diff options
Diffstat (limited to 'src/pkg/math/big/rat.go')
-rw-r--r-- | src/pkg/math/big/rat.go | 600 |
1 files changed, 0 insertions, 600 deletions
diff --git a/src/pkg/math/big/rat.go b/src/pkg/math/big/rat.go deleted file mode 100644 index f0973b390..000000000 --- a/src/pkg/math/big/rat.go +++ /dev/null @@ -1,600 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// This file implements multi-precision rational numbers. - -package big - -import ( - "encoding/binary" - "errors" - "fmt" - "math" - "strings" -) - -// A Rat represents a quotient a/b of arbitrary precision. -// The zero value for a Rat represents the value 0. -type Rat struct { - // To make zero values for Rat work w/o initialization, - // a zero value of b (len(b) == 0) acts like b == 1. - // a.neg determines the sign of the Rat, b.neg is ignored. - a, b Int -} - -// NewRat creates a new Rat with numerator a and denominator b. -func NewRat(a, b int64) *Rat { - return new(Rat).SetFrac64(a, b) -} - -// SetFloat64 sets z to exactly f and returns z. -// If f is not finite, SetFloat returns nil. -func (z *Rat) SetFloat64(f float64) *Rat { - const expMask = 1<<11 - 1 - bits := math.Float64bits(f) - mantissa := bits & (1<<52 - 1) - exp := int((bits >> 52) & expMask) - switch exp { - case expMask: // non-finite - return nil - case 0: // denormal - exp -= 1022 - default: // normal - mantissa |= 1 << 52 - exp -= 1023 - } - - shift := 52 - exp - - // Optimization (?): partially pre-normalise. - for mantissa&1 == 0 && shift > 0 { - mantissa >>= 1 - shift-- - } - - z.a.SetUint64(mantissa) - z.a.neg = f < 0 - z.b.Set(intOne) - if shift > 0 { - z.b.Lsh(&z.b, uint(shift)) - } else { - z.a.Lsh(&z.a, uint(-shift)) - } - return z.norm() -} - -// isFinite reports whether f represents a finite rational value. -// It is equivalent to !math.IsNan(f) && !math.IsInf(f, 0). -func isFinite(f float64) bool { - return math.Abs(f) <= math.MaxFloat64 -} - -// low64 returns the least significant 64 bits of natural number z. -func low64(z nat) uint64 { - if len(z) == 0 { - return 0 - } - if _W == 32 && len(z) > 1 { - return uint64(z[1])<<32 | uint64(z[0]) - } - return uint64(z[0]) -} - -// quotToFloat returns the non-negative IEEE 754 double-precision -// value nearest to the quotient a/b, using round-to-even in halfway -// cases. It does not mutate its arguments. -// Preconditions: b is non-zero; a and b have no common factors. -func quotToFloat(a, b nat) (f float64, exact bool) { - // TODO(adonovan): specialize common degenerate cases: 1.0, integers. - alen := a.bitLen() - if alen == 0 { - return 0, true - } - blen := b.bitLen() - if blen == 0 { - panic("division by zero") - } - - // 1. Left-shift A or B such that quotient A/B is in [1<<53, 1<<55). - // (54 bits if A<B when they are left-aligned, 55 bits if A>=B.) - // This is 2 or 3 more than the float64 mantissa field width of 52: - // - the optional extra bit is shifted away in step 3 below. - // - the high-order 1 is omitted in float64 "normal" representation; - // - the low-order 1 will be used during rounding then discarded. - exp := alen - blen - var a2, b2 nat - a2 = a2.set(a) - b2 = b2.set(b) - if shift := 54 - exp; shift > 0 { - a2 = a2.shl(a2, uint(shift)) - } else if shift < 0 { - b2 = b2.shl(b2, uint(-shift)) - } - - // 2. Compute quotient and remainder (q, r). NB: due to the - // extra shift, the low-order bit of q is logically the - // high-order bit of r. - var q nat - q, r := q.div(a2, a2, b2) // (recycle a2) - mantissa := low64(q) - haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half - - // 3. If quotient didn't fit in 54 bits, re-do division by b2<<1 - // (in effect---we accomplish this incrementally). - if mantissa>>54 == 1 { - if mantissa&1 == 1 { - haveRem = true - } - mantissa >>= 1 - exp++ - } - if mantissa>>53 != 1 { - panic("expected exactly 54 bits of result") - } - - // 4. Rounding. - if -1022-52 <= exp && exp <= -1022 { - // Denormal case; lose 'shift' bits of precision. - shift := uint64(-1022 - (exp - 1)) // [1..53) - lostbits := mantissa & (1<<shift - 1) - haveRem = haveRem || lostbits != 0 - mantissa >>= shift - exp = -1023 + 2 - } - // Round q using round-half-to-even. - exact = !haveRem - if mantissa&1 != 0 { - exact = false - if haveRem || mantissa&2 != 0 { - if mantissa++; mantissa >= 1<<54 { - // Complete rollover 11...1 => 100...0, so shift is safe - mantissa >>= 1 - exp++ - } - } - } - mantissa >>= 1 // discard rounding bit. Mantissa now scaled by 2^53. - - f = math.Ldexp(float64(mantissa), exp-53) - if math.IsInf(f, 0) { - exact = false - } - return -} - -// Float64 returns the nearest float64 value for x and a bool indicating -// whether f represents x exactly. If the magnitude of x is too large to -// be represented by a float64, f is an infinity and exact is false. -// The sign of f always matches the sign of x, even if f == 0. -func (x *Rat) Float64() (f float64, exact bool) { - b := x.b.abs - if len(b) == 0 { - b = b.set(natOne) // materialize denominator - } - f, exact = quotToFloat(x.a.abs, b) - if x.a.neg { - f = -f - } - return -} - -// SetFrac sets z to a/b and returns z. -func (z *Rat) SetFrac(a, b *Int) *Rat { - z.a.neg = a.neg != b.neg - babs := b.abs - if len(babs) == 0 { - panic("division by zero") - } - if &z.a == b || alias(z.a.abs, babs) { - babs = nat(nil).set(babs) // make a copy - } - z.a.abs = z.a.abs.set(a.abs) - z.b.abs = z.b.abs.set(babs) - return z.norm() -} - -// SetFrac64 sets z to a/b and returns z. -func (z *Rat) SetFrac64(a, b int64) *Rat { - z.a.SetInt64(a) - if b == 0 { - panic("division by zero") - } - if b < 0 { - b = -b - z.a.neg = !z.a.neg - } - z.b.abs = z.b.abs.setUint64(uint64(b)) - return z.norm() -} - -// SetInt sets z to x (by making a copy of x) and returns z. -func (z *Rat) SetInt(x *Int) *Rat { - z.a.Set(x) - z.b.abs = z.b.abs.make(0) - return z -} - -// SetInt64 sets z to x and returns z. -func (z *Rat) SetInt64(x int64) *Rat { - z.a.SetInt64(x) - z.b.abs = z.b.abs.make(0) - return z -} - -// Set sets z to x (by making a copy of x) and returns z. -func (z *Rat) Set(x *Rat) *Rat { - if z != x { - z.a.Set(&x.a) - z.b.Set(&x.b) - } - return z -} - -// Abs sets z to |x| (the absolute value of x) and returns z. -func (z *Rat) Abs(x *Rat) *Rat { - z.Set(x) - z.a.neg = false - return z -} - -// Neg sets z to -x and returns z. -func (z *Rat) Neg(x *Rat) *Rat { - z.Set(x) - z.a.neg = len(z.a.abs) > 0 && !z.a.neg // 0 has no sign - return z -} - -// Inv sets z to 1/x and returns z. -func (z *Rat) Inv(x *Rat) *Rat { - if len(x.a.abs) == 0 { - panic("division by zero") - } - z.Set(x) - a := z.b.abs - if len(a) == 0 { - a = a.set(natOne) // materialize numerator - } - b := z.a.abs - if b.cmp(natOne) == 0 { - b = b.make(0) // normalize denominator - } - z.a.abs, z.b.abs = a, b // sign doesn't change - return z -} - -// Sign returns: -// -// -1 if x < 0 -// 0 if x == 0 -// +1 if x > 0 -// -func (x *Rat) Sign() int { - return x.a.Sign() -} - -// IsInt returns true if the denominator of x is 1. -func (x *Rat) IsInt() bool { - return len(x.b.abs) == 0 || x.b.abs.cmp(natOne) == 0 -} - -// Num returns the numerator of x; it may be <= 0. -// The result is a reference to x's numerator; it -// may change if a new value is assigned to x, and vice versa. -// The sign of the numerator corresponds to the sign of x. -func (x *Rat) Num() *Int { - return &x.a -} - -// Denom returns the denominator of x; it is always > 0. -// The result is a reference to x's denominator; it -// may change if a new value is assigned to x, and vice versa. -func (x *Rat) Denom() *Int { - x.b.neg = false // the result is always >= 0 - if len(x.b.abs) == 0 { - x.b.abs = x.b.abs.set(natOne) // materialize denominator - } - return &x.b -} - -func (z *Rat) norm() *Rat { - switch { - case len(z.a.abs) == 0: - // z == 0 - normalize sign and denominator - z.a.neg = false - z.b.abs = z.b.abs.make(0) - case len(z.b.abs) == 0: - // z is normalized int - nothing to do - case z.b.abs.cmp(natOne) == 0: - // z is int - normalize denominator - z.b.abs = z.b.abs.make(0) - default: - neg := z.a.neg - z.a.neg = false - z.b.neg = false - if f := NewInt(0).binaryGCD(&z.a, &z.b); f.Cmp(intOne) != 0 { - z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f.abs) - z.b.abs, _ = z.b.abs.div(nil, z.b.abs, f.abs) - if z.b.abs.cmp(natOne) == 0 { - // z is int - normalize denominator - z.b.abs = z.b.abs.make(0) - } - } - z.a.neg = neg - } - return z -} - -// mulDenom sets z to the denominator product x*y (by taking into -// account that 0 values for x or y must be interpreted as 1) and -// returns z. -func mulDenom(z, x, y nat) nat { - switch { - case len(x) == 0: - return z.set(y) - case len(y) == 0: - return z.set(x) - } - return z.mul(x, y) -} - -// scaleDenom computes x*f. -// If f == 0 (zero value of denominator), the result is (a copy of) x. -func scaleDenom(x *Int, f nat) *Int { - var z Int - if len(f) == 0 { - return z.Set(x) - } - z.abs = z.abs.mul(x.abs, f) - z.neg = x.neg - return &z -} - -// Cmp compares x and y and returns: -// -// -1 if x < y -// 0 if x == y -// +1 if x > y -// -func (x *Rat) Cmp(y *Rat) int { - return scaleDenom(&x.a, y.b.abs).Cmp(scaleDenom(&y.a, x.b.abs)) -} - -// Add sets z to the sum x+y and returns z. -func (z *Rat) Add(x, y *Rat) *Rat { - a1 := scaleDenom(&x.a, y.b.abs) - a2 := scaleDenom(&y.a, x.b.abs) - z.a.Add(a1, a2) - z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs) - return z.norm() -} - -// Sub sets z to the difference x-y and returns z. -func (z *Rat) Sub(x, y *Rat) *Rat { - a1 := scaleDenom(&x.a, y.b.abs) - a2 := scaleDenom(&y.a, x.b.abs) - z.a.Sub(a1, a2) - z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs) - return z.norm() -} - -// Mul sets z to the product x*y and returns z. -func (z *Rat) Mul(x, y *Rat) *Rat { - z.a.Mul(&x.a, &y.a) - z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs) - return z.norm() -} - -// Quo sets z to the quotient x/y and returns z. -// If y == 0, a division-by-zero run-time panic occurs. -func (z *Rat) Quo(x, y *Rat) *Rat { - if len(y.a.abs) == 0 { - panic("division by zero") - } - a := scaleDenom(&x.a, y.b.abs) - b := scaleDenom(&y.a, x.b.abs) - z.a.abs = a.abs - z.b.abs = b.abs - z.a.neg = a.neg != b.neg - return z.norm() -} - -func ratTok(ch rune) bool { - return strings.IndexRune("+-/0123456789.eE", ch) >= 0 -} - -// Scan is a support routine for fmt.Scanner. It accepts the formats -// 'e', 'E', 'f', 'F', 'g', 'G', and 'v'. All formats are equivalent. -func (z *Rat) Scan(s fmt.ScanState, ch rune) error { - tok, err := s.Token(true, ratTok) - if err != nil { - return err - } - if strings.IndexRune("efgEFGv", ch) < 0 { - return errors.New("Rat.Scan: invalid verb") - } - if _, ok := z.SetString(string(tok)); !ok { - return errors.New("Rat.Scan: invalid syntax") - } - return nil -} - -// SetString sets z to the value of s and returns z and a boolean indicating -// success. s can be given as a fraction "a/b" or as a floating-point number -// optionally followed by an exponent. If the operation failed, the value of -// z is undefined but the returned value is nil. -func (z *Rat) SetString(s string) (*Rat, bool) { - if len(s) == 0 { - return nil, false - } - - // check for a quotient - sep := strings.Index(s, "/") - if sep >= 0 { - if _, ok := z.a.SetString(s[0:sep], 10); !ok { - return nil, false - } - s = s[sep+1:] - var err error - if z.b.abs, _, err = z.b.abs.scan(strings.NewReader(s), 10); err != nil { - return nil, false - } - return z.norm(), true - } - - // check for a decimal point - sep = strings.Index(s, ".") - // check for an exponent - e := strings.IndexAny(s, "eE") - var exp Int - if e >= 0 { - if e < sep { - // The E must come after the decimal point. - return nil, false - } - if _, ok := exp.SetString(s[e+1:], 10); !ok { - return nil, false - } - s = s[0:e] - } - if sep >= 0 { - s = s[0:sep] + s[sep+1:] - exp.Sub(&exp, NewInt(int64(len(s)-sep))) - } - - if _, ok := z.a.SetString(s, 10); !ok { - return nil, false - } - powTen := nat(nil).expNN(natTen, exp.abs, nil) - if exp.neg { - z.b.abs = powTen - z.norm() - } else { - z.a.abs = z.a.abs.mul(z.a.abs, powTen) - z.b.abs = z.b.abs.make(0) - } - - return z, true -} - -// String returns a string representation of x in the form "a/b" (even if b == 1). -func (x *Rat) String() string { - s := "/1" - if len(x.b.abs) != 0 { - s = "/" + x.b.abs.decimalString() - } - return x.a.String() + s -} - -// RatString returns a string representation of x in the form "a/b" if b != 1, -// and in the form "a" if b == 1. -func (x *Rat) RatString() string { - if x.IsInt() { - return x.a.String() - } - return x.String() -} - -// FloatString returns a string representation of x in decimal form with prec -// digits of precision after the decimal point and the last digit rounded. -func (x *Rat) FloatString(prec int) string { - if x.IsInt() { - s := x.a.String() - if prec > 0 { - s += "." + strings.Repeat("0", prec) - } - return s - } - // x.b.abs != 0 - - q, r := nat(nil).div(nat(nil), x.a.abs, x.b.abs) - - p := natOne - if prec > 0 { - p = nat(nil).expNN(natTen, nat(nil).setUint64(uint64(prec)), nil) - } - - r = r.mul(r, p) - r, r2 := r.div(nat(nil), r, x.b.abs) - - // see if we need to round up - r2 = r2.add(r2, r2) - if x.b.abs.cmp(r2) <= 0 { - r = r.add(r, natOne) - if r.cmp(p) >= 0 { - q = nat(nil).add(q, natOne) - r = nat(nil).sub(r, p) - } - } - - s := q.decimalString() - if x.a.neg { - s = "-" + s - } - - if prec > 0 { - rs := r.decimalString() - leadingZeros := prec - len(rs) - s += "." + strings.Repeat("0", leadingZeros) + rs - } - - return s -} - -// Gob codec version. Permits backward-compatible changes to the encoding. -const ratGobVersion byte = 1 - -// GobEncode implements the gob.GobEncoder interface. -func (x *Rat) GobEncode() ([]byte, error) { - if x == nil { - return nil, nil - } - buf := make([]byte, 1+4+(len(x.a.abs)+len(x.b.abs))*_S) // extra bytes for version and sign bit (1), and numerator length (4) - i := x.b.abs.bytes(buf) - j := x.a.abs.bytes(buf[0:i]) - n := i - j - if int(uint32(n)) != n { - // this should never happen - return nil, errors.New("Rat.GobEncode: numerator too large") - } - binary.BigEndian.PutUint32(buf[j-4:j], uint32(n)) - j -= 1 + 4 - b := ratGobVersion << 1 // make space for sign bit - if x.a.neg { - b |= 1 - } - buf[j] = b - return buf[j:], nil -} - -// GobDecode implements the gob.GobDecoder interface. -func (z *Rat) GobDecode(buf []byte) error { - if len(buf) == 0 { - // Other side sent a nil or default value. - *z = Rat{} - return nil - } - b := buf[0] - if b>>1 != ratGobVersion { - return errors.New(fmt.Sprintf("Rat.GobDecode: encoding version %d not supported", b>>1)) - } - const j = 1 + 4 - i := j + binary.BigEndian.Uint32(buf[j-4:j]) - z.a.neg = b&1 != 0 - z.a.abs = z.a.abs.setBytes(buf[j:i]) - z.b.abs = z.b.abs.setBytes(buf[i:]) - return nil -} - -// MarshalText implements the encoding.TextMarshaler interface -func (r *Rat) MarshalText() (text []byte, err error) { - return []byte(r.RatString()), nil -} - -// UnmarshalText implements the encoding.TextUnmarshaler interface -func (r *Rat) UnmarshalText(text []byte) error { - if _, ok := r.SetString(string(text)); !ok { - return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Rat", text) - } - return nil -} |