diff options
Diffstat (limited to 'src/pkg/math/cmplx/pow.go')
-rw-r--r-- | src/pkg/math/cmplx/pow.go | 78 |
1 files changed, 0 insertions, 78 deletions
diff --git a/src/pkg/math/cmplx/pow.go b/src/pkg/math/cmplx/pow.go deleted file mode 100644 index 1630b879b..000000000 --- a/src/pkg/math/cmplx/pow.go +++ /dev/null @@ -1,78 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package cmplx - -import "math" - -// The original C code, the long comment, and the constants -// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c. -// The go code is a simplified version of the original C. -// -// Cephes Math Library Release 2.8: June, 2000 -// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier -// -// The readme file at http://netlib.sandia.gov/cephes/ says: -// Some software in this archive may be from the book _Methods and -// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster -// International, 1989) or from the Cephes Mathematical Library, a -// commercial product. In either event, it is copyrighted by the author. -// What you see here may be used freely but it comes with no support or -// guarantee. -// -// The two known misprints in the book are repaired here in the -// source listings for the gamma function and the incomplete beta -// integral. -// -// Stephen L. Moshier -// moshier@na-net.ornl.gov - -// Complex power function -// -// DESCRIPTION: -// -// Raises complex A to the complex Zth power. -// Definition is per AMS55 # 4.2.8, -// analytically equivalent to cpow(a,z) = cexp(z clog(a)). -// -// ACCURACY: -// -// Relative error: -// arithmetic domain # trials peak rms -// IEEE -10,+10 30000 9.4e-15 1.5e-15 - -// Pow returns x**y, the base-x exponential of y. -// For generalized compatibility with math.Pow: -// Pow(0, ±0) returns 1+0i -// Pow(0, c) for real(c)<0 returns Inf+0i if imag(c) is zero, otherwise Inf+Inf i. -func Pow(x, y complex128) complex128 { - if x == 0 { // Guaranteed also true for x == -0. - r, i := real(y), imag(y) - switch { - case r == 0: - return 1 - case r < 0: - if i == 0 { - return complex(math.Inf(1), 0) - } - return Inf() - case r > 0: - return 0 - } - panic("not reached") - } - modulus := Abs(x) - if modulus == 0 { - return complex(0, 0) - } - r := math.Pow(modulus, real(y)) - arg := Phase(x) - theta := real(y) * arg - if imag(y) != 0 { - r *= math.Exp(-imag(y) * arg) - theta += imag(y) * math.Log(modulus) - } - s, c := math.Sincos(theta) - return complex(r*c, r*s) -} |