summaryrefslogtreecommitdiff
path: root/src/pkg/math/cmplx/tan.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/math/cmplx/tan.go')
-rw-r--r--src/pkg/math/cmplx/tan.go184
1 files changed, 0 insertions, 184 deletions
diff --git a/src/pkg/math/cmplx/tan.go b/src/pkg/math/cmplx/tan.go
deleted file mode 100644
index 9485315d8..000000000
--- a/src/pkg/math/cmplx/tan.go
+++ /dev/null
@@ -1,184 +0,0 @@
-// Copyright 2010 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package cmplx
-
-import "math"
-
-// The original C code, the long comment, and the constants
-// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
-// The go code is a simplified version of the original C.
-//
-// Cephes Math Library Release 2.8: June, 2000
-// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
-//
-// The readme file at http://netlib.sandia.gov/cephes/ says:
-// Some software in this archive may be from the book _Methods and
-// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
-// International, 1989) or from the Cephes Mathematical Library, a
-// commercial product. In either event, it is copyrighted by the author.
-// What you see here may be used freely but it comes with no support or
-// guarantee.
-//
-// The two known misprints in the book are repaired here in the
-// source listings for the gamma function and the incomplete beta
-// integral.
-//
-// Stephen L. Moshier
-// moshier@na-net.ornl.gov
-
-// Complex circular tangent
-//
-// DESCRIPTION:
-//
-// If
-// z = x + iy,
-//
-// then
-//
-// sin 2x + i sinh 2y
-// w = --------------------.
-// cos 2x + cosh 2y
-//
-// On the real axis the denominator is zero at odd multiples
-// of PI/2. The denominator is evaluated by its Taylor
-// series near these points.
-//
-// ctan(z) = -i ctanh(iz).
-//
-// ACCURACY:
-//
-// Relative error:
-// arithmetic domain # trials peak rms
-// DEC -10,+10 5200 7.1e-17 1.6e-17
-// IEEE -10,+10 30000 7.2e-16 1.2e-16
-// Also tested by ctan * ccot = 1 and catan(ctan(z)) = z.
-
-// Tan returns the tangent of x.
-func Tan(x complex128) complex128 {
- d := math.Cos(2*real(x)) + math.Cosh(2*imag(x))
- if math.Abs(d) < 0.25 {
- d = tanSeries(x)
- }
- if d == 0 {
- return Inf()
- }
- return complex(math.Sin(2*real(x))/d, math.Sinh(2*imag(x))/d)
-}
-
-// Complex hyperbolic tangent
-//
-// DESCRIPTION:
-//
-// tanh z = (sinh 2x + i sin 2y) / (cosh 2x + cos 2y) .
-//
-// ACCURACY:
-//
-// Relative error:
-// arithmetic domain # trials peak rms
-// IEEE -10,+10 30000 1.7e-14 2.4e-16
-
-// Tanh returns the hyperbolic tangent of x.
-func Tanh(x complex128) complex128 {
- d := math.Cosh(2*real(x)) + math.Cos(2*imag(x))
- if d == 0 {
- return Inf()
- }
- return complex(math.Sinh(2*real(x))/d, math.Sin(2*imag(x))/d)
-}
-
-// Program to subtract nearest integer multiple of PI
-func reducePi(x float64) float64 {
- const (
- // extended precision value of PI:
- DP1 = 3.14159265160560607910E0 // ?? 0x400921fb54000000
- DP2 = 1.98418714791870343106E-9 // ?? 0x3e210b4610000000
- DP3 = 1.14423774522196636802E-17 // ?? 0x3c6a62633145c06e
- )
- t := x / math.Pi
- if t >= 0 {
- t += 0.5
- } else {
- t -= 0.5
- }
- t = float64(int64(t)) // int64(t) = the multiple
- return ((x - t*DP1) - t*DP2) - t*DP3
-}
-
-// Taylor series expansion for cosh(2y) - cos(2x)
-func tanSeries(z complex128) float64 {
- const MACHEP = 1.0 / (1 << 53)
- x := math.Abs(2 * real(z))
- y := math.Abs(2 * imag(z))
- x = reducePi(x)
- x = x * x
- y = y * y
- x2 := 1.0
- y2 := 1.0
- f := 1.0
- rn := 0.0
- d := 0.0
- for {
- rn += 1
- f *= rn
- rn += 1
- f *= rn
- x2 *= x
- y2 *= y
- t := y2 + x2
- t /= f
- d += t
-
- rn += 1
- f *= rn
- rn += 1
- f *= rn
- x2 *= x
- y2 *= y
- t = y2 - x2
- t /= f
- d += t
- if math.Abs(t/d) <= MACHEP {
- break
- }
- }
- return d
-}
-
-// Complex circular cotangent
-//
-// DESCRIPTION:
-//
-// If
-// z = x + iy,
-//
-// then
-//
-// sin 2x - i sinh 2y
-// w = --------------------.
-// cosh 2y - cos 2x
-//
-// On the real axis, the denominator has zeros at even
-// multiples of PI/2. Near these points it is evaluated
-// by a Taylor series.
-//
-// ACCURACY:
-//
-// Relative error:
-// arithmetic domain # trials peak rms
-// DEC -10,+10 3000 6.5e-17 1.6e-17
-// IEEE -10,+10 30000 9.2e-16 1.2e-16
-// Also tested by ctan * ccot = 1 + i0.
-
-// Cot returns the cotangent of x.
-func Cot(x complex128) complex128 {
- d := math.Cosh(2*imag(x)) - math.Cos(2*real(x))
- if math.Abs(d) < 0.25 {
- d = tanSeries(x)
- }
- if d == 0 {
- return Inf()
- }
- return complex(math.Sin(2*real(x))/d, -math.Sinh(2*imag(x))/d)
-}