summaryrefslogtreecommitdiff
path: root/src/pkg/math/lgamma.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/math/lgamma.go')
-rw-r--r--src/pkg/math/lgamma.go350
1 files changed, 0 insertions, 350 deletions
diff --git a/src/pkg/math/lgamma.go b/src/pkg/math/lgamma.go
deleted file mode 100644
index dc30f468f..000000000
--- a/src/pkg/math/lgamma.go
+++ /dev/null
@@ -1,350 +0,0 @@
-// Copyright 2010 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package math
-
-/*
- Floating-point logarithm of the Gamma function.
-*/
-
-// The original C code and the long comment below are
-// from FreeBSD's /usr/src/lib/msun/src/e_lgamma_r.c and
-// came with this notice. The go code is a simplified
-// version of the original C.
-//
-// ====================================================
-// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
-//
-// Developed at SunPro, a Sun Microsystems, Inc. business.
-// Permission to use, copy, modify, and distribute this
-// software is freely granted, provided that this notice
-// is preserved.
-// ====================================================
-//
-// __ieee754_lgamma_r(x, signgamp)
-// Reentrant version of the logarithm of the Gamma function
-// with user provided pointer for the sign of Gamma(x).
-//
-// Method:
-// 1. Argument Reduction for 0 < x <= 8
-// Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
-// reduce x to a number in [1.5,2.5] by
-// lgamma(1+s) = log(s) + lgamma(s)
-// for example,
-// lgamma(7.3) = log(6.3) + lgamma(6.3)
-// = log(6.3*5.3) + lgamma(5.3)
-// = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
-// 2. Polynomial approximation of lgamma around its
-// minimum (ymin=1.461632144968362245) to maintain monotonicity.
-// On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
-// Let z = x-ymin;
-// lgamma(x) = -1.214862905358496078218 + z**2*poly(z)
-// poly(z) is a 14 degree polynomial.
-// 2. Rational approximation in the primary interval [2,3]
-// We use the following approximation:
-// s = x-2.0;
-// lgamma(x) = 0.5*s + s*P(s)/Q(s)
-// with accuracy
-// |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
-// Our algorithms are based on the following observation
-//
-// zeta(2)-1 2 zeta(3)-1 3
-// lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
-// 2 3
-//
-// where Euler = 0.5772156649... is the Euler constant, which
-// is very close to 0.5.
-//
-// 3. For x>=8, we have
-// lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
-// (better formula:
-// lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
-// Let z = 1/x, then we approximation
-// f(z) = lgamma(x) - (x-0.5)(log(x)-1)
-// by
-// 3 5 11
-// w = w0 + w1*z + w2*z + w3*z + ... + w6*z
-// where
-// |w - f(z)| < 2**-58.74
-//
-// 4. For negative x, since (G is gamma function)
-// -x*G(-x)*G(x) = pi/sin(pi*x),
-// we have
-// G(x) = pi/(sin(pi*x)*(-x)*G(-x))
-// since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
-// Hence, for x<0, signgam = sign(sin(pi*x)) and
-// lgamma(x) = log(|Gamma(x)|)
-// = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
-// Note: one should avoid computing pi*(-x) directly in the
-// computation of sin(pi*(-x)).
-//
-// 5. Special Cases
-// lgamma(2+s) ~ s*(1-Euler) for tiny s
-// lgamma(1)=lgamma(2)=0
-// lgamma(x) ~ -log(x) for tiny x
-// lgamma(0) = lgamma(inf) = inf
-// lgamma(-integer) = +-inf
-//
-//
-
-// Lgamma returns the natural logarithm and sign (-1 or +1) of Gamma(x).
-//
-// Special cases are:
-// Lgamma(+Inf) = +Inf
-// Lgamma(0) = +Inf
-// Lgamma(-integer) = +Inf
-// Lgamma(-Inf) = -Inf
-// Lgamma(NaN) = NaN
-func Lgamma(x float64) (lgamma float64, sign int) {
- const (
- Ymin = 1.461632144968362245
- Two52 = 1 << 52 // 0x4330000000000000 ~4.5036e+15
- Two53 = 1 << 53 // 0x4340000000000000 ~9.0072e+15
- Two58 = 1 << 58 // 0x4390000000000000 ~2.8823e+17
- Tiny = 1.0 / (1 << 70) // 0x3b90000000000000 ~8.47033e-22
- A0 = 7.72156649015328655494e-02 // 0x3FB3C467E37DB0C8
- A1 = 3.22467033424113591611e-01 // 0x3FD4A34CC4A60FAD
- A2 = 6.73523010531292681824e-02 // 0x3FB13E001A5562A7
- A3 = 2.05808084325167332806e-02 // 0x3F951322AC92547B
- A4 = 7.38555086081402883957e-03 // 0x3F7E404FB68FEFE8
- A5 = 2.89051383673415629091e-03 // 0x3F67ADD8CCB7926B
- A6 = 1.19270763183362067845e-03 // 0x3F538A94116F3F5D
- A7 = 5.10069792153511336608e-04 // 0x3F40B6C689B99C00
- A8 = 2.20862790713908385557e-04 // 0x3F2CF2ECED10E54D
- A9 = 1.08011567247583939954e-04 // 0x3F1C5088987DFB07
- A10 = 2.52144565451257326939e-05 // 0x3EFA7074428CFA52
- A11 = 4.48640949618915160150e-05 // 0x3F07858E90A45837
- Tc = 1.46163214496836224576e+00 // 0x3FF762D86356BE3F
- Tf = -1.21486290535849611461e-01 // 0xBFBF19B9BCC38A42
- // Tt = -(tail of Tf)
- Tt = -3.63867699703950536541e-18 // 0xBC50C7CAA48A971F
- T0 = 4.83836122723810047042e-01 // 0x3FDEF72BC8EE38A2
- T1 = -1.47587722994593911752e-01 // 0xBFC2E4278DC6C509
- T2 = 6.46249402391333854778e-02 // 0x3FB08B4294D5419B
- T3 = -3.27885410759859649565e-02 // 0xBFA0C9A8DF35B713
- T4 = 1.79706750811820387126e-02 // 0x3F9266E7970AF9EC
- T5 = -1.03142241298341437450e-02 // 0xBF851F9FBA91EC6A
- T6 = 6.10053870246291332635e-03 // 0x3F78FCE0E370E344
- T7 = -3.68452016781138256760e-03 // 0xBF6E2EFFB3E914D7
- T8 = 2.25964780900612472250e-03 // 0x3F6282D32E15C915
- T9 = -1.40346469989232843813e-03 // 0xBF56FE8EBF2D1AF1
- T10 = 8.81081882437654011382e-04 // 0x3F4CDF0CEF61A8E9
- T11 = -5.38595305356740546715e-04 // 0xBF41A6109C73E0EC
- T12 = 3.15632070903625950361e-04 // 0x3F34AF6D6C0EBBF7
- T13 = -3.12754168375120860518e-04 // 0xBF347F24ECC38C38
- T14 = 3.35529192635519073543e-04 // 0x3F35FD3EE8C2D3F4
- U0 = -7.72156649015328655494e-02 // 0xBFB3C467E37DB0C8
- U1 = 6.32827064025093366517e-01 // 0x3FE4401E8B005DFF
- U2 = 1.45492250137234768737e+00 // 0x3FF7475CD119BD6F
- U3 = 9.77717527963372745603e-01 // 0x3FEF497644EA8450
- U4 = 2.28963728064692451092e-01 // 0x3FCD4EAEF6010924
- U5 = 1.33810918536787660377e-02 // 0x3F8B678BBF2BAB09
- V1 = 2.45597793713041134822e+00 // 0x4003A5D7C2BD619C
- V2 = 2.12848976379893395361e+00 // 0x40010725A42B18F5
- V3 = 7.69285150456672783825e-01 // 0x3FE89DFBE45050AF
- V4 = 1.04222645593369134254e-01 // 0x3FBAAE55D6537C88
- V5 = 3.21709242282423911810e-03 // 0x3F6A5ABB57D0CF61
- S0 = -7.72156649015328655494e-02 // 0xBFB3C467E37DB0C8
- S1 = 2.14982415960608852501e-01 // 0x3FCB848B36E20878
- S2 = 3.25778796408930981787e-01 // 0x3FD4D98F4F139F59
- S3 = 1.46350472652464452805e-01 // 0x3FC2BB9CBEE5F2F7
- S4 = 2.66422703033638609560e-02 // 0x3F9B481C7E939961
- S5 = 1.84028451407337715652e-03 // 0x3F5E26B67368F239
- S6 = 3.19475326584100867617e-05 // 0x3F00BFECDD17E945
- R1 = 1.39200533467621045958e+00 // 0x3FF645A762C4AB74
- R2 = 7.21935547567138069525e-01 // 0x3FE71A1893D3DCDC
- R3 = 1.71933865632803078993e-01 // 0x3FC601EDCCFBDF27
- R4 = 1.86459191715652901344e-02 // 0x3F9317EA742ED475
- R5 = 7.77942496381893596434e-04 // 0x3F497DDACA41A95B
- R6 = 7.32668430744625636189e-06 // 0x3EDEBAF7A5B38140
- W0 = 4.18938533204672725052e-01 // 0x3FDACFE390C97D69
- W1 = 8.33333333333329678849e-02 // 0x3FB555555555553B
- W2 = -2.77777777728775536470e-03 // 0xBF66C16C16B02E5C
- W3 = 7.93650558643019558500e-04 // 0x3F4A019F98CF38B6
- W4 = -5.95187557450339963135e-04 // 0xBF4380CB8C0FE741
- W5 = 8.36339918996282139126e-04 // 0x3F4B67BA4CDAD5D1
- W6 = -1.63092934096575273989e-03 // 0xBF5AB89D0B9E43E4
- )
- // TODO(rsc): Remove manual inlining of IsNaN, IsInf
- // when compiler does it for us
- // special cases
- sign = 1
- switch {
- case x != x: // IsNaN(x):
- lgamma = x
- return
- case x < -MaxFloat64 || x > MaxFloat64: // IsInf(x, 0):
- lgamma = x
- return
- case x == 0:
- lgamma = Inf(1)
- return
- }
-
- neg := false
- if x < 0 {
- x = -x
- neg = true
- }
-
- if x < Tiny { // if |x| < 2**-70, return -log(|x|)
- if neg {
- sign = -1
- }
- lgamma = -Log(x)
- return
- }
- var nadj float64
- if neg {
- if x >= Two52 { // |x| >= 2**52, must be -integer
- lgamma = Inf(1)
- return
- }
- t := sinPi(x)
- if t == 0 {
- lgamma = Inf(1) // -integer
- return
- }
- nadj = Log(Pi / Fabs(t*x))
- if t < 0 {
- sign = -1
- }
- }
-
- switch {
- case x == 1 || x == 2: // purge off 1 and 2
- lgamma = 0
- return
- case x < 2: // use lgamma(x) = lgamma(x+1) - log(x)
- var y float64
- var i int
- if x <= 0.9 {
- lgamma = -Log(x)
- switch {
- case x >= (Ymin - 1 + 0.27): // 0.7316 <= x <= 0.9
- y = 1 - x
- i = 0
- case x >= (Ymin - 1 - 0.27): // 0.2316 <= x < 0.7316
- y = x - (Tc - 1)
- i = 1
- default: // 0 < x < 0.2316
- y = x
- i = 2
- }
- } else {
- lgamma = 0
- switch {
- case x >= (Ymin + 0.27): // 1.7316 <= x < 2
- y = 2 - x
- i = 0
- case x >= (Ymin - 0.27): // 1.2316 <= x < 1.7316
- y = x - Tc
- i = 1
- default: // 0.9 < x < 1.2316
- y = x - 1
- i = 2
- }
- }
- switch i {
- case 0:
- z := y * y
- p1 := A0 + z*(A2+z*(A4+z*(A6+z*(A8+z*A10))))
- p2 := z * (A1 + z*(A3+z*(A5+z*(A7+z*(A9+z*A11)))))
- p := y*p1 + p2
- lgamma += (p - 0.5*y)
- case 1:
- z := y * y
- w := z * y
- p1 := T0 + w*(T3+w*(T6+w*(T9+w*T12))) // parallel comp
- p2 := T1 + w*(T4+w*(T7+w*(T10+w*T13)))
- p3 := T2 + w*(T5+w*(T8+w*(T11+w*T14)))
- p := z*p1 - (Tt - w*(p2+y*p3))
- lgamma += (Tf + p)
- case 2:
- p1 := y * (U0 + y*(U1+y*(U2+y*(U3+y*(U4+y*U5)))))
- p2 := 1 + y*(V1+y*(V2+y*(V3+y*(V4+y*V5))))
- lgamma += (-0.5*y + p1/p2)
- }
- case x < 8: // 2 <= x < 8
- i := int(x)
- y := x - float64(i)
- p := y * (S0 + y*(S1+y*(S2+y*(S3+y*(S4+y*(S5+y*S6))))))
- q := 1 + y*(R1+y*(R2+y*(R3+y*(R4+y*(R5+y*R6)))))
- lgamma = 0.5*y + p/q
- z := 1.0 // Lgamma(1+s) = Log(s) + Lgamma(s)
- switch i {
- case 7:
- z *= (y + 6)
- fallthrough
- case 6:
- z *= (y + 5)
- fallthrough
- case 5:
- z *= (y + 4)
- fallthrough
- case 4:
- z *= (y + 3)
- fallthrough
- case 3:
- z *= (y + 2)
- lgamma += Log(z)
- }
- case x < Two58: // 8 <= x < 2**58
- t := Log(x)
- z := 1 / x
- y := z * z
- w := W0 + z*(W1+y*(W2+y*(W3+y*(W4+y*(W5+y*W6)))))
- lgamma = (x-0.5)*(t-1) + w
- default: // 2**58 <= x <= Inf
- lgamma = x * (Log(x) - 1)
- }
- if neg {
- lgamma = nadj - lgamma
- }
- return
-}
-
-// sinPi(x) is a helper function for negative x
-func sinPi(x float64) float64 {
- const (
- Two52 = 1 << 52 // 0x4330000000000000 ~4.5036e+15
- Two53 = 1 << 53 // 0x4340000000000000 ~9.0072e+15
- )
- if x < 0.25 {
- return -Sin(Pi * x)
- }
-
- // argument reduction
- z := Floor(x)
- var n int
- if z != x { // inexact
- x = Fmod(x, 2)
- n = int(x * 4)
- } else {
- if x >= Two53 { // x must be even
- x = 0
- n = 0
- } else {
- if x < Two52 {
- z = x + Two52 // exact
- }
- n = int(1 & Float64bits(z))
- x = float64(n)
- n <<= 2
- }
- }
- switch n {
- case 0:
- x = Sin(Pi * x)
- case 1, 2:
- x = Cos(Pi * (0.5 - x))
- case 3, 4:
- x = Sin(Pi * (1 - x))
- case 5, 6:
- x = -Cos(Pi * (x - 1.5))
- default:
- x = Sin(Pi * (x - 2))
- }
- return -x
-}