = haveRem || lostbits != 0
- mantissa >>= shift
- exp = -1023 + 2
- }
- // Round q using round-half-to-even.
- exact = !haveRem
- if mantissa&1 != 0 {
- exact = false
- if haveRem || mantissa&2 != 0 {
- if mantissa++; mantissa >= 1<<54 {
- // Complete rollover 11...1 => 100...0, so shift is safe
- mantissa >>= 1
- exp++
- }
- }
- }
- mantissa >>= 1 // discard rounding bit. Mantissa now scaled by 2^53.
-
- f = math.Ldexp(float64(mantissa), exp-53)
- if math.IsInf(f, 0) {
- exact = false
- }
- return
-}
-
-// Float64 returns the nearest float64 value for x and a bool indicating
-// whether f represents x exactly. If the magnitude of x is too large to
-// be represented by a float64, f is an infinity and exact is false.
-// The sign of f always matches the sign of x, even if f == 0.
-func (x *Rat) Float64() (f float64, exact bool) {
- b := x.b.abs
- if len(b) == 0 {
- b = b.set(natOne) // materialize denominator
- }
- f, exact = quotToFloat(x.a.abs, b)
- if x.a.neg {
- f = -f
- }
- return
-}
-
-// SetFrac sets z to a/b and returns z.
-func (z *Rat) SetFrac(a, b *Int) *Rat {
- z.a.neg = a.neg != b.neg
- babs := b.abs
- if len(babs) == 0 {
- panic("division by zero")
- }
- if &z.a == b || alias(z.a.abs, babs) {
- babs = nat(nil).set(babs) // make a copy
- }
- z.a.abs = z.a.abs.set(a.abs)
- z.b.abs = z.b.abs.set(babs)
- return z.norm()
-}
-
-// SetFrac64 sets z to a/b and returns z.
-func (z *Rat) SetFrac64(a, b int64) *Rat {
- z.a.SetInt64(a)
- if b == 0 {
- panic("division by zero")
- }
- if b < 0 {
- b = -b
- z.a.neg = !z.a.neg
- }
- z.b.abs = z.b.abs.setUint64(uint64(b))
- return z.norm()
-}
-
-// SetInt sets z to x (by making a copy of x) and returns z.
-func (z *Rat) SetInt(x *Int) *Rat {
- z.a.Set(x)
- z.b.abs = z.b.abs.make(0)
- return z
-}
-
-// SetInt64 sets z to x and returns z.
-func (z *Rat) SetInt64(x int64) *Rat {
- z.a.SetInt64(x)
- z.b.abs = z.b.abs.make(0)
- return z
-}
-
-// Set sets z to x (by making a copy of x) and returns z.
-func (z *Rat) Set(x *Rat) *Rat {
- if z != x {
- z.a.Set(&x.a)
- z.b.Set(&x.b)
- }
- return z
-}
-
-// Abs sets z to |x| (the absolute value of x) and returns z.
-func (z *Rat) Abs(x *Rat) *Rat {
- z.Set(x)
- z.a.neg = false
- return z
-}
-
-// Neg sets z to -x and returns z.
-func (z *Rat) Neg(x *Rat) *Rat {
- z.Set(x)
- z.a.neg = len(z.a.abs) > 0 && !z.a.neg // 0 has no sign
- return z
-}
-
-// Inv sets z to 1/x and returns z.
-func (z *Rat) Inv(x *Rat) *Rat {
- if len(x.a.abs) == 0 {
- panic("division by zero")
- }
- z.Set(x)
- a := z.b.abs
- if len(a) == 0 {
- a = a.set(natOne) // materialize numerator
- }
- b := z.a.abs
- if b.cmp(natOne) == 0 {
- b = b.make(0) // normalize denominator
- }
- z.a.abs, z.b.abs = a, b // sign doesn't change
- return z
-}
-
-// Sign returns:
-//
-// -1 if x < 0
-// 0 if x == 0
-// +1 if x > 0
-//
-func (x *Rat) Sign() int {
- return x.a.Sign()
-}
-
-// IsInt returns true if the denominator of x is 1.
-func (x *Rat) IsInt() bool {
- return len(x.b.abs) == 0 || x.b.abs.cmp(natOne) == 0
-}
-
-// Num returns the numerator of x; it may be <= 0.
-// The result is a reference to x's numerator; it
-// may change if a new value is assigned to x, and vice versa.
-// The sign of the numerator corresponds to the sign of x.
-func (x *Rat) Num() *Int {
- return &x.a
-}
-
-// Denom returns the denominator of x; it is always > 0.
-// The result is a reference to x's denominator; it
-// may change if a new value is assigned to x, and vice versa.
-func (x *Rat) Denom() *Int {
- x.b.neg = false // the result is always >= 0
- if len(x.b.abs) == 0 {
- x.b.abs = x.b.abs.set(natOne) // materialize denominator
- }
- return &x.b
-}
-
-func (z *Rat) norm() *Rat {
- switch {
- case len(z.a.abs) == 0:
- // z == 0 - normalize sign and denominator
- z.a.neg = false
- z.b.abs = z.b.abs.make(0)
- case len(z.b.abs) == 0:
- // z is normalized int - nothing to do
- case z.b.abs.cmp(natOne) == 0:
- // z is int - normalize denominator
- z.b.abs = z.b.abs.make(0)
- default:
- neg := z.a.neg
- z.a.neg = false
- z.b.neg = false
- if f := NewInt(0).binaryGCD(&z.a, &z.b); f.Cmp(intOne) != 0 {
- z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f.abs)
- z.b.abs, _ = z.b.abs.div(nil, z.b.abs, f.abs)
- if z.b.abs.cmp(natOne) == 0 {
- // z is int - normalize denominator
- z.b.abs = z.b.abs.make(0)
- }
- }
- z.a.neg = neg
- }
- return z
-}
-
-// mulDenom sets z to the denominator product x*y (by taking into
-// account that 0 values for x or y must be interpreted as 1) and
-// returns z.
-func mulDenom(z, x, y nat) nat {
- switch {
- case len(x) == 0:
- return z.set(y)
- case len(y) == 0:
- return z.set(x)
- }
- return z.mul(x, y)
-}
-
-// scaleDenom computes x*f.
-// If f == 0 (zero value of denominator), the result is (a copy of) x.
-func scaleDenom(x *Int, f nat) *Int {
- var z Int
- if len(f) == 0 {
- return z.Set(x)
- }
- z.abs = z.abs.mul(x.abs, f)
- z.neg = x.neg
- return &z
-}
-
-// Cmp compares x and y and returns:
-//
-// -1 if x < y
-// 0 if x == y
-// +1 if x > y
-//
-func (x *Rat) Cmp(y *Rat) int {
- return scaleDenom(&x.a, y.b.abs).Cmp(scaleDenom(&y.a, x.b.abs))
-}
-
-// Add sets z to the sum x+y and returns z.
-func (z *Rat) Add(x, y *Rat) *Rat {
- a1 := scaleDenom(&x.a, y.b.abs)
- a2 := scaleDenom(&y.a, x.b.abs)
- z.a.Add(a1, a2)
- z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
- return z.norm()
-}
-
-// Sub sets z to the difference x-y and returns z.
-func (z *Rat) Sub(x, y *Rat) *Rat {
- a1 := scaleDenom(&x.a, y.b.abs)
- a2 := scaleDenom(&y.a, x.b.abs)
- z.a.Sub(a1, a2)
- z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
- return z.norm()
-}
-
-// Mul sets z to the product x*y and returns z.
-func (z *Rat) Mul(x, y *Rat) *Rat {
- z.a.Mul(&x.a, &y.a)
- z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
- return z.norm()
-}
-
-// Quo sets z to the quotient x/y and returns z.
-// If y == 0, a division-by-zero run-time panic occurs.
-func (z *Rat) Quo(x, y *Rat) *Rat {
- if len(y.a.abs) == 0 {
- panic("division by zero")
- }
- a := scaleDenom(&x.a, y.b.abs)
- b := scaleDenom(&y.a, x.b.abs)
- z.a.abs = a.abs
- z.b.abs = b.abs
- z.a.neg = a.neg != b.neg
- return z.norm()
-}
-
-func ratTok(ch rune) bool {
- return strings.IndexRune("+-/0123456789.eE", ch) >= 0
-}
-
-// Scan is a support routine for fmt.Scanner. It accepts the formats
-// 'e', 'E', 'f', 'F', 'g', 'G', and 'v'. All formats are equivalent.
-func (z *Rat) Scan(s fmt.ScanState, ch rune) error {
- tok, err := s.Token(true, ratTok)
- if err != nil {
- return err
- }
- if strings.IndexRune("efgEFGv", ch) < 0 {
- return errors.New("Rat.Scan: invalid verb")
- }
- if _, ok := z.SetString(string(tok)); !ok {
- return errors.New("Rat.Scan: invalid syntax")
- }
- return nil
-}
-
-// SetString sets z to the value of s and returns z and a boolean indicating
-// success. s can be given as a fraction "a/b" or as a floating-point number
-// optionally followed by an exponent. If the operation failed, the value of
-// z is undefined but the returned value is nil.
-func (z *Rat) SetString(s string) (*Rat, bool) {
- if len(s) == 0 {
- return nil, false
- }
-
- // check for a quotient
- sep := strings.Index(s, "/")
- if sep >= 0 {
- if _, ok := z.a.SetString(s[0:sep], 10); !ok {
- return nil, false
- }
- s = s[sep+1:]
- var err error
- if z.b.abs, _, err = z.b.abs.scan(strings.NewReader(s), 10); err != nil {
- return nil, false
- }
- return z.norm(), true
- }
-
- // check for a decimal point
- sep = strings.Index(s, ".")
- // check for an exponent
- e := strings.IndexAny(s, "eE")
- var exp Int
- if e >= 0 {
- if e < sep {
- // The E must come after the decimal point.
- return nil, false
- }
- if _, ok := exp.SetString(s[e+1:], 10); !ok {
- return nil, false
- }
- s = s[0:e]
- }
- if sep >= 0 {
- s = s[0:sep] + s[sep+1:]
- exp.Sub(&exp, NewInt(int64(len(s)-sep)))
- }
-
- if _, ok := z.a.SetString(s, 10); !ok {
- return nil, false
- }
- powTen := nat(nil).expNN(natTen, exp.abs, nil)
- if exp.neg {
- z.b.abs = powTen
- z.norm()
- } else {
- z.a.abs = z.a.abs.mul(z.a.abs, powTen)
- z.b.abs = z.b.abs.make(0)
- }
-
- return z, true
-}
-
-// String returns a string representation of x in the form "a/b" (even if b == 1).
-func (x *Rat) String() string {
- s := "/1"
- if len(x.b.abs) != 0 {
- s = "/" + x.b.abs.decimalString()
- }
- return x.a.String() + s
-}
-
-// RatString returns a string representation of x in the form "a/b" if b != 1,
-// and in the form "a" if b == 1.
-func (x *Rat) RatString() string {
- if x.IsInt() {
- return x.a.String()
- }
- return x.String()
-}
-
-// FloatString returns a string representation of x in decimal form with prec
-// digits of precision after the decimal point and the last digit rounded.
-func (x *Rat) FloatString(prec int) string {
- if x.IsInt() {
- s := x.a.String()
- if prec > 0 {
- s += "." + strings.Repeat("0", prec)
- }
- return s
- }
- // x.b.abs != 0
-
- q, r := nat(nil).div(nat(nil), x.a.abs, x.b.abs)
-
- p := natOne
- if prec > 0 {
- p = nat(nil).expNN(natTen, nat(nil).setUint64(uint64(prec)), nil)
- }
-
- r = r.mul(r, p)
- r, r2 := r.div(nat(nil), r, x.b.abs)
-
- // see if we need to round up
- r2 = r2.add(r2, r2)
- if x.b.abs.cmp(r2) <= 0 {
- r = r.add(r, natOne)
- if r.cmp(p) >= 0 {
- q = nat(nil).add(q, natOne)
- r = nat(nil).sub(r, p)
- }
- }
-
- s := q.decimalString()
- if x.a.neg {
- s = "-" + s
- }
-
- if prec > 0 {
- rs := r.decimalString()
- leadingZeros := prec - len(rs)
- s += "." + strings.Repeat("0", leadingZeros) + rs
- }
-
- return s
-}
-
-// Gob codec version. Permits backward-compatible changes to the encoding.
-const ratGobVersion byte = 1
-
-// GobEncode implements the gob.GobEncoder interface.
-func (x *Rat) GobEncode() ([]byte, error) {
- if x == nil {
- return nil, nil
- }
- buf := make([]byte, 1+4+(len(x.a.abs)+len(x.b.abs))*_S) // extra bytes for version and sign bit (1), and numerator length (4)
- i := x.b.abs.bytes(buf)
- j := x.a.abs.bytes(buf[0:i])
- n := i - j
- if int(uint32(n)) != n {
- // this should never happen
- return nil, errors.New("Rat.GobEncode: numerator too large")
- }
- binary.BigEndian.PutUint32(buf[j-4:j], uint32(n))
- j -= 1 + 4
- b := ratGobVersion << 1 // make space for sign bit
- if x.a.neg {
- b |= 1
- }
- buf[j] = b
- return buf[j:], nil
-}
-
-// GobDecode implements the gob.GobDecoder interface.
-func (z *Rat) GobDecode(buf []byte) error {
- if len(buf) == 0 {
- // Other side sent a nil or default value.
- *z = Rat{}
- return nil
- }
- b := buf[0]
- if b>>1 != ratGobVersion {
- return errors.New(fmt.Sprintf("Rat.GobDecode: encoding version %d not supported", b>>1))
- }
- const j = 1 + 4
- i := j + binary.BigEndian.Uint32(buf[j-4:j])
- z.a.neg = b&1 != 0
- z.a.abs = z.a.abs.setBytes(buf[j:i])
- z.b.abs = z.b.abs.setBytes(buf[i:])
- return nil
-}
-
-// MarshalText implements the encoding.TextMarshaler interface
-func (r *Rat) MarshalText() (text []byte, err error) {
- return []byte(r.RatString()), nil
-}
-
-// UnmarshalText implements the encoding.TextUnmarshaler interface
-func (r *Rat) UnmarshalText(text []byte) error {
- if _, ok := r.SetString(string(text)); !ok {
- return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Rat", text)
- }
- return nil
-}