diff options
Diffstat (limited to 'src/pkg/math/lgamma.go')
-rw-r--r-- | src/pkg/math/lgamma.go | 165 |
1 files changed, 90 insertions, 75 deletions
diff --git a/src/pkg/math/lgamma.go b/src/pkg/math/lgamma.go index dc30f468f..6a02c412d 100644 --- a/src/pkg/math/lgamma.go +++ b/src/pkg/math/lgamma.go @@ -88,6 +88,81 @@ package math // // +var _lgamA = [...]float64{ + 7.72156649015328655494e-02, // 0x3FB3C467E37DB0C8 + 3.22467033424113591611e-01, // 0x3FD4A34CC4A60FAD + 6.73523010531292681824e-02, // 0x3FB13E001A5562A7 + 2.05808084325167332806e-02, // 0x3F951322AC92547B + 7.38555086081402883957e-03, // 0x3F7E404FB68FEFE8 + 2.89051383673415629091e-03, // 0x3F67ADD8CCB7926B + 1.19270763183362067845e-03, // 0x3F538A94116F3F5D + 5.10069792153511336608e-04, // 0x3F40B6C689B99C00 + 2.20862790713908385557e-04, // 0x3F2CF2ECED10E54D + 1.08011567247583939954e-04, // 0x3F1C5088987DFB07 + 2.52144565451257326939e-05, // 0x3EFA7074428CFA52 + 4.48640949618915160150e-05, // 0x3F07858E90A45837 +} +var _lgamR = [...]float64{ + 1.0, // placeholder + 1.39200533467621045958e+00, // 0x3FF645A762C4AB74 + 7.21935547567138069525e-01, // 0x3FE71A1893D3DCDC + 1.71933865632803078993e-01, // 0x3FC601EDCCFBDF27 + 1.86459191715652901344e-02, // 0x3F9317EA742ED475 + 7.77942496381893596434e-04, // 0x3F497DDACA41A95B + 7.32668430744625636189e-06, // 0x3EDEBAF7A5B38140 +} +var _lgamS = [...]float64{ + -7.72156649015328655494e-02, // 0xBFB3C467E37DB0C8 + 2.14982415960608852501e-01, // 0x3FCB848B36E20878 + 3.25778796408930981787e-01, // 0x3FD4D98F4F139F59 + 1.46350472652464452805e-01, // 0x3FC2BB9CBEE5F2F7 + 2.66422703033638609560e-02, // 0x3F9B481C7E939961 + 1.84028451407337715652e-03, // 0x3F5E26B67368F239 + 3.19475326584100867617e-05, // 0x3F00BFECDD17E945 +} +var _lgamT = [...]float64{ + 4.83836122723810047042e-01, // 0x3FDEF72BC8EE38A2 + -1.47587722994593911752e-01, // 0xBFC2E4278DC6C509 + 6.46249402391333854778e-02, // 0x3FB08B4294D5419B + -3.27885410759859649565e-02, // 0xBFA0C9A8DF35B713 + 1.79706750811820387126e-02, // 0x3F9266E7970AF9EC + -1.03142241298341437450e-02, // 0xBF851F9FBA91EC6A + 6.10053870246291332635e-03, // 0x3F78FCE0E370E344 + -3.68452016781138256760e-03, // 0xBF6E2EFFB3E914D7 + 2.25964780900612472250e-03, // 0x3F6282D32E15C915 + -1.40346469989232843813e-03, // 0xBF56FE8EBF2D1AF1 + 8.81081882437654011382e-04, // 0x3F4CDF0CEF61A8E9 + -5.38595305356740546715e-04, // 0xBF41A6109C73E0EC + 3.15632070903625950361e-04, // 0x3F34AF6D6C0EBBF7 + -3.12754168375120860518e-04, // 0xBF347F24ECC38C38 + 3.35529192635519073543e-04, // 0x3F35FD3EE8C2D3F4 +} +var _lgamU = [...]float64{ + -7.72156649015328655494e-02, // 0xBFB3C467E37DB0C8 + 6.32827064025093366517e-01, // 0x3FE4401E8B005DFF + 1.45492250137234768737e+00, // 0x3FF7475CD119BD6F + 9.77717527963372745603e-01, // 0x3FEF497644EA8450 + 2.28963728064692451092e-01, // 0x3FCD4EAEF6010924 + 1.33810918536787660377e-02, // 0x3F8B678BBF2BAB09 +} +var _lgamV = [...]float64{ + 1.0, + 2.45597793713041134822e+00, // 0x4003A5D7C2BD619C + 2.12848976379893395361e+00, // 0x40010725A42B18F5 + 7.69285150456672783825e-01, // 0x3FE89DFBE45050AF + 1.04222645593369134254e-01, // 0x3FBAAE55D6537C88 + 3.21709242282423911810e-03, // 0x3F6A5ABB57D0CF61 +} +var _lgamW = [...]float64{ + 4.18938533204672725052e-01, // 0x3FDACFE390C97D69 + 8.33333333333329678849e-02, // 0x3FB555555555553B + -2.77777777728775536470e-03, // 0xBF66C16C16B02E5C + 7.93650558643019558500e-04, // 0x3F4A019F98CF38B6 + -5.95187557450339963135e-04, // 0xBF4380CB8C0FE741 + 8.36339918996282139126e-04, // 0x3F4B67BA4CDAD5D1 + -1.63092934096575273989e-03, // 0xBF5AB89D0B9E43E4 +} + // Lgamma returns the natural logarithm and sign (-1 or +1) of Gamma(x). // // Special cases are: @@ -103,78 +178,18 @@ func Lgamma(x float64) (lgamma float64, sign int) { Two53 = 1 << 53 // 0x4340000000000000 ~9.0072e+15 Two58 = 1 << 58 // 0x4390000000000000 ~2.8823e+17 Tiny = 1.0 / (1 << 70) // 0x3b90000000000000 ~8.47033e-22 - A0 = 7.72156649015328655494e-02 // 0x3FB3C467E37DB0C8 - A1 = 3.22467033424113591611e-01 // 0x3FD4A34CC4A60FAD - A2 = 6.73523010531292681824e-02 // 0x3FB13E001A5562A7 - A3 = 2.05808084325167332806e-02 // 0x3F951322AC92547B - A4 = 7.38555086081402883957e-03 // 0x3F7E404FB68FEFE8 - A5 = 2.89051383673415629091e-03 // 0x3F67ADD8CCB7926B - A6 = 1.19270763183362067845e-03 // 0x3F538A94116F3F5D - A7 = 5.10069792153511336608e-04 // 0x3F40B6C689B99C00 - A8 = 2.20862790713908385557e-04 // 0x3F2CF2ECED10E54D - A9 = 1.08011567247583939954e-04 // 0x3F1C5088987DFB07 - A10 = 2.52144565451257326939e-05 // 0x3EFA7074428CFA52 - A11 = 4.48640949618915160150e-05 // 0x3F07858E90A45837 Tc = 1.46163214496836224576e+00 // 0x3FF762D86356BE3F Tf = -1.21486290535849611461e-01 // 0xBFBF19B9BCC38A42 // Tt = -(tail of Tf) - Tt = -3.63867699703950536541e-18 // 0xBC50C7CAA48A971F - T0 = 4.83836122723810047042e-01 // 0x3FDEF72BC8EE38A2 - T1 = -1.47587722994593911752e-01 // 0xBFC2E4278DC6C509 - T2 = 6.46249402391333854778e-02 // 0x3FB08B4294D5419B - T3 = -3.27885410759859649565e-02 // 0xBFA0C9A8DF35B713 - T4 = 1.79706750811820387126e-02 // 0x3F9266E7970AF9EC - T5 = -1.03142241298341437450e-02 // 0xBF851F9FBA91EC6A - T6 = 6.10053870246291332635e-03 // 0x3F78FCE0E370E344 - T7 = -3.68452016781138256760e-03 // 0xBF6E2EFFB3E914D7 - T8 = 2.25964780900612472250e-03 // 0x3F6282D32E15C915 - T9 = -1.40346469989232843813e-03 // 0xBF56FE8EBF2D1AF1 - T10 = 8.81081882437654011382e-04 // 0x3F4CDF0CEF61A8E9 - T11 = -5.38595305356740546715e-04 // 0xBF41A6109C73E0EC - T12 = 3.15632070903625950361e-04 // 0x3F34AF6D6C0EBBF7 - T13 = -3.12754168375120860518e-04 // 0xBF347F24ECC38C38 - T14 = 3.35529192635519073543e-04 // 0x3F35FD3EE8C2D3F4 - U0 = -7.72156649015328655494e-02 // 0xBFB3C467E37DB0C8 - U1 = 6.32827064025093366517e-01 // 0x3FE4401E8B005DFF - U2 = 1.45492250137234768737e+00 // 0x3FF7475CD119BD6F - U3 = 9.77717527963372745603e-01 // 0x3FEF497644EA8450 - U4 = 2.28963728064692451092e-01 // 0x3FCD4EAEF6010924 - U5 = 1.33810918536787660377e-02 // 0x3F8B678BBF2BAB09 - V1 = 2.45597793713041134822e+00 // 0x4003A5D7C2BD619C - V2 = 2.12848976379893395361e+00 // 0x40010725A42B18F5 - V3 = 7.69285150456672783825e-01 // 0x3FE89DFBE45050AF - V4 = 1.04222645593369134254e-01 // 0x3FBAAE55D6537C88 - V5 = 3.21709242282423911810e-03 // 0x3F6A5ABB57D0CF61 - S0 = -7.72156649015328655494e-02 // 0xBFB3C467E37DB0C8 - S1 = 2.14982415960608852501e-01 // 0x3FCB848B36E20878 - S2 = 3.25778796408930981787e-01 // 0x3FD4D98F4F139F59 - S3 = 1.46350472652464452805e-01 // 0x3FC2BB9CBEE5F2F7 - S4 = 2.66422703033638609560e-02 // 0x3F9B481C7E939961 - S5 = 1.84028451407337715652e-03 // 0x3F5E26B67368F239 - S6 = 3.19475326584100867617e-05 // 0x3F00BFECDD17E945 - R1 = 1.39200533467621045958e+00 // 0x3FF645A762C4AB74 - R2 = 7.21935547567138069525e-01 // 0x3FE71A1893D3DCDC - R3 = 1.71933865632803078993e-01 // 0x3FC601EDCCFBDF27 - R4 = 1.86459191715652901344e-02 // 0x3F9317EA742ED475 - R5 = 7.77942496381893596434e-04 // 0x3F497DDACA41A95B - R6 = 7.32668430744625636189e-06 // 0x3EDEBAF7A5B38140 - W0 = 4.18938533204672725052e-01 // 0x3FDACFE390C97D69 - W1 = 8.33333333333329678849e-02 // 0x3FB555555555553B - W2 = -2.77777777728775536470e-03 // 0xBF66C16C16B02E5C - W3 = 7.93650558643019558500e-04 // 0x3F4A019F98CF38B6 - W4 = -5.95187557450339963135e-04 // 0xBF4380CB8C0FE741 - W5 = 8.36339918996282139126e-04 // 0x3F4B67BA4CDAD5D1 - W6 = -1.63092934096575273989e-03 // 0xBF5AB89D0B9E43E4 + Tt = -3.63867699703950536541e-18 // 0xBC50C7CAA48A971F ) - // TODO(rsc): Remove manual inlining of IsNaN, IsInf - // when compiler does it for us // special cases sign = 1 switch { - case x != x: // IsNaN(x): + case IsNaN(x): lgamma = x return - case x < -MaxFloat64 || x > MaxFloat64: // IsInf(x, 0): + case IsInf(x, 0): lgamma = x return case x == 0: @@ -206,7 +221,7 @@ func Lgamma(x float64) (lgamma float64, sign int) { lgamma = Inf(1) // -integer return } - nadj = Log(Pi / Fabs(t*x)) + nadj = Log(Pi / Abs(t*x)) if t < 0 { sign = -1 } @@ -249,28 +264,28 @@ func Lgamma(x float64) (lgamma float64, sign int) { switch i { case 0: z := y * y - p1 := A0 + z*(A2+z*(A4+z*(A6+z*(A8+z*A10)))) - p2 := z * (A1 + z*(A3+z*(A5+z*(A7+z*(A9+z*A11))))) + p1 := _lgamA[0] + z*(_lgamA[2]+z*(_lgamA[4]+z*(_lgamA[6]+z*(_lgamA[8]+z*_lgamA[10])))) + p2 := z * (_lgamA[1] + z*(+_lgamA[3]+z*(_lgamA[5]+z*(_lgamA[7]+z*(_lgamA[9]+z*_lgamA[11]))))) p := y*p1 + p2 lgamma += (p - 0.5*y) case 1: z := y * y w := z * y - p1 := T0 + w*(T3+w*(T6+w*(T9+w*T12))) // parallel comp - p2 := T1 + w*(T4+w*(T7+w*(T10+w*T13))) - p3 := T2 + w*(T5+w*(T8+w*(T11+w*T14))) + p1 := _lgamT[0] + w*(_lgamT[3]+w*(_lgamT[6]+w*(_lgamT[9]+w*_lgamT[12]))) // parallel comp + p2 := _lgamT[1] + w*(_lgamT[4]+w*(_lgamT[7]+w*(_lgamT[10]+w*_lgamT[13]))) + p3 := _lgamT[2] + w*(_lgamT[5]+w*(_lgamT[8]+w*(_lgamT[11]+w*_lgamT[14]))) p := z*p1 - (Tt - w*(p2+y*p3)) lgamma += (Tf + p) case 2: - p1 := y * (U0 + y*(U1+y*(U2+y*(U3+y*(U4+y*U5))))) - p2 := 1 + y*(V1+y*(V2+y*(V3+y*(V4+y*V5)))) + p1 := y * (_lgamU[0] + y*(_lgamU[1]+y*(_lgamU[2]+y*(_lgamU[3]+y*(_lgamU[4]+y*_lgamU[5]))))) + p2 := 1 + y*(_lgamV[1]+y*(_lgamV[2]+y*(_lgamV[3]+y*(_lgamV[4]+y*_lgamV[5])))) lgamma += (-0.5*y + p1/p2) } case x < 8: // 2 <= x < 8 i := int(x) y := x - float64(i) - p := y * (S0 + y*(S1+y*(S2+y*(S3+y*(S4+y*(S5+y*S6)))))) - q := 1 + y*(R1+y*(R2+y*(R3+y*(R4+y*(R5+y*R6))))) + p := y * (_lgamS[0] + y*(_lgamS[1]+y*(_lgamS[2]+y*(_lgamS[3]+y*(_lgamS[4]+y*(_lgamS[5]+y*_lgamS[6])))))) + q := 1 + y*(_lgamR[1]+y*(_lgamR[2]+y*(_lgamR[3]+y*(_lgamR[4]+y*(_lgamR[5]+y*_lgamR[6]))))) lgamma = 0.5*y + p/q z := 1.0 // Lgamma(1+s) = Log(s) + Lgamma(s) switch i { @@ -294,7 +309,7 @@ func Lgamma(x float64) (lgamma float64, sign int) { t := Log(x) z := 1 / x y := z * z - w := W0 + z*(W1+y*(W2+y*(W3+y*(W4+y*(W5+y*W6))))) + w := _lgamW[0] + z*(_lgamW[1]+y*(_lgamW[2]+y*(_lgamW[3]+y*(_lgamW[4]+y*(_lgamW[5]+y*_lgamW[6]))))) lgamma = (x-0.5)*(t-1) + w default: // 2**58 <= x <= Inf lgamma = x * (Log(x) - 1) @@ -319,7 +334,7 @@ func sinPi(x float64) float64 { z := Floor(x) var n int if z != x { // inexact - x = Fmod(x, 2) + x = Mod(x, 2) n = int(x * 4) } else { if x >= Two53 { // x must be even |