summaryrefslogtreecommitdiff
path: root/src/pkg/reflect/value.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/reflect/value.go')
-rw-r--r--src/pkg/reflect/value.go716
1 files changed, 645 insertions, 71 deletions
diff --git a/src/pkg/reflect/value.go b/src/pkg/reflect/value.go
index 79476ad22..c87812c46 100644
--- a/src/pkg/reflect/value.go
+++ b/src/pkg/reflect/value.go
@@ -60,7 +60,7 @@ func memmove(adst, asrc unsafe.Pointer, n uintptr) {
// direct operations.
type Value struct {
// typ holds the type of the value represented by a Value.
- typ *commonType
+ typ *rtype
// val holds the 1-word representation of the value.
// If flag's flagIndir bit is set, then val is a pointer to the data.
@@ -211,7 +211,7 @@ func storeIword(p unsafe.Pointer, w iword, n uintptr) {
// emptyInterface is the header for an interface{} value.
type emptyInterface struct {
- typ *runtimeType
+ typ *rtype
word iword
}
@@ -219,8 +219,8 @@ type emptyInterface struct {
type nonEmptyInterface struct {
// see ../runtime/iface.c:/Itab
itab *struct {
- ityp *runtimeType // static interface type
- typ *runtimeType // dynamic concrete type
+ ityp *rtype // static interface type
+ typ *rtype // dynamic concrete type
link unsafe.Pointer
bad int32
unused int32
@@ -302,6 +302,17 @@ func (v Value) Bytes() []byte {
return *(*[]byte)(v.val)
}
+// runes returns v's underlying value.
+// It panics if v's underlying value is not a slice of runes (int32s).
+func (v Value) runes() []rune {
+ v.mustBe(Slice)
+ if v.typ.Elem().Kind() != Int32 {
+ panic("reflect.Value.Bytes of non-rune slice")
+ }
+ // Slice is always bigger than a word; assume flagIndir.
+ return *(*[]rune)(v.val)
+}
+
// CanAddr returns true if the value's address can be obtained with Addr.
// Such values are called addressable. A value is addressable if it is
// an element of a slice, an element of an addressable array,
@@ -335,7 +346,7 @@ func (v Value) Call(in []Value) []Value {
}
// CallSlice calls the variadic function v with the input arguments in,
-// assigning the slice in[len(in)-1] to v's final variadic argument.
+// assigning the slice in[len(in)-1] to v's final variadic argument.
// For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]...).
// Call panics if v's Kind is not Func or if v is not variadic.
// It returns the output results as Values.
@@ -365,12 +376,12 @@ func (v Value) call(method string, in []Value) []Value {
if m.pkgPath != nil {
panic(method + " of unexported method")
}
- t = toCommonType(m.typ)
+ t = m.typ
iface := (*nonEmptyInterface)(v.val)
if iface.itab == nil {
panic(method + " of method on nil interface value")
}
- fn = iface.itab.fun[i]
+ fn = unsafe.Pointer(&iface.itab.fun[i])
rcvr = iface.word
} else {
ut := v.typ.uncommon()
@@ -381,8 +392,8 @@ func (v Value) call(method string, in []Value) []Value {
if m.pkgPath != nil {
panic(method + " of unexported method")
}
- fn = m.ifn
- t = toCommonType(m.mtyp)
+ fn = unsafe.Pointer(&m.ifn)
+ t = m.mtyp
rcvr = v.iword()
}
} else if v.flag&flagIndir != 0 {
@@ -490,9 +501,9 @@ func (v Value) call(method string, in []Value) []Value {
// TODO(rsc): revisit when reference counting happens.
// The values are holding up the in references for us,
// but something must be done for the out references.
- // For now make everything look like a pointer by pretending
- // to allocate a []*int.
- args := make([]*int, size/ptrSize)
+ // For now make everything look like a pointer by allocating
+ // a []unsafe.Pointer.
+ args := make([]unsafe.Pointer, size/ptrSize)
ptr := uintptr(unsafe.Pointer(&args[0]))
off := uintptr(0)
if v.flag&flagMethod != 0 {
@@ -502,7 +513,7 @@ func (v Value) call(method string, in []Value) []Value {
}
for i, v := range in {
v.mustBeExported()
- targ := t.In(i).(*commonType)
+ targ := t.In(i).(*rtype)
a := uintptr(targ.align)
off = (off + a - 1) &^ (a - 1)
n := targ.size
@@ -536,6 +547,85 @@ func (v Value) call(method string, in []Value) []Value {
return ret
}
+// callReflect is the call implementation used by a function
+// returned by MakeFunc. In many ways it is the opposite of the
+// method Value.call above. The method above converts a call using Values
+// into a call of a function with a concrete argument frame, while
+// callReflect converts a call of a function with a concrete argument
+// frame into a call using Values.
+// It is in this file so that it can be next to the call method above.
+// The remainder of the MakeFunc implementation is in makefunc.go.
+func callReflect(ctxt *makeFuncImpl, frame unsafe.Pointer) {
+ ftyp := ctxt.typ
+ f := ctxt.fn
+
+ // Copy argument frame into Values.
+ ptr := frame
+ off := uintptr(0)
+ in := make([]Value, 0, len(ftyp.in))
+ for _, arg := range ftyp.in {
+ typ := arg
+ off += -off & uintptr(typ.align-1)
+ v := Value{typ, nil, flag(typ.Kind()) << flagKindShift}
+ if typ.size <= ptrSize {
+ // value fits in word.
+ v.val = unsafe.Pointer(loadIword(unsafe.Pointer(uintptr(ptr)+off), typ.size))
+ } else {
+ // value does not fit in word.
+ // Must make a copy, because f might keep a reference to it,
+ // and we cannot let f keep a reference to the stack frame
+ // after this function returns, not even a read-only reference.
+ v.val = unsafe_New(typ)
+ memmove(v.val, unsafe.Pointer(uintptr(ptr)+off), typ.size)
+ v.flag |= flagIndir
+ }
+ in = append(in, v)
+ off += typ.size
+ }
+
+ // Call underlying function.
+ out := f(in)
+ if len(out) != len(ftyp.out) {
+ panic("reflect: wrong return count from function created by MakeFunc")
+ }
+
+ // Copy results back into argument frame.
+ if len(ftyp.out) > 0 {
+ off += -off & (ptrSize - 1)
+ for i, arg := range ftyp.out {
+ typ := arg
+ v := out[i]
+ if v.typ != typ {
+ panic("reflect: function created by MakeFunc using " + funcName(f) +
+ " returned wrong type: have " +
+ out[i].typ.String() + " for " + typ.String())
+ }
+ if v.flag&flagRO != 0 {
+ panic("reflect: function created by MakeFunc using " + funcName(f) +
+ " returned value obtained from unexported field")
+ }
+ off += -off & uintptr(typ.align-1)
+ addr := unsafe.Pointer(uintptr(ptr) + off)
+ if v.flag&flagIndir == 0 {
+ storeIword(addr, iword(v.val), typ.size)
+ } else {
+ memmove(addr, v.val, typ.size)
+ }
+ off += typ.size
+ }
+ }
+}
+
+// funcName returns the name of f, for use in error messages.
+func funcName(f func([]Value) []Value) string {
+ pc := *(*uintptr)(unsafe.Pointer(&f))
+ rf := runtime.FuncForPC(pc)
+ if rf != nil {
+ return rf.Name()
+ }
+ return "closure"
+}
+
// Cap returns v's capacity.
// It panics if v's Kind is not Array, Chan, or Slice.
func (v Value) Cap() int {
@@ -586,7 +676,7 @@ func (v Value) Elem() Value {
switch k {
case Interface:
var (
- typ *commonType
+ typ *rtype
val unsafe.Pointer
)
if v.typ.NumMethod() == 0 {
@@ -595,7 +685,7 @@ func (v Value) Elem() Value {
// nil interface value
return Value{}
}
- typ = toCommonType(eface.typ)
+ typ = eface.typ
val = unsafe.Pointer(eface.word)
} else {
iface := (*nonEmptyInterface)(v.val)
@@ -603,7 +693,7 @@ func (v Value) Elem() Value {
// nil interface value
return Value{}
}
- typ = toCommonType(iface.itab.typ)
+ typ = iface.itab.typ
val = unsafe.Pointer(iface.word)
}
fl := v.flag & flagRO
@@ -623,7 +713,7 @@ func (v Value) Elem() Value {
return Value{}
}
tt := (*ptrType)(unsafe.Pointer(v.typ))
- typ := toCommonType(tt.elem)
+ typ := tt.elem
fl := v.flag&flagRO | flagIndir | flagAddr
fl |= flag(typ.Kind() << flagKindShift)
return Value{typ, val, fl}
@@ -640,7 +730,7 @@ func (v Value) Field(i int) Value {
panic("reflect: Field index out of range")
}
field := &tt.fields[i]
- typ := toCommonType(field.typ)
+ typ := field.typ
// Inherit permission bits from v.
fl := v.flag & (flagRO | flagIndir | flagAddr)
@@ -723,8 +813,10 @@ func (v Value) Float() float64 {
panic(&ValueError{"reflect.Value.Float", k})
}
+var uint8Type = TypeOf(uint8(0)).(*rtype)
+
// Index returns v's i'th element.
-// It panics if v's Kind is not Array or Slice or i is out of range.
+// It panics if v's Kind is not Array, Slice, or String or i is out of range.
func (v Value) Index(i int) Value {
k := v.kind()
switch k {
@@ -733,7 +825,7 @@ func (v Value) Index(i int) Value {
if i < 0 || i > int(tt.len) {
panic("reflect: array index out of range")
}
- typ := toCommonType(tt.elem)
+ typ := tt.elem
fl := v.flag & (flagRO | flagIndir | flagAddr) // bits same as overall array
fl |= flag(typ.Kind()) << flagKindShift
offset := uintptr(i) * typ.size
@@ -761,10 +853,19 @@ func (v Value) Index(i int) Value {
panic("reflect: slice index out of range")
}
tt := (*sliceType)(unsafe.Pointer(v.typ))
- typ := toCommonType(tt.elem)
+ typ := tt.elem
fl |= flag(typ.Kind()) << flagKindShift
val := unsafe.Pointer(s.Data + uintptr(i)*typ.size)
return Value{typ, val, fl}
+
+ case String:
+ fl := v.flag&flagRO | flag(Uint8<<flagKindShift)
+ s := (*StringHeader)(v.val)
+ if i < 0 || i >= s.Len {
+ panic("reflect: string index out of range")
+ }
+ val := *(*byte)(unsafe.Pointer(s.Data + uintptr(i)))
+ return Value{uint8Type, unsafe.Pointer(uintptr(val)), fl}
}
panic(&ValueError{"reflect.Value.Index", k})
}
@@ -826,7 +927,7 @@ func valueInterface(v Value, safe bool) interface{} {
if safe && v.flag&flagRO != 0 {
// Do not allow access to unexported values via Interface,
- // because they might be pointers that should not be
+ // because they might be pointers that should not be
// writable or methods or function that should not be callable.
panic("reflect.Value.Interface: cannot return value obtained from unexported field or method")
}
@@ -846,7 +947,7 @@ func valueInterface(v Value, safe bool) interface{} {
// Non-interface value.
var eface emptyInterface
- eface.typ = v.typ.runtimeType()
+ eface.typ = v.typ
eface.word = v.iword()
if v.flag&flagIndir != 0 && v.typ.size > ptrSize {
@@ -919,9 +1020,9 @@ func (v Value) Len() int {
tt := (*arrayType)(unsafe.Pointer(v.typ))
return int(tt.len)
case Chan:
- return int(chanlen(v.iword()))
+ return chanlen(v.iword())
case Map:
- return int(maplen(v.iword()))
+ return maplen(v.iword())
case Slice:
// Slice is bigger than a word; assume flagIndir.
return (*SliceHeader)(v.val).Len
@@ -947,13 +1048,13 @@ func (v Value) MapIndex(key Value) Value {
// considered unexported. This is consistent with the
// behavior for structs, which allow read but not write
// of unexported fields.
- key = key.assignTo("reflect.Value.MapIndex", toCommonType(tt.key), nil)
+ key = key.assignTo("reflect.Value.MapIndex", tt.key, nil)
- word, ok := mapaccess(v.typ.runtimeType(), v.iword(), key.iword())
+ word, ok := mapaccess(v.typ, v.iword(), key.iword())
if !ok {
return Value{}
}
- typ := toCommonType(tt.elem)
+ typ := tt.elem
fl := (v.flag | key.flag) & flagRO
if typ.size > ptrSize {
fl |= flagIndir
@@ -969,7 +1070,7 @@ func (v Value) MapIndex(key Value) Value {
func (v Value) MapKeys() []Value {
v.mustBe(Map)
tt := (*mapType)(unsafe.Pointer(v.typ))
- keyType := toCommonType(tt.key)
+ keyType := tt.key
fl := v.flag & flagRO
fl |= flag(keyType.Kind()) << flagKindShift
@@ -978,11 +1079,11 @@ func (v Value) MapKeys() []Value {
}
m := v.iword()
- mlen := int32(0)
+ mlen := int(0)
if m != nil {
mlen = maplen(m)
}
- it := mapiterinit(v.typ.runtimeType(), m)
+ it := mapiterinit(v.typ, m)
a := make([]Value, mlen)
var i int
for i = 0; i < len(a); i++ {
@@ -1081,7 +1182,7 @@ func overflowFloat32(x float64) bool {
if x < 0 {
x = -x
}
- return math.MaxFloat32 <= x && x <= math.MaxFloat64
+ return math.MaxFloat32 < x && x <= math.MaxFloat64
}
// OverflowInt returns true if the int64 x cannot be represented by v's type.
@@ -1115,18 +1216,35 @@ func (v Value) OverflowUint(x uint64) bool {
// code using reflect cannot obtain unsafe.Pointers
// without importing the unsafe package explicitly.
// It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer.
+//
+// If v's Kind is Func, the returned pointer is an underlying
+// code pointer, but not necessarily enough to identify a
+// single function uniquely. The only guarantee is that the
+// result is zero if and only if v is a nil func Value.
func (v Value) Pointer() uintptr {
k := v.kind()
switch k {
- case Chan, Func, Map, Ptr, UnsafePointer:
- if k == Func && v.flag&flagMethod != 0 {
+ case Chan, Map, Ptr, UnsafePointer:
+ p := v.val
+ if v.flag&flagIndir != 0 {
+ p = *(*unsafe.Pointer)(p)
+ }
+ return uintptr(p)
+ case Func:
+ if v.flag&flagMethod != 0 {
panic("reflect.Value.Pointer of method Value")
}
p := v.val
if v.flag&flagIndir != 0 {
p = *(*unsafe.Pointer)(p)
}
+ // Non-nil func value points at data block.
+ // First word of data block is actual code.
+ if p != nil {
+ p = *(*unsafe.Pointer)(p)
+ }
return uintptr(p)
+
case Slice:
return (*SliceHeader)(v.val).Data
}
@@ -1151,9 +1269,9 @@ func (v Value) recv(nb bool) (val Value, ok bool) {
if ChanDir(tt.dir)&RecvDir == 0 {
panic("recv on send-only channel")
}
- word, selected, ok := chanrecv(v.typ.runtimeType(), v.iword(), nb)
+ word, selected, ok := chanrecv(v.typ, v.iword(), nb)
if selected {
- typ := toCommonType(tt.elem)
+ typ := tt.elem
fl := flag(typ.Kind()) << flagKindShift
if typ.size > ptrSize {
fl |= flagIndir
@@ -1180,8 +1298,8 @@ func (v Value) send(x Value, nb bool) (selected bool) {
panic("send on recv-only channel")
}
x.mustBeExported()
- x = x.assignTo("reflect.Value.Send", toCommonType(tt.elem), nil)
- return chansend(v.typ.runtimeType(), v.iword(), x.iword(), nb)
+ x = x.assignTo("reflect.Value.Send", tt.elem, nil)
+ return chansend(v.typ, v.iword(), x.iword(), nb)
}
// Set assigns x to the value v.
@@ -1221,6 +1339,17 @@ func (v Value) SetBytes(x []byte) {
*(*[]byte)(v.val) = x
}
+// setRunes sets v's underlying value.
+// It panics if v's underlying value is not a slice of runes (int32s).
+func (v Value) setRunes(x []rune) {
+ v.mustBeAssignable()
+ v.mustBe(Slice)
+ if v.typ.Elem().Kind() != Int32 {
+ panic("reflect.Value.setRunes of non-rune slice")
+ }
+ *(*[]rune)(v.val) = x
+}
+
// SetComplex sets v's underlying value to x.
// It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false.
func (v Value) SetComplex(x complex128) {
@@ -1292,12 +1421,12 @@ func (v Value) SetMapIndex(key, val Value) {
v.mustBeExported()
key.mustBeExported()
tt := (*mapType)(unsafe.Pointer(v.typ))
- key = key.assignTo("reflect.Value.SetMapIndex", toCommonType(tt.key), nil)
+ key = key.assignTo("reflect.Value.SetMapIndex", tt.key, nil)
if val.typ != nil {
val.mustBeExported()
- val = val.assignTo("reflect.Value.SetMapIndex", toCommonType(tt.elem), nil)
+ val = val.assignTo("reflect.Value.SetMapIndex", tt.elem, nil)
}
- mapassign(v.typ.runtimeType(), v.iword(), key.iword(), val.iword(), val.typ != nil)
+ mapassign(v.typ, v.iword(), key.iword(), val.iword(), val.typ != nil)
}
// SetUint sets v's underlying value to x.
@@ -1339,7 +1468,7 @@ func (v Value) SetString(x string) {
}
// Slice returns a slice of v.
-// It panics if v's Kind is not Array or Slice.
+// It panics if v's Kind is not Array, Slice or String, or if v is an unaddressable array.
func (v Value) Slice(beg, end int) Value {
var (
cap int
@@ -1349,31 +1478,44 @@ func (v Value) Slice(beg, end int) Value {
switch k := v.kind(); k {
default:
panic(&ValueError{"reflect.Value.Slice", k})
+
case Array:
if v.flag&flagAddr == 0 {
panic("reflect.Value.Slice: slice of unaddressable array")
}
tt := (*arrayType)(unsafe.Pointer(v.typ))
cap = int(tt.len)
- typ = (*sliceType)(unsafe.Pointer(toCommonType(tt.slice)))
+ typ = (*sliceType)(unsafe.Pointer(tt.slice))
base = v.val
+
case Slice:
typ = (*sliceType)(unsafe.Pointer(v.typ))
s := (*SliceHeader)(v.val)
base = unsafe.Pointer(s.Data)
cap = s.Cap
+ case String:
+ s := (*StringHeader)(v.val)
+ if beg < 0 || end < beg || end > s.Len {
+ panic("reflect.Value.Slice: string slice index out of bounds")
+ }
+ var x string
+ val := (*StringHeader)(unsafe.Pointer(&x))
+ val.Data = s.Data + uintptr(beg)
+ val.Len = end - beg
+ return Value{v.typ, unsafe.Pointer(&x), v.flag}
}
+
if beg < 0 || end < beg || end > cap {
panic("reflect.Value.Slice: slice index out of bounds")
}
// Declare slice so that gc can see the base pointer in it.
- var x []byte
+ var x []unsafe.Pointer
// Reinterpret as *SliceHeader to edit.
s := (*SliceHeader)(unsafe.Pointer(&x))
- s.Data = uintptr(base) + uintptr(beg)*toCommonType(typ.elem).Size()
+ s.Data = uintptr(base) + uintptr(beg)*typ.elem.Size()
s.Len = end - beg
s.Cap = cap - beg
@@ -1439,7 +1581,7 @@ func (v Value) Type() Type {
panic("reflect: broken Value")
}
m := &tt.methods[i]
- return toCommonType(m.typ)
+ return m.typ
}
// Method on concrete type.
ut := v.typ.uncommon()
@@ -1447,7 +1589,7 @@ func (v Value) Type() Type {
panic("reflect: broken Value")
}
m := &ut.methods[i]
- return toCommonType(m.mtyp)
+ return m.mtyp
}
// Uint returns v's underlying value, as a uint64.
@@ -1618,13 +1760,148 @@ func Copy(dst, src Value) int {
return n
}
+// A runtimeSelect is a single case passed to rselect.
+// This must match ../runtime/chan.c:/runtimeSelect
+type runtimeSelect struct {
+ dir uintptr // 0, SendDir, or RecvDir
+ typ *rtype // channel type
+ ch iword // interface word for channel
+ val iword // interface word for value (for SendDir)
+}
+
+// rselect runs a select. It returns the index of the chosen case,
+// and if the case was a receive, the interface word of the received
+// value and the conventional OK bool to indicate whether the receive
+// corresponds to a sent value.
+func rselect([]runtimeSelect) (chosen int, recv iword, recvOK bool)
+
+// A SelectDir describes the communication direction of a select case.
+type SelectDir int
+
+// NOTE: These values must match ../runtime/chan.c:/SelectDir.
+
+const (
+ _ SelectDir = iota
+ SelectSend // case Chan <- Send
+ SelectRecv // case <-Chan:
+ SelectDefault // default
+)
+
+// A SelectCase describes a single case in a select operation.
+// The kind of case depends on Dir, the communication direction.
+//
+// If Dir is SelectDefault, the case represents a default case.
+// Chan and Send must be zero Values.
+//
+// If Dir is SelectSend, the case represents a send operation.
+// Normally Chan's underlying value must be a channel, and Send's underlying value must be
+// assignable to the channel's element type. As a special case, if Chan is a zero Value,
+// then the case is ignored, and the field Send will also be ignored and may be either zero
+// or non-zero.
+//
+// If Dir is SelectRecv, the case represents a receive operation.
+// Normally Chan's underlying value must be a channel and Send must be a zero Value.
+// If Chan is a zero Value, then the case is ignored, but Send must still be a zero Value.
+// When a receive operation is selected, the received Value is returned by Select.
+//
+type SelectCase struct {
+ Dir SelectDir // direction of case
+ Chan Value // channel to use (for send or receive)
+ Send Value // value to send (for send)
+}
+
+// Select executes a select operation described by the list of cases.
+// Like the Go select statement, it blocks until at least one of the cases
+// can proceed, makes a uniform pseudo-random choice,
+// and then executes that case. It returns the index of the chosen case
+// and, if that case was a receive operation, the value received and a
+// boolean indicating whether the value corresponds to a send on the channel
+// (as opposed to a zero value received because the channel is closed).
+func Select(cases []SelectCase) (chosen int, recv Value, recvOK bool) {
+ // NOTE: Do not trust that caller is not modifying cases data underfoot.
+ // The range is safe because the caller cannot modify our copy of the len
+ // and each iteration makes its own copy of the value c.
+ runcases := make([]runtimeSelect, len(cases))
+ haveDefault := false
+ for i, c := range cases {
+ rc := &runcases[i]
+ rc.dir = uintptr(c.Dir)
+ switch c.Dir {
+ default:
+ panic("reflect.Select: invalid Dir")
+
+ case SelectDefault: // default
+ if haveDefault {
+ panic("reflect.Select: multiple default cases")
+ }
+ haveDefault = true
+ if c.Chan.IsValid() {
+ panic("reflect.Select: default case has Chan value")
+ }
+ if c.Send.IsValid() {
+ panic("reflect.Select: default case has Send value")
+ }
+
+ case SelectSend:
+ ch := c.Chan
+ if !ch.IsValid() {
+ break
+ }
+ ch.mustBe(Chan)
+ ch.mustBeExported()
+ tt := (*chanType)(unsafe.Pointer(ch.typ))
+ if ChanDir(tt.dir)&SendDir == 0 {
+ panic("reflect.Select: SendDir case using recv-only channel")
+ }
+ rc.ch = ch.iword()
+ rc.typ = &tt.rtype
+ v := c.Send
+ if !v.IsValid() {
+ panic("reflect.Select: SendDir case missing Send value")
+ }
+ v.mustBeExported()
+ v = v.assignTo("reflect.Select", tt.elem, nil)
+ rc.val = v.iword()
+
+ case SelectRecv:
+ if c.Send.IsValid() {
+ panic("reflect.Select: RecvDir case has Send value")
+ }
+ ch := c.Chan
+ if !ch.IsValid() {
+ break
+ }
+ ch.mustBe(Chan)
+ ch.mustBeExported()
+ tt := (*chanType)(unsafe.Pointer(ch.typ))
+ rc.typ = &tt.rtype
+ if ChanDir(tt.dir)&RecvDir == 0 {
+ panic("reflect.Select: RecvDir case using send-only channel")
+ }
+ rc.ch = ch.iword()
+ }
+ }
+
+ chosen, word, recvOK := rselect(runcases)
+ if runcases[chosen].dir == uintptr(SelectRecv) {
+ tt := (*chanType)(unsafe.Pointer(runcases[chosen].typ))
+ typ := tt.elem
+ fl := flag(typ.Kind()) << flagKindShift
+ if typ.size > ptrSize {
+ fl |= flagIndir
+ }
+ recv = Value{typ, unsafe.Pointer(word), fl}
+ }
+ return chosen, recv, recvOK
+}
+
/*
* constructors
*/
// implemented in package runtime
-func unsafe_New(Type) unsafe.Pointer
-func unsafe_NewArray(Type, int) unsafe.Pointer
+func unsafe_New(*rtype) unsafe.Pointer
+func unsafe_NewArray(*rtype, int) unsafe.Pointer
// MakeSlice creates a new zero-initialized slice value
// for the specified slice type, length, and capacity.
@@ -1643,11 +1920,11 @@ func MakeSlice(typ Type, len, cap int) Value {
}
// Declare slice so that gc can see the base pointer in it.
- var x []byte
+ var x []unsafe.Pointer
// Reinterpret as *SliceHeader to edit.
s := (*SliceHeader)(unsafe.Pointer(&x))
- s.Data = uintptr(unsafe_NewArray(typ.Elem(), cap))
+ s.Data = uintptr(unsafe_NewArray(typ.Elem().(*rtype), cap))
s.Len = len
s.Cap = cap
@@ -1665,7 +1942,7 @@ func MakeChan(typ Type, buffer int) Value {
if typ.ChanDir() != BothDir {
panic("reflect.MakeChan: unidirectional channel type")
}
- ch := makechan(typ.runtimeType(), uint32(buffer))
+ ch := makechan(typ.(*rtype), uint64(buffer))
return Value{typ.common(), unsafe.Pointer(ch), flag(Chan) << flagKindShift}
}
@@ -1674,7 +1951,7 @@ func MakeMap(typ Type) Value {
if typ.Kind() != Map {
panic("reflect.MakeMap of non-map type")
}
- m := makemap(typ.runtimeType())
+ m := makemap(typ.(*rtype))
return Value{typ.common(), unsafe.Pointer(m), flag(Map) << flagKindShift}
}
@@ -1705,7 +1982,7 @@ func ValueOf(i interface{}) Value {
// For an interface value with the noAddr bit set,
// the representation is identical to an empty interface.
eface := *(*emptyInterface)(unsafe.Pointer(&i))
- typ := toCommonType(eface.typ)
+ typ := eface.typ
fl := flag(typ.Kind()) << flagKindShift
if typ.size > ptrSize {
fl |= flagIndir
@@ -1713,10 +1990,11 @@ func ValueOf(i interface{}) Value {
return Value{typ, unsafe.Pointer(eface.word), fl}
}
-// Zero returns a Value representing a zero value for the specified type.
+// Zero returns a Value representing the zero value for the specified type.
// The result is different from the zero value of the Value struct,
// which represents no value at all.
// For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0.
+// The returned value is neither addressable nor settable.
func Zero(typ Type) Value {
if typ == nil {
panic("reflect: Zero(nil)")
@@ -1726,7 +2004,7 @@ func Zero(typ Type) Value {
if t.size <= ptrSize {
return Value{t, nil, fl}
}
- return Value{t, unsafe_New(typ), fl | flagIndir}
+ return Value{t, unsafe_New(typ.(*rtype)), fl | flagIndir}
}
// New returns a Value representing a pointer to a new zero value
@@ -1735,7 +2013,7 @@ func New(typ Type) Value {
if typ == nil {
panic("reflect: New(nil)")
}
- ptr := unsafe_New(typ)
+ ptr := unsafe_New(typ.(*rtype))
fl := flag(Ptr) << flagKindShift
return Value{typ.common().ptrTo(), ptr, fl}
}
@@ -1750,7 +2028,7 @@ func NewAt(typ Type, p unsafe.Pointer) Value {
// assignTo returns a value v that can be assigned directly to typ.
// It panics if v is not assignable to typ.
// For a conversion to an interface type, target is a suggested scratch space to use.
-func (v Value) assignTo(context string, dst *commonType, target *interface{}) Value {
+func (v Value) assignTo(context string, dst *rtype, target *interface{}) Value {
if v.flag&flagMethod != 0 {
panic(context + ": cannot assign method value to type " + dst.String())
}
@@ -1772,7 +2050,7 @@ func (v Value) assignTo(context string, dst *commonType, target *interface{}) Va
if dst.NumMethod() == 0 {
*target = x
} else {
- ifaceE2I(dst.runtimeType(), x, unsafe.Pointer(target))
+ ifaceE2I(dst, x, unsafe.Pointer(target))
}
return Value{dst, unsafe.Pointer(target), flagIndir | flag(Interface)<<flagKindShift}
}
@@ -1781,24 +2059,320 @@ func (v Value) assignTo(context string, dst *commonType, target *interface{}) Va
panic(context + ": value of type " + v.typ.String() + " is not assignable to type " + dst.String())
}
+// Convert returns the value v converted to type t.
+// If the usual Go conversion rules do not allow conversion
+// of the value v to type t, Convert panics.
+func (v Value) Convert(t Type) Value {
+ if v.flag&flagMethod != 0 {
+ panic("reflect.Value.Convert: cannot convert method values")
+ }
+ op := convertOp(t.common(), v.typ)
+ if op == nil {
+ panic("reflect.Value.Convert: value of type " + v.typ.String() + " cannot be converted to type " + t.String())
+ }
+ return op(v, t)
+}
+
+// convertOp returns the function to convert a value of type src
+// to a value of type dst. If the conversion is illegal, convertOp returns nil.
+func convertOp(dst, src *rtype) func(Value, Type) Value {
+ switch src.Kind() {
+ case Int, Int8, Int16, Int32, Int64:
+ switch dst.Kind() {
+ case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
+ return cvtInt
+ case Float32, Float64:
+ return cvtIntFloat
+ case String:
+ return cvtIntString
+ }
+
+ case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
+ switch dst.Kind() {
+ case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
+ return cvtUint
+ case Float32, Float64:
+ return cvtUintFloat
+ case String:
+ return cvtUintString
+ }
+
+ case Float32, Float64:
+ switch dst.Kind() {
+ case Int, Int8, Int16, Int32, Int64:
+ return cvtFloatInt
+ case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
+ return cvtFloatUint
+ case Float32, Float64:
+ return cvtFloat
+ }
+
+ case Complex64, Complex128:
+ switch dst.Kind() {
+ case Complex64, Complex128:
+ return cvtComplex
+ }
+
+ case String:
+ if dst.Kind() == Slice && dst.Elem().PkgPath() == "" {
+ switch dst.Elem().Kind() {
+ case Uint8:
+ return cvtStringBytes
+ case Int32:
+ return cvtStringRunes
+ }
+ }
+
+ case Slice:
+ if dst.Kind() == String && src.Elem().PkgPath() == "" {
+ switch src.Elem().Kind() {
+ case Uint8:
+ return cvtBytesString
+ case Int32:
+ return cvtRunesString
+ }
+ }
+ }
+
+ // dst and src have same underlying type.
+ if haveIdenticalUnderlyingType(dst, src) {
+ return cvtDirect
+ }
+
+ // dst and src are unnamed pointer types with same underlying base type.
+ if dst.Kind() == Ptr && dst.Name() == "" &&
+ src.Kind() == Ptr && src.Name() == "" &&
+ haveIdenticalUnderlyingType(dst.Elem().common(), src.Elem().common()) {
+ return cvtDirect
+ }
+
+ if implements(dst, src) {
+ if src.Kind() == Interface {
+ return cvtI2I
+ }
+ return cvtT2I
+ }
+
+ return nil
+}
+
+// makeInt returns a Value of type t equal to bits (possibly truncated),
+// where t is a signed or unsigned int type.
+func makeInt(f flag, bits uint64, t Type) Value {
+ typ := t.common()
+ if typ.size > ptrSize {
+ // Assume ptrSize >= 4, so this must be uint64.
+ ptr := unsafe_New(typ)
+ *(*uint64)(unsafe.Pointer(ptr)) = bits
+ return Value{typ, ptr, f | flag(typ.Kind())<<flagKindShift}
+ }
+ var w iword
+ switch typ.size {
+ case 1:
+ *(*uint8)(unsafe.Pointer(&w)) = uint8(bits)
+ case 2:
+ *(*uint16)(unsafe.Pointer(&w)) = uint16(bits)
+ case 4:
+ *(*uint32)(unsafe.Pointer(&w)) = uint32(bits)
+ case 8:
+ *(*uint64)(unsafe.Pointer(&w)) = uint64(bits)
+ }
+ return Value{typ, unsafe.Pointer(w), f | flag(typ.Kind())<<flagKindShift}
+}
+
+// makeFloat returns a Value of type t equal to v (possibly truncated to float32),
+// where t is a float32 or float64 type.
+func makeFloat(f flag, v float64, t Type) Value {
+ typ := t.common()
+ if typ.size > ptrSize {
+ // Assume ptrSize >= 4, so this must be float64.
+ ptr := unsafe_New(typ)
+ *(*float64)(unsafe.Pointer(ptr)) = v
+ return Value{typ, ptr, f | flag(typ.Kind())<<flagKindShift}
+ }
+
+ var w iword
+ switch typ.size {
+ case 4:
+ *(*float32)(unsafe.Pointer(&w)) = float32(v)
+ case 8:
+ *(*float64)(unsafe.Pointer(&w)) = v
+ }
+ return Value{typ, unsafe.Pointer(w), f | flag(typ.Kind())<<flagKindShift}
+}
+
+// makeComplex returns a Value of type t equal to v (possibly truncated to complex64),
+// where t is a complex64 or complex128 type.
+func makeComplex(f flag, v complex128, t Type) Value {
+ typ := t.common()
+ if typ.size > ptrSize {
+ ptr := unsafe_New(typ)
+ switch typ.size {
+ case 8:
+ *(*complex64)(unsafe.Pointer(ptr)) = complex64(v)
+ case 16:
+ *(*complex128)(unsafe.Pointer(ptr)) = v
+ }
+ return Value{typ, ptr, f | flag(typ.Kind())<<flagKindShift}
+ }
+
+ // Assume ptrSize <= 8 so this must be complex64.
+ var w iword
+ *(*complex64)(unsafe.Pointer(&w)) = complex64(v)
+ return Value{typ, unsafe.Pointer(w), f | flag(typ.Kind())<<flagKindShift}
+}
+
+func makeString(f flag, v string, t Type) Value {
+ ret := New(t).Elem()
+ ret.SetString(v)
+ ret.flag = ret.flag&^flagAddr | f
+ return ret
+}
+
+func makeBytes(f flag, v []byte, t Type) Value {
+ ret := New(t).Elem()
+ ret.SetBytes(v)
+ ret.flag = ret.flag&^flagAddr | f
+ return ret
+}
+
+func makeRunes(f flag, v []rune, t Type) Value {
+ ret := New(t).Elem()
+ ret.setRunes(v)
+ ret.flag = ret.flag&^flagAddr | f
+ return ret
+}
+
+// These conversion functions are returned by convertOp
+// for classes of conversions. For example, the first function, cvtInt,
+// takes any value v of signed int type and returns the value converted
+// to type t, where t is any signed or unsigned int type.
+
+// convertOp: intXX -> [u]intXX
+func cvtInt(v Value, t Type) Value {
+ return makeInt(v.flag&flagRO, uint64(v.Int()), t)
+}
+
+// convertOp: uintXX -> [u]intXX
+func cvtUint(v Value, t Type) Value {
+ return makeInt(v.flag&flagRO, v.Uint(), t)
+}
+
+// convertOp: floatXX -> intXX
+func cvtFloatInt(v Value, t Type) Value {
+ return makeInt(v.flag&flagRO, uint64(int64(v.Float())), t)
+}
+
+// convertOp: floatXX -> uintXX
+func cvtFloatUint(v Value, t Type) Value {
+ return makeInt(v.flag&flagRO, uint64(v.Float()), t)
+}
+
+// convertOp: intXX -> floatXX
+func cvtIntFloat(v Value, t Type) Value {
+ return makeFloat(v.flag&flagRO, float64(v.Int()), t)
+}
+
+// convertOp: uintXX -> floatXX
+func cvtUintFloat(v Value, t Type) Value {
+ return makeFloat(v.flag&flagRO, float64(v.Uint()), t)
+}
+
+// convertOp: floatXX -> floatXX
+func cvtFloat(v Value, t Type) Value {
+ return makeFloat(v.flag&flagRO, v.Float(), t)
+}
+
+// convertOp: complexXX -> complexXX
+func cvtComplex(v Value, t Type) Value {
+ return makeComplex(v.flag&flagRO, v.Complex(), t)
+}
+
+// convertOp: intXX -> string
+func cvtIntString(v Value, t Type) Value {
+ return makeString(v.flag&flagRO, string(v.Int()), t)
+}
+
+// convertOp: uintXX -> string
+func cvtUintString(v Value, t Type) Value {
+ return makeString(v.flag&flagRO, string(v.Uint()), t)
+}
+
+// convertOp: []byte -> string
+func cvtBytesString(v Value, t Type) Value {
+ return makeString(v.flag&flagRO, string(v.Bytes()), t)
+}
+
+// convertOp: string -> []byte
+func cvtStringBytes(v Value, t Type) Value {
+ return makeBytes(v.flag&flagRO, []byte(v.String()), t)
+}
+
+// convertOp: []rune -> string
+func cvtRunesString(v Value, t Type) Value {
+ return makeString(v.flag&flagRO, string(v.runes()), t)
+}
+
+// convertOp: string -> []rune
+func cvtStringRunes(v Value, t Type) Value {
+ return makeRunes(v.flag&flagRO, []rune(v.String()), t)
+}
+
+// convertOp: direct copy
+func cvtDirect(v Value, typ Type) Value {
+ f := v.flag
+ t := typ.common()
+ val := v.val
+ if f&flagAddr != 0 {
+ // indirect, mutable word - make a copy
+ ptr := unsafe_New(t)
+ memmove(ptr, val, t.size)
+ val = ptr
+ f &^= flagAddr
+ }
+ return Value{t, val, v.flag&flagRO | f}
+}
+
+// convertOp: concrete -> interface
+func cvtT2I(v Value, typ Type) Value {
+ target := new(interface{})
+ x := valueInterface(v, false)
+ if typ.NumMethod() == 0 {
+ *target = x
+ } else {
+ ifaceE2I(typ.(*rtype), x, unsafe.Pointer(target))
+ }
+ return Value{typ.common(), unsafe.Pointer(target), v.flag&flagRO | flagIndir | flag(Interface)<<flagKindShift}
+}
+
+// convertOp: interface -> interface
+func cvtI2I(v Value, typ Type) Value {
+ if v.IsNil() {
+ ret := Zero(typ)
+ ret.flag |= v.flag & flagRO
+ return ret
+ }
+ return cvtT2I(v.Elem(), typ)
+}
+
// implemented in ../pkg/runtime
-func chancap(ch iword) int32
+func chancap(ch iword) int
func chanclose(ch iword)
-func chanlen(ch iword) int32
-func chanrecv(t *runtimeType, ch iword, nb bool) (val iword, selected, received bool)
-func chansend(t *runtimeType, ch iword, val iword, nb bool) bool
-
-func makechan(typ *runtimeType, size uint32) (ch iword)
-func makemap(t *runtimeType) (m iword)
-func mapaccess(t *runtimeType, m iword, key iword) (val iword, ok bool)
-func mapassign(t *runtimeType, m iword, key, val iword, ok bool)
-func mapiterinit(t *runtimeType, m iword) *byte
+func chanlen(ch iword) int
+func chanrecv(t *rtype, ch iword, nb bool) (val iword, selected, received bool)
+func chansend(t *rtype, ch iword, val iword, nb bool) bool
+
+func makechan(typ *rtype, size uint64) (ch iword)
+func makemap(t *rtype) (m iword)
+func mapaccess(t *rtype, m iword, key iword) (val iword, ok bool)
+func mapassign(t *rtype, m iword, key, val iword, ok bool)
+func mapiterinit(t *rtype, m iword) *byte
func mapiterkey(it *byte) (key iword, ok bool)
func mapiternext(it *byte)
-func maplen(m iword) int32
+func maplen(m iword) int
func call(fn, arg unsafe.Pointer, n uint32)
-func ifaceE2I(t *runtimeType, src interface{}, dst unsafe.Pointer)
+func ifaceE2I(t *rtype, src interface{}, dst unsafe.Pointer)
// Dummy annotation marking that the value x escapes,
// for use in cases where the reflect code is so clever that