summaryrefslogtreecommitdiff
path: root/src/pkg/math/cmplx/pow.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/math/cmplx/pow.go')
-rw-r--r--src/pkg/math/cmplx/pow.go78
1 files changed, 0 insertions, 78 deletions
diff --git a/src/pkg/math/cmplx/pow.go b/src/pkg/math/cmplx/pow.go
deleted file mode 100644
index 1630b879b..000000000
--- a/src/pkg/math/cmplx/pow.go
+++ /dev/null
@@ -1,78 +0,0 @@
-// Copyright 2010 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package cmplx
-
-import "math"
-
-// The original C code, the long comment, and the constants
-// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
-// The go code is a simplified version of the original C.
-//
-// Cephes Math Library Release 2.8: June, 2000
-// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
-//
-// The readme file at http://netlib.sandia.gov/cephes/ says:
-// Some software in this archive may be from the book _Methods and
-// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
-// International, 1989) or from the Cephes Mathematical Library, a
-// commercial product. In either event, it is copyrighted by the author.
-// What you see here may be used freely but it comes with no support or
-// guarantee.
-//
-// The two known misprints in the book are repaired here in the
-// source listings for the gamma function and the incomplete beta
-// integral.
-//
-// Stephen L. Moshier
-// moshier@na-net.ornl.gov
-
-// Complex power function
-//
-// DESCRIPTION:
-//
-// Raises complex A to the complex Zth power.
-// Definition is per AMS55 # 4.2.8,
-// analytically equivalent to cpow(a,z) = cexp(z clog(a)).
-//
-// ACCURACY:
-//
-// Relative error:
-// arithmetic domain # trials peak rms
-// IEEE -10,+10 30000 9.4e-15 1.5e-15
-
-// Pow returns x**y, the base-x exponential of y.
-// For generalized compatibility with math.Pow:
-// Pow(0, ±0) returns 1+0i
-// Pow(0, c) for real(c)<0 returns Inf+0i if imag(c) is zero, otherwise Inf+Inf i.
-func Pow(x, y complex128) complex128 {
- if x == 0 { // Guaranteed also true for x == -0.
- r, i := real(y), imag(y)
- switch {
- case r == 0:
- return 1
- case r < 0:
- if i == 0 {
- return complex(math.Inf(1), 0)
- }
- return Inf()
- case r > 0:
- return 0
- }
- panic("not reached")
- }
- modulus := Abs(x)
- if modulus == 0 {
- return complex(0, 0)
- }
- r := math.Pow(modulus, real(y))
- arg := Phase(x)
- theta := real(y) * arg
- if imag(y) != 0 {
- r *= math.Exp(-imag(y) * arg)
- theta += imag(y) * math.Log(modulus)
- }
- s, c := math.Sincos(theta)
- return complex(r*c, r*s)
-}