summaryrefslogtreecommitdiff
path: root/src/pkg/math/sin.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/math/sin.go')
-rw-r--r--src/pkg/math/sin.go224
1 files changed, 0 insertions, 224 deletions
diff --git a/src/pkg/math/sin.go b/src/pkg/math/sin.go
deleted file mode 100644
index ed85f21be..000000000
--- a/src/pkg/math/sin.go
+++ /dev/null
@@ -1,224 +0,0 @@
-// Copyright 2011 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package math
-
-/*
- Floating-point sine and cosine.
-*/
-
-// The original C code, the long comment, and the constants
-// below were from http://netlib.sandia.gov/cephes/cmath/sin.c,
-// available from http://www.netlib.org/cephes/cmath.tgz.
-// The go code is a simplified version of the original C.
-//
-// sin.c
-//
-// Circular sine
-//
-// SYNOPSIS:
-//
-// double x, y, sin();
-// y = sin( x );
-//
-// DESCRIPTION:
-//
-// Range reduction is into intervals of pi/4. The reduction error is nearly
-// eliminated by contriving an extended precision modular arithmetic.
-//
-// Two polynomial approximating functions are employed.
-// Between 0 and pi/4 the sine is approximated by
-// x + x**3 P(x**2).
-// Between pi/4 and pi/2 the cosine is represented as
-// 1 - x**2 Q(x**2).
-//
-// ACCURACY:
-//
-// Relative error:
-// arithmetic domain # trials peak rms
-// DEC 0, 10 150000 3.0e-17 7.8e-18
-// IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17
-//
-// Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9. The loss
-// is not gradual, but jumps suddenly to about 1 part in 10e7. Results may
-// be meaningless for x > 2**49 = 5.6e14.
-//
-// cos.c
-//
-// Circular cosine
-//
-// SYNOPSIS:
-//
-// double x, y, cos();
-// y = cos( x );
-//
-// DESCRIPTION:
-//
-// Range reduction is into intervals of pi/4. The reduction error is nearly
-// eliminated by contriving an extended precision modular arithmetic.
-//
-// Two polynomial approximating functions are employed.
-// Between 0 and pi/4 the cosine is approximated by
-// 1 - x**2 Q(x**2).
-// Between pi/4 and pi/2 the sine is represented as
-// x + x**3 P(x**2).
-//
-// ACCURACY:
-//
-// Relative error:
-// arithmetic domain # trials peak rms
-// IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17
-// DEC 0,+1.07e9 17000 3.0e-17 7.2e-18
-//
-// Cephes Math Library Release 2.8: June, 2000
-// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
-//
-// The readme file at http://netlib.sandia.gov/cephes/ says:
-// Some software in this archive may be from the book _Methods and
-// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
-// International, 1989) or from the Cephes Mathematical Library, a
-// commercial product. In either event, it is copyrighted by the author.
-// What you see here may be used freely but it comes with no support or
-// guarantee.
-//
-// The two known misprints in the book are repaired here in the
-// source listings for the gamma function and the incomplete beta
-// integral.
-//
-// Stephen L. Moshier
-// moshier@na-net.ornl.gov
-
-// sin coefficients
-var _sin = [...]float64{
- 1.58962301576546568060E-10, // 0x3de5d8fd1fd19ccd
- -2.50507477628578072866E-8, // 0xbe5ae5e5a9291f5d
- 2.75573136213857245213E-6, // 0x3ec71de3567d48a1
- -1.98412698295895385996E-4, // 0xbf2a01a019bfdf03
- 8.33333333332211858878E-3, // 0x3f8111111110f7d0
- -1.66666666666666307295E-1, // 0xbfc5555555555548
-}
-
-// cos coefficients
-var _cos = [...]float64{
- -1.13585365213876817300E-11, // 0xbda8fa49a0861a9b
- 2.08757008419747316778E-9, // 0x3e21ee9d7b4e3f05
- -2.75573141792967388112E-7, // 0xbe927e4f7eac4bc6
- 2.48015872888517045348E-5, // 0x3efa01a019c844f5
- -1.38888888888730564116E-3, // 0xbf56c16c16c14f91
- 4.16666666666665929218E-2, // 0x3fa555555555554b
-}
-
-// Cos returns the cosine of the radian argument x.
-//
-// Special cases are:
-// Cos(±Inf) = NaN
-// Cos(NaN) = NaN
-func Cos(x float64) float64
-
-func cos(x float64) float64 {
- const (
- PI4A = 7.85398125648498535156E-1 // 0x3fe921fb40000000, Pi/4 split into three parts
- PI4B = 3.77489470793079817668E-8 // 0x3e64442d00000000,
- PI4C = 2.69515142907905952645E-15 // 0x3ce8469898cc5170,
- M4PI = 1.273239544735162542821171882678754627704620361328125 // 4/pi
- )
- // special cases
- switch {
- case IsNaN(x) || IsInf(x, 0):
- return NaN()
- }
-
- // make argument positive
- sign := false
- if x < 0 {
- x = -x
- }
-
- j := int64(x * M4PI) // integer part of x/(Pi/4), as integer for tests on the phase angle
- y := float64(j) // integer part of x/(Pi/4), as float
-
- // map zeros to origin
- if j&1 == 1 {
- j += 1
- y += 1
- }
- j &= 7 // octant modulo 2Pi radians (360 degrees)
- if j > 3 {
- j -= 4
- sign = !sign
- }
- if j > 1 {
- sign = !sign
- }
-
- z := ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic
- zz := z * z
- if j == 1 || j == 2 {
- y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])
- } else {
- y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])
- }
- if sign {
- y = -y
- }
- return y
-}
-
-// Sin returns the sine of the radian argument x.
-//
-// Special cases are:
-// Sin(±0) = ±0
-// Sin(±Inf) = NaN
-// Sin(NaN) = NaN
-func Sin(x float64) float64
-
-func sin(x float64) float64 {
- const (
- PI4A = 7.85398125648498535156E-1 // 0x3fe921fb40000000, Pi/4 split into three parts
- PI4B = 3.77489470793079817668E-8 // 0x3e64442d00000000,
- PI4C = 2.69515142907905952645E-15 // 0x3ce8469898cc5170,
- M4PI = 1.273239544735162542821171882678754627704620361328125 // 4/pi
- )
- // special cases
- switch {
- case x == 0 || IsNaN(x):
- return x // return ±0 || NaN()
- case IsInf(x, 0):
- return NaN()
- }
-
- // make argument positive but save the sign
- sign := false
- if x < 0 {
- x = -x
- sign = true
- }
-
- j := int64(x * M4PI) // integer part of x/(Pi/4), as integer for tests on the phase angle
- y := float64(j) // integer part of x/(Pi/4), as float
-
- // map zeros to origin
- if j&1 == 1 {
- j += 1
- y += 1
- }
- j &= 7 // octant modulo 2Pi radians (360 degrees)
- // reflect in x axis
- if j > 3 {
- sign = !sign
- j -= 4
- }
-
- z := ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic
- zz := z * z
- if j == 1 || j == 2 {
- y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])
- } else {
- y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])
- }
- if sign {
- y = -y
- }
- return y
-}