summaryrefslogtreecommitdiff
path: root/src/pkg/math/log.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/math/log.go')
-rw-r--r--src/pkg/math/log.go123
1 files changed, 0 insertions, 123 deletions
diff --git a/src/pkg/math/log.go b/src/pkg/math/log.go
deleted file mode 100644
index a786c8ce3..000000000
--- a/src/pkg/math/log.go
+++ /dev/null
@@ -1,123 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package math
-
-/*
- Floating-point logarithm.
-*/
-
-// The original C code, the long comment, and the constants
-// below are from FreeBSD's /usr/src/lib/msun/src/e_log.c
-// and came with this notice. The go code is a simpler
-// version of the original C.
-//
-// ====================================================
-// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
-//
-// Developed at SunPro, a Sun Microsystems, Inc. business.
-// Permission to use, copy, modify, and distribute this
-// software is freely granted, provided that this notice
-// is preserved.
-// ====================================================
-//
-// __ieee754_log(x)
-// Return the logarithm of x
-//
-// Method :
-// 1. Argument Reduction: find k and f such that
-// x = 2**k * (1+f),
-// where sqrt(2)/2 < 1+f < sqrt(2) .
-//
-// 2. Approximation of log(1+f).
-// Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
-// = 2s + 2/3 s**3 + 2/5 s**5 + .....,
-// = 2s + s*R
-// We use a special Reme algorithm on [0,0.1716] to generate
-// a polynomial of degree 14 to approximate R. The maximum error
-// of this polynomial approximation is bounded by 2**-58.45. In
-// other words,
-// 2 4 6 8 10 12 14
-// R(z) ~ L1*s +L2*s +L3*s +L4*s +L5*s +L6*s +L7*s
-// (the values of L1 to L7 are listed in the program) and
-// | 2 14 | -58.45
-// | L1*s +...+L7*s - R(z) | <= 2
-// | |
-// Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
-// In order to guarantee error in log below 1ulp, we compute log by
-// log(1+f) = f - s*(f - R) (if f is not too large)
-// log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
-//
-// 3. Finally, log(x) = k*Ln2 + log(1+f).
-// = k*Ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*Ln2_lo)))
-// Here Ln2 is split into two floating point number:
-// Ln2_hi + Ln2_lo,
-// where n*Ln2_hi is always exact for |n| < 2000.
-//
-// Special cases:
-// log(x) is NaN with signal if x < 0 (including -INF) ;
-// log(+INF) is +INF; log(0) is -INF with signal;
-// log(NaN) is that NaN with no signal.
-//
-// Accuracy:
-// according to an error analysis, the error is always less than
-// 1 ulp (unit in the last place).
-//
-// Constants:
-// The hexadecimal values are the intended ones for the following
-// constants. The decimal values may be used, provided that the
-// compiler will convert from decimal to binary accurately enough
-// to produce the hexadecimal values shown.
-
-// Log returns the natural logarithm of x.
-//
-// Special cases are:
-// Log(+Inf) = +Inf
-// Log(0) = -Inf
-// Log(x < 0) = NaN
-// Log(NaN) = NaN
-func Log(x float64) float64 {
- const (
- Ln2Hi = 6.93147180369123816490e-01 /* 3fe62e42 fee00000 */
- Ln2Lo = 1.90821492927058770002e-10 /* 3dea39ef 35793c76 */
- L1 = 6.666666666666735130e-01 /* 3FE55555 55555593 */
- L2 = 3.999999999940941908e-01 /* 3FD99999 9997FA04 */
- L3 = 2.857142874366239149e-01 /* 3FD24924 94229359 */
- L4 = 2.222219843214978396e-01 /* 3FCC71C5 1D8E78AF */
- L5 = 1.818357216161805012e-01 /* 3FC74664 96CB03DE */
- L6 = 1.531383769920937332e-01 /* 3FC39A09 D078C69F */
- L7 = 1.479819860511658591e-01 /* 3FC2F112 DF3E5244 */
- )
-
- // TODO(rsc): Remove manual inlining of IsNaN, IsInf
- // when compiler does it for us
- // special cases
- switch {
- case x != x || x > MaxFloat64: // IsNaN(x) || IsInf(x, 1):
- return x
- case x < 0:
- return NaN()
- case x == 0:
- return Inf(-1)
- }
-
- // reduce
- f1, ki := Frexp(x)
- if f1 < Sqrt2/2 {
- f1 *= 2
- ki--
- }
- f := f1 - 1
- k := float64(ki)
-
- // compute
- s := f / (2 + f)
- s2 := s * s
- s4 := s2 * s2
- t1 := s2 * (L1 + s4*(L3+s4*(L5+s4*L7)))
- t2 := s4 * (L2 + s4*(L4+s4*L6))
- R := t1 + t2
- hfsq := 0.5 * f * f
- return k*Ln2Hi - ((hfsq - (s*(hfsq+R) + k*Ln2Lo)) - f)
-}