summaryrefslogtreecommitdiff
path: root/src/pkg/reflect/value.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/reflect/value.go')
-rw-r--r--src/pkg/reflect/value.go1724
1 files changed, 0 insertions, 1724 deletions
diff --git a/src/pkg/reflect/value.go b/src/pkg/reflect/value.go
deleted file mode 100644
index bfeb3267c..000000000
--- a/src/pkg/reflect/value.go
+++ /dev/null
@@ -1,1724 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package reflect
-
-import (
- "math"
- "runtime"
- "strconv"
- "unsafe"
-)
-
-const ptrSize = unsafe.Sizeof((*byte)(nil))
-const cannotSet = "cannot set value obtained from unexported struct field"
-
-// TODO: This will have to go away when
-// the new gc goes in.
-func memmove(adst, asrc unsafe.Pointer, n uintptr) {
- dst := uintptr(adst)
- src := uintptr(asrc)
- switch {
- case src < dst && src+n > dst:
- // byte copy backward
- // careful: i is unsigned
- for i := n; i > 0; {
- i--
- *(*byte)(unsafe.Pointer(dst + i)) = *(*byte)(unsafe.Pointer(src + i))
- }
- case (n|src|dst)&(ptrSize-1) != 0:
- // byte copy forward
- for i := uintptr(0); i < n; i++ {
- *(*byte)(unsafe.Pointer(dst + i)) = *(*byte)(unsafe.Pointer(src + i))
- }
- default:
- // word copy forward
- for i := uintptr(0); i < n; i += ptrSize {
- *(*uintptr)(unsafe.Pointer(dst + i)) = *(*uintptr)(unsafe.Pointer(src + i))
- }
- }
-}
-
-// Value is the reflection interface to a Go value.
-//
-// Not all methods apply to all kinds of values. Restrictions,
-// if any, are noted in the documentation for each method.
-// Use the Kind method to find out the kind of value before
-// calling kind-specific methods. Calling a method
-// inappropriate to the kind of type causes a run time panic.
-//
-// The zero Value represents no value.
-// Its IsValid method returns false, its Kind method returns Invalid,
-// its String method returns "<invalid Value>", and all other methods panic.
-// Most functions and methods never return an invalid value.
-// If one does, its documentation states the conditions explicitly.
-//
-// The fields of Value are exported so that clients can copy and
-// pass Values around, but they should not be edited or inspected
-// directly. A future language change may make it possible not to
-// export these fields while still keeping Values usable as values.
-type Value struct {
- Internal interface{}
- InternalMethod int
-}
-
-// A ValueError occurs when a Value method is invoked on
-// a Value that does not support it. Such cases are documented
-// in the description of each method.
-type ValueError struct {
- Method string
- Kind Kind
-}
-
-func (e *ValueError) String() string {
- if e.Kind == 0 {
- return "reflect: call of " + e.Method + " on zero Value"
- }
- return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"
-}
-
-// methodName returns the name of the calling method,
-// assumed to be two stack frames above.
-func methodName() string {
- pc, _, _, _ := runtime.Caller(2)
- f := runtime.FuncForPC(pc)
- if f == nil {
- return "unknown method"
- }
- return f.Name()
-}
-
-// An iword is the word that would be stored in an
-// interface to represent a given value v. Specifically, if v is
-// bigger than a pointer, its word is a pointer to v's data.
-// Otherwise, its word is a zero uintptr with the data stored
-// in the leading bytes.
-type iword uintptr
-
-func loadIword(p unsafe.Pointer, size uintptr) iword {
- // Run the copy ourselves instead of calling memmove
- // to avoid moving v to the heap.
- w := iword(0)
- switch size {
- default:
- panic("reflect: internal error: loadIword of " + strconv.Itoa(int(size)) + "-byte value")
- case 0:
- case 1:
- *(*uint8)(unsafe.Pointer(&w)) = *(*uint8)(p)
- case 2:
- *(*uint16)(unsafe.Pointer(&w)) = *(*uint16)(p)
- case 3:
- *(*[3]byte)(unsafe.Pointer(&w)) = *(*[3]byte)(p)
- case 4:
- *(*uint32)(unsafe.Pointer(&w)) = *(*uint32)(p)
- case 5:
- *(*[5]byte)(unsafe.Pointer(&w)) = *(*[5]byte)(p)
- case 6:
- *(*[6]byte)(unsafe.Pointer(&w)) = *(*[6]byte)(p)
- case 7:
- *(*[7]byte)(unsafe.Pointer(&w)) = *(*[7]byte)(p)
- case 8:
- *(*uint64)(unsafe.Pointer(&w)) = *(*uint64)(p)
- }
- return w
-}
-
-func storeIword(p unsafe.Pointer, w iword, size uintptr) {
- // Run the copy ourselves instead of calling memmove
- // to avoid moving v to the heap.
- switch size {
- default:
- panic("reflect: internal error: storeIword of " + strconv.Itoa(int(size)) + "-byte value")
- case 0:
- case 1:
- *(*uint8)(p) = *(*uint8)(unsafe.Pointer(&w))
- case 2:
- *(*uint16)(p) = *(*uint16)(unsafe.Pointer(&w))
- case 3:
- *(*[3]byte)(p) = *(*[3]byte)(unsafe.Pointer(&w))
- case 4:
- *(*uint32)(p) = *(*uint32)(unsafe.Pointer(&w))
- case 5:
- *(*[5]byte)(p) = *(*[5]byte)(unsafe.Pointer(&w))
- case 6:
- *(*[6]byte)(p) = *(*[6]byte)(unsafe.Pointer(&w))
- case 7:
- *(*[7]byte)(p) = *(*[7]byte)(unsafe.Pointer(&w))
- case 8:
- *(*uint64)(p) = *(*uint64)(unsafe.Pointer(&w))
- }
-}
-
-// emptyInterface is the header for an interface{} value.
-type emptyInterface struct {
- typ *runtime.Type
- word iword
-}
-
-// nonEmptyInterface is the header for a interface value with methods.
-type nonEmptyInterface struct {
- // see ../runtime/iface.c:/Itab
- itab *struct {
- ityp *runtime.Type // static interface type
- typ *runtime.Type // dynamic concrete type
- link unsafe.Pointer
- bad int32
- unused int32
- fun [100000]unsafe.Pointer // method table
- }
- word iword
-}
-
-// Regarding the implementation of Value:
-//
-// The Internal interface is a true interface value in the Go sense,
-// but it also serves as a (type, address) pair in which one cannot
-// be changed separately from the other. That is, it serves as a way
-// to prevent unsafe mutations of the Internal state even though
-// we cannot (yet?) hide the field while preserving the ability for
-// clients to make copies of Values.
-//
-// The internal method converts a Value into the expanded internalValue struct.
-// If we could avoid exporting fields we'd probably make internalValue the
-// definition of Value.
-//
-// If a Value is addressable (CanAddr returns true), then the Internal
-// interface value holds a pointer to the actual field data, and Set stores
-// through that pointer. If a Value is not addressable (CanAddr returns false),
-// then the Internal interface value holds the actual value.
-//
-// In addition to whether a value is addressable, we track whether it was
-// obtained by using an unexported struct field. Such values are allowed
-// to be read, mainly to make fmt.Print more useful, but they are not
-// allowed to be written. We call such values read-only.
-//
-// A Value can be set (via the Set, SetUint, etc. methods) only if it is both
-// addressable and not read-only.
-//
-// The two permission bits - addressable and read-only - are stored in
-// the bottom two bits of the type pointer in the interface value.
-//
-// ordinary value: Internal = value
-// addressable value: Internal = value, Internal.typ |= flagAddr
-// read-only value: Internal = value, Internal.typ |= flagRO
-// addressable, read-only value: Internal = value, Internal.typ |= flagAddr | flagRO
-//
-// It is important that the read-only values have the extra bit set
-// (as opposed to using the bit to mean writable), because client code
-// can grab the interface field and try to use it. Having the extra bit
-// set makes the type pointer compare not equal to any real type,
-// so that a client cannot, say, write through v.Internal.(*int).
-// The runtime routines that access interface types reject types with
-// low bits set.
-//
-// If a Value fv = v.Method(i), then fv = v with the InternalMethod
-// field set to i+1. Methods are never addressable.
-//
-// All in all, this is a lot of effort just to avoid making this new API
-// depend on a language change we'll probably do anyway, but
-// it's helpful to keep the two separate, and much of the logic is
-// necessary to implement the Interface method anyway.
-
-const (
- flagAddr uint32 = 1 << iota // holds address of value
- flagRO // read-only
-
- reflectFlags = 3
-)
-
-// An internalValue is the unpacked form of a Value.
-// The zero Value unpacks to a zero internalValue
-type internalValue struct {
- typ *commonType // type of value
- kind Kind // kind of value
- flag uint32
- word iword
- addr unsafe.Pointer
- rcvr iword
- method bool
- nilmethod bool
-}
-
-func (v Value) internal() internalValue {
- var iv internalValue
- eface := *(*emptyInterface)(unsafe.Pointer(&v.Internal))
- p := uintptr(unsafe.Pointer(eface.typ))
- iv.typ = toCommonType((*runtime.Type)(unsafe.Pointer(p &^ reflectFlags)))
- if iv.typ == nil {
- return iv
- }
- iv.flag = uint32(p & reflectFlags)
- iv.word = eface.word
- if iv.flag&flagAddr != 0 {
- iv.addr = unsafe.Pointer(iv.word)
- iv.typ = iv.typ.Elem().common()
- if iv.typ.size <= ptrSize {
- iv.word = loadIword(iv.addr, iv.typ.size)
- }
- } else {
- if iv.typ.size > ptrSize {
- iv.addr = unsafe.Pointer(iv.word)
- }
- }
- iv.kind = iv.typ.Kind()
-
- // Is this a method? If so, iv describes the receiver.
- // Rewrite to describe the method function.
- if v.InternalMethod != 0 {
- // If this Value is a method value (x.Method(i) for some Value x)
- // then we will invoke it using the interface form of the method,
- // which always passes the receiver as a single word.
- // Record that information.
- i := v.InternalMethod - 1
- if iv.kind == Interface {
- it := (*interfaceType)(unsafe.Pointer(iv.typ))
- if i < 0 || i >= len(it.methods) {
- panic("reflect: broken Value")
- }
- m := &it.methods[i]
- if m.pkgPath != nil {
- iv.flag |= flagRO
- }
- iv.typ = toCommonType(m.typ)
- iface := (*nonEmptyInterface)(iv.addr)
- if iface.itab == nil {
- iv.word = 0
- iv.nilmethod = true
- } else {
- iv.word = iword(iface.itab.fun[i])
- }
- iv.rcvr = iface.word
- } else {
- ut := iv.typ.uncommon()
- if ut == nil || i < 0 || i >= len(ut.methods) {
- panic("reflect: broken Value")
- }
- m := &ut.methods[i]
- if m.pkgPath != nil {
- iv.flag |= flagRO
- }
- iv.typ = toCommonType(m.mtyp)
- iv.rcvr = iv.word
- iv.word = iword(m.ifn)
- }
- iv.kind = Func
- iv.method = true
- iv.flag &^= flagAddr
- iv.addr = nil
- }
-
- return iv
-}
-
-// packValue returns a Value with the given flag bits, type, and interface word.
-func packValue(flag uint32, typ *runtime.Type, word iword) Value {
- if typ == nil {
- panic("packValue")
- }
- t := uintptr(unsafe.Pointer(typ))
- t |= uintptr(flag)
- eface := emptyInterface{(*runtime.Type)(unsafe.Pointer(t)), word}
- return Value{Internal: *(*interface{})(unsafe.Pointer(&eface))}
-}
-
-// valueFromAddr returns a Value using the given type and address.
-func valueFromAddr(flag uint32, typ Type, addr unsafe.Pointer) Value {
- if flag&flagAddr != 0 {
- // Addressable, so the internal value is
- // an interface containing a pointer to the real value.
- return packValue(flag, PtrTo(typ).runtimeType(), iword(addr))
- }
-
- var w iword
- if n := typ.Size(); n <= ptrSize {
- // In line, so the interface word is the actual value.
- w = loadIword(addr, n)
- } else {
- // Not in line: the interface word is the address.
- w = iword(addr)
- }
- return packValue(flag, typ.runtimeType(), w)
-}
-
-// valueFromIword returns a Value using the given type and interface word.
-func valueFromIword(flag uint32, typ Type, w iword) Value {
- if flag&flagAddr != 0 {
- panic("reflect: internal error: valueFromIword addressable")
- }
- return packValue(flag, typ.runtimeType(), w)
-}
-
-func (iv internalValue) mustBe(want Kind) {
- if iv.kind != want {
- panic(&ValueError{methodName(), iv.kind})
- }
-}
-
-func (iv internalValue) mustBeExported() {
- if iv.kind == 0 {
- panic(&ValueError{methodName(), iv.kind})
- }
- if iv.flag&flagRO != 0 {
- panic(methodName() + " using value obtained using unexported field")
- }
-}
-
-func (iv internalValue) mustBeAssignable() {
- if iv.kind == 0 {
- panic(&ValueError{methodName(), iv.kind})
- }
- // Assignable if addressable and not read-only.
- if iv.flag&flagRO != 0 {
- panic(methodName() + " using value obtained using unexported field")
- }
- if iv.flag&flagAddr == 0 {
- panic(methodName() + " using unaddressable value")
- }
-}
-
-// Addr returns a pointer value representing the address of v.
-// It panics if CanAddr() returns false.
-// Addr is typically used to obtain a pointer to a struct field
-// or slice element in order to call a method that requires a
-// pointer receiver.
-func (v Value) Addr() Value {
- iv := v.internal()
- if iv.flag&flagAddr == 0 {
- panic("reflect.Value.Addr of unaddressable value")
- }
- return valueFromIword(iv.flag&flagRO, PtrTo(iv.typ.toType()), iword(iv.addr))
-}
-
-// Bool returns v's underlying value.
-// It panics if v's kind is not Bool.
-func (v Value) Bool() bool {
- iv := v.internal()
- iv.mustBe(Bool)
- return *(*bool)(unsafe.Pointer(&iv.word))
-}
-
-// CanAddr returns true if the value's address can be obtained with Addr.
-// Such values are called addressable. A value is addressable if it is
-// an element of a slice, an element of an addressable array,
-// a field of an addressable struct, or the result of dereferencing a pointer.
-// If CanAddr returns false, calling Addr will panic.
-func (v Value) CanAddr() bool {
- iv := v.internal()
- return iv.flag&flagAddr != 0
-}
-
-// CanSet returns true if the value of v can be changed.
-// A Value can be changed only if it is addressable and was not
-// obtained by the use of unexported struct fields.
-// If CanSet returns false, calling Set or any type-specific
-// setter (e.g., SetBool, SetInt64) will panic.
-func (v Value) CanSet() bool {
- iv := v.internal()
- return iv.flag&(flagAddr|flagRO) == flagAddr
-}
-
-// Call calls the function v with the input arguments in.
-// For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]).
-// Call panics if v's Kind is not Func.
-// It returns the output results as Values.
-// As in Go, each input argument must be assignable to the
-// type of the function's corresponding input parameter.
-// If v is a variadic function, Call creates the variadic slice parameter
-// itself, copying in the corresponding values.
-func (v Value) Call(in []Value) []Value {
- iv := v.internal()
- iv.mustBe(Func)
- iv.mustBeExported()
- return iv.call("Call", in)
-}
-
-// CallSlice calls the variadic function v with the input arguments in,
-// assigning the slice in[len(in)-1] to v's final variadic argument.
-// For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]...).
-// Call panics if v's Kind is not Func or if v is not variadic.
-// It returns the output results as Values.
-// As in Go, each input argument must be assignable to the
-// type of the function's corresponding input parameter.
-func (v Value) CallSlice(in []Value) []Value {
- iv := v.internal()
- iv.mustBe(Func)
- iv.mustBeExported()
- return iv.call("CallSlice", in)
-}
-
-func (iv internalValue) call(method string, in []Value) []Value {
- if iv.word == 0 {
- if iv.nilmethod {
- panic("reflect.Value.Call: call of method on nil interface value")
- }
- panic("reflect.Value.Call: call of nil function")
- }
-
- isSlice := method == "CallSlice"
- t := iv.typ
- n := t.NumIn()
- if isSlice {
- if !t.IsVariadic() {
- panic("reflect: CallSlice of non-variadic function")
- }
- if len(in) < n {
- panic("reflect: CallSlice with too few input arguments")
- }
- if len(in) > n {
- panic("reflect: CallSlice with too many input arguments")
- }
- } else {
- if t.IsVariadic() {
- n--
- }
- if len(in) < n {
- panic("reflect: Call with too few input arguments")
- }
- if !t.IsVariadic() && len(in) > n {
- panic("reflect: Call with too many input arguments")
- }
- }
- for _, x := range in {
- if x.Kind() == Invalid {
- panic("reflect: " + method + " using zero Value argument")
- }
- }
- for i := 0; i < n; i++ {
- if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(targ) {
- panic("reflect: " + method + " using " + xt.String() + " as type " + targ.String())
- }
- }
- if !isSlice && t.IsVariadic() {
- // prepare slice for remaining values
- m := len(in) - n
- slice := MakeSlice(t.In(n), m, m)
- elem := t.In(n).Elem()
- for i := 0; i < m; i++ {
- x := in[n+i]
- if xt := x.Type(); !xt.AssignableTo(elem) {
- panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + method)
- }
- slice.Index(i).Set(x)
- }
- origIn := in
- in = make([]Value, n+1)
- copy(in[:n], origIn)
- in[n] = slice
- }
-
- nin := len(in)
- if nin != t.NumIn() {
- panic("reflect.Value.Call: wrong argument count")
- }
- nout := t.NumOut()
-
- // Compute arg size & allocate.
- // This computation is 5g/6g/8g-dependent
- // and probably wrong for gccgo, but so
- // is most of this function.
- size := uintptr(0)
- if iv.method {
- // extra word for interface value
- size += ptrSize
- }
- for i := 0; i < nin; i++ {
- tv := t.In(i)
- a := uintptr(tv.Align())
- size = (size + a - 1) &^ (a - 1)
- size += tv.Size()
- }
- size = (size + ptrSize - 1) &^ (ptrSize - 1)
- for i := 0; i < nout; i++ {
- tv := t.Out(i)
- a := uintptr(tv.Align())
- size = (size + a - 1) &^ (a - 1)
- size += tv.Size()
- }
-
- // size must be > 0 in order for &args[0] to be valid.
- // the argument copying is going to round it up to
- // a multiple of ptrSize anyway, so make it ptrSize to begin with.
- if size < ptrSize {
- size = ptrSize
- }
-
- // round to pointer size
- size = (size + ptrSize - 1) &^ (ptrSize - 1)
-
- // Copy into args.
- //
- // TODO(rsc): revisit when reference counting happens.
- // The values are holding up the in references for us,
- // but something must be done for the out references.
- // For now make everything look like a pointer by pretending
- // to allocate a []*int.
- args := make([]*int, size/ptrSize)
- ptr := uintptr(unsafe.Pointer(&args[0]))
- off := uintptr(0)
- if iv.method {
- // Hard-wired first argument.
- *(*iword)(unsafe.Pointer(ptr)) = iv.rcvr
- off = ptrSize
- }
- for i, v := range in {
- iv := v.internal()
- iv.mustBeExported()
- targ := t.In(i).(*commonType)
- a := uintptr(targ.align)
- off = (off + a - 1) &^ (a - 1)
- n := targ.size
- addr := unsafe.Pointer(ptr + off)
- iv = convertForAssignment("reflect.Value.Call", addr, targ, iv)
- if iv.addr == nil {
- storeIword(addr, iv.word, n)
- } else {
- memmove(addr, iv.addr, n)
- }
- off += n
- }
- off = (off + ptrSize - 1) &^ (ptrSize - 1)
-
- // Call.
- call(unsafe.Pointer(iv.word), unsafe.Pointer(ptr), uint32(size))
-
- // Copy return values out of args.
- //
- // TODO(rsc): revisit like above.
- ret := make([]Value, nout)
- for i := 0; i < nout; i++ {
- tv := t.Out(i)
- a := uintptr(tv.Align())
- off = (off + a - 1) &^ (a - 1)
- ret[i] = valueFromAddr(0, tv, unsafe.Pointer(ptr+off))
- off += tv.Size()
- }
-
- return ret
-}
-
-// Cap returns v's capacity.
-// It panics if v's Kind is not Array, Chan, or Slice.
-func (v Value) Cap() int {
- iv := v.internal()
- switch iv.kind {
- case Array:
- return iv.typ.Len()
- case Chan:
- return int(chancap(iv.word))
- case Slice:
- return (*SliceHeader)(iv.addr).Cap
- }
- panic(&ValueError{"reflect.Value.Cap", iv.kind})
-}
-
-// Close closes the channel v.
-// It panics if v's Kind is not Chan.
-func (v Value) Close() {
- iv := v.internal()
- iv.mustBe(Chan)
- iv.mustBeExported()
- ch := iv.word
- chanclose(ch)
-}
-
-// Complex returns v's underlying value, as a complex128.
-// It panics if v's Kind is not Complex64 or Complex128
-func (v Value) Complex() complex128 {
- iv := v.internal()
- switch iv.kind {
- case Complex64:
- if iv.addr == nil {
- return complex128(*(*complex64)(unsafe.Pointer(&iv.word)))
- }
- return complex128(*(*complex64)(iv.addr))
- case Complex128:
- return *(*complex128)(iv.addr)
- }
- panic(&ValueError{"reflect.Value.Complex", iv.kind})
-}
-
-// Elem returns the value that the interface v contains
-// or that the pointer v points to.
-// It panics if v's Kind is not Interface or Ptr.
-// It returns the zero Value if v is nil.
-func (v Value) Elem() Value {
- iv := v.internal()
- return iv.Elem()
-}
-
-func (iv internalValue) Elem() Value {
- switch iv.kind {
- case Interface:
- // Empty interface and non-empty interface have different layouts.
- // Convert to empty interface.
- var eface emptyInterface
- if iv.typ.NumMethod() == 0 {
- eface = *(*emptyInterface)(iv.addr)
- } else {
- iface := (*nonEmptyInterface)(iv.addr)
- if iface.itab != nil {
- eface.typ = iface.itab.typ
- }
- eface.word = iface.word
- }
- if eface.typ == nil {
- return Value{}
- }
- return valueFromIword(iv.flag&flagRO, toType(eface.typ), eface.word)
-
- case Ptr:
- // The returned value's address is v's value.
- if iv.word == 0 {
- return Value{}
- }
- return valueFromAddr(iv.flag&flagRO|flagAddr, iv.typ.Elem(), unsafe.Pointer(iv.word))
- }
- panic(&ValueError{"reflect.Value.Elem", iv.kind})
-}
-
-// Field returns the i'th field of the struct v.
-// It panics if v's Kind is not Struct or i is out of range.
-func (v Value) Field(i int) Value {
- iv := v.internal()
- iv.mustBe(Struct)
- t := iv.typ.toType()
- if i < 0 || i >= t.NumField() {
- panic("reflect: Field index out of range")
- }
- f := t.Field(i)
-
- // Inherit permission bits from v.
- flag := iv.flag
- // Using an unexported field forces flagRO.
- if f.PkgPath != "" {
- flag |= flagRO
- }
- return valueFromValueOffset(flag, f.Type, iv, f.Offset)
-}
-
-// valueFromValueOffset returns a sub-value of outer
-// (outer is an array or a struct) with the given flag and type
-// starting at the given byte offset into outer.
-func valueFromValueOffset(flag uint32, typ Type, outer internalValue, offset uintptr) Value {
- if outer.addr != nil {
- return valueFromAddr(flag, typ, unsafe.Pointer(uintptr(outer.addr)+offset))
- }
-
- // outer is so tiny it is in line.
- // We have to use outer.word and derive
- // the new word (it cannot possibly be bigger).
- // In line, so not addressable.
- if flag&flagAddr != 0 {
- panic("reflect: internal error: misuse of valueFromValueOffset")
- }
- b := *(*[ptrSize]byte)(unsafe.Pointer(&outer.word))
- for i := uintptr(0); i < typ.Size(); i++ {
- b[i] = b[offset+i]
- }
- for i := typ.Size(); i < ptrSize; i++ {
- b[i] = 0
- }
- w := *(*iword)(unsafe.Pointer(&b))
- return valueFromIword(flag, typ, w)
-}
-
-// FieldByIndex returns the nested field corresponding to index.
-// It panics if v's Kind is not struct.
-func (v Value) FieldByIndex(index []int) Value {
- v.internal().mustBe(Struct)
- for i, x := range index {
- if i > 0 {
- if v.Kind() == Ptr && v.Elem().Kind() == Struct {
- v = v.Elem()
- }
- }
- v = v.Field(x)
- }
- return v
-}
-
-// FieldByName returns the struct field with the given name.
-// It returns the zero Value if no field was found.
-// It panics if v's Kind is not struct.
-func (v Value) FieldByName(name string) Value {
- iv := v.internal()
- iv.mustBe(Struct)
- if f, ok := iv.typ.FieldByName(name); ok {
- return v.FieldByIndex(f.Index)
- }
- return Value{}
-}
-
-// FieldByNameFunc returns the struct field with a name
-// that satisfies the match function.
-// It panics if v's Kind is not struct.
-// It returns the zero Value if no field was found.
-func (v Value) FieldByNameFunc(match func(string) bool) Value {
- v.internal().mustBe(Struct)
- if f, ok := v.Type().FieldByNameFunc(match); ok {
- return v.FieldByIndex(f.Index)
- }
- return Value{}
-}
-
-// Float returns v's underlying value, as an float64.
-// It panics if v's Kind is not Float32 or Float64
-func (v Value) Float() float64 {
- iv := v.internal()
- switch iv.kind {
- case Float32:
- return float64(*(*float32)(unsafe.Pointer(&iv.word)))
- case Float64:
- // If the pointer width can fit an entire float64,
- // the value is in line when stored in an interface.
- if iv.addr == nil {
- return *(*float64)(unsafe.Pointer(&iv.word))
- }
- // Otherwise we have a pointer.
- return *(*float64)(iv.addr)
- }
- panic(&ValueError{"reflect.Value.Float", iv.kind})
-}
-
-// Index returns v's i'th element.
-// It panics if v's Kind is not Array or Slice or i is out of range.
-func (v Value) Index(i int) Value {
- iv := v.internal()
- switch iv.kind {
- default:
- panic(&ValueError{"reflect.Value.Index", iv.kind})
- case Array:
- flag := iv.flag // element flag same as overall array
- t := iv.typ.toType()
- if i < 0 || i > t.Len() {
- panic("reflect: array index out of range")
- }
- typ := t.Elem()
- return valueFromValueOffset(flag, typ, iv, uintptr(i)*typ.Size())
-
- case Slice:
- // Element flag same as Elem of Ptr.
- // Addressable, possibly read-only.
- flag := iv.flag&flagRO | flagAddr
- s := (*SliceHeader)(iv.addr)
- if i < 0 || i >= s.Len {
- panic("reflect: slice index out of range")
- }
- typ := iv.typ.Elem()
- addr := unsafe.Pointer(s.Data + uintptr(i)*typ.Size())
- return valueFromAddr(flag, typ, addr)
- }
-
- panic("not reached")
-}
-
-// Int returns v's underlying value, as an int64.
-// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
-func (v Value) Int() int64 {
- iv := v.internal()
- switch iv.kind {
- case Int:
- return int64(*(*int)(unsafe.Pointer(&iv.word)))
- case Int8:
- return int64(*(*int8)(unsafe.Pointer(&iv.word)))
- case Int16:
- return int64(*(*int16)(unsafe.Pointer(&iv.word)))
- case Int32:
- return int64(*(*int32)(unsafe.Pointer(&iv.word)))
- case Int64:
- if iv.addr == nil {
- return *(*int64)(unsafe.Pointer(&iv.word))
- }
- return *(*int64)(iv.addr)
- }
- panic(&ValueError{"reflect.Value.Int", iv.kind})
-}
-
-// CanInterface returns true if Interface can be used without panicking.
-func (v Value) CanInterface() bool {
- iv := v.internal()
- if iv.kind == Invalid {
- panic(&ValueError{"reflect.Value.CanInterface", iv.kind})
- }
- // TODO(rsc): Check flagRO too. Decide what to do about asking for
- // interface for a value obtained via an unexported field.
- // If the field were of a known type, say chan int or *sync.Mutex,
- // the caller could interfere with the data after getting the
- // interface. But fmt.Print depends on being able to look.
- // Now that reflect is more efficient the special cases in fmt
- // might be less important.
- return v.InternalMethod == 0
-}
-
-// Interface returns v's value as an interface{}.
-// If v is a method obtained by invoking Value.Method
-// (as opposed to Type.Method), Interface cannot return an
-// interface value, so it panics.
-func (v Value) Interface() interface{} {
- return v.internal().Interface()
-}
-
-func (iv internalValue) Interface() interface{} {
- if iv.method {
- panic("reflect.Value.Interface: cannot create interface value for method with bound receiver")
- }
- /*
- if v.flag()&noExport != 0 {
- panic("reflect.Value.Interface: cannot return value obtained from unexported struct field")
- }
- */
-
- if iv.kind == Interface {
- // Special case: return the element inside the interface.
- // Won't recurse further because an interface cannot contain an interface.
- if iv.IsNil() {
- return nil
- }
- return iv.Elem().Interface()
- }
-
- // Non-interface value.
- var eface emptyInterface
- eface.typ = iv.typ.runtimeType()
- eface.word = iv.word
- return *(*interface{})(unsafe.Pointer(&eface))
-}
-
-// InterfaceData returns the interface v's value as a uintptr pair.
-// It panics if v's Kind is not Interface.
-func (v Value) InterfaceData() [2]uintptr {
- iv := v.internal()
- iv.mustBe(Interface)
- // We treat this as a read operation, so we allow
- // it even for unexported data, because the caller
- // has to import "unsafe" to turn it into something
- // that can be abused.
- return *(*[2]uintptr)(iv.addr)
-}
-
-// IsNil returns true if v is a nil value.
-// It panics if v's Kind is not Chan, Func, Interface, Map, Ptr, or Slice.
-func (v Value) IsNil() bool {
- return v.internal().IsNil()
-}
-
-func (iv internalValue) IsNil() bool {
- switch iv.kind {
- case Chan, Func, Map, Ptr:
- if iv.method {
- panic("reflect: IsNil of method Value")
- }
- return iv.word == 0
- case Interface, Slice:
- // Both interface and slice are nil if first word is 0.
- return *(*uintptr)(iv.addr) == 0
- }
- panic(&ValueError{"reflect.Value.IsNil", iv.kind})
-}
-
-// IsValid returns true if v represents a value.
-// It returns false if v is the zero Value.
-// If IsValid returns false, all other methods except String panic.
-// Most functions and methods never return an invalid value.
-// If one does, its documentation states the conditions explicitly.
-func (v Value) IsValid() bool {
- return v.Internal != nil
-}
-
-// Kind returns v's Kind.
-// If v is the zero Value (IsValid returns false), Kind returns Invalid.
-func (v Value) Kind() Kind {
- return v.internal().kind
-}
-
-// Len returns v's length.
-// It panics if v's Kind is not Array, Chan, Map, Slice, or String.
-func (v Value) Len() int {
- iv := v.internal()
- switch iv.kind {
- case Array:
- return iv.typ.Len()
- case Chan:
- return int(chanlen(iv.word))
- case Map:
- return int(maplen(iv.word))
- case Slice:
- return (*SliceHeader)(iv.addr).Len
- case String:
- return (*StringHeader)(iv.addr).Len
- }
- panic(&ValueError{"reflect.Value.Len", iv.kind})
-}
-
-// MapIndex returns the value associated with key in the map v.
-// It panics if v's Kind is not Map.
-// It returns the zero Value if key is not found in the map or if v represents a nil map.
-// As in Go, the key's value must be assignable to the map's key type.
-func (v Value) MapIndex(key Value) Value {
- iv := v.internal()
- iv.mustBe(Map)
- typ := iv.typ.toType()
-
- // Do not require ikey to be exported, so that DeepEqual
- // and other programs can use all the keys returned by
- // MapKeys as arguments to MapIndex. If either the map
- // or the key is unexported, though, the result will be
- // considered unexported.
-
- ikey := key.internal()
- ikey = convertForAssignment("reflect.Value.MapIndex", nil, typ.Key(), ikey)
- if iv.word == 0 {
- return Value{}
- }
-
- flag := (iv.flag | ikey.flag) & flagRO
- elemType := typ.Elem()
- elemWord, ok := mapaccess(iv.word, ikey.word)
- if !ok {
- return Value{}
- }
- return valueFromIword(flag, elemType, elemWord)
-}
-
-// MapKeys returns a slice containing all the keys present in the map,
-// in unspecified order.
-// It panics if v's Kind is not Map.
-// It returns an empty slice if v represents a nil map.
-func (v Value) MapKeys() []Value {
- iv := v.internal()
- iv.mustBe(Map)
- keyType := iv.typ.Key()
-
- flag := iv.flag & flagRO
- m := iv.word
- mlen := int32(0)
- if m != 0 {
- mlen = maplen(m)
- }
- it := mapiterinit(m)
- a := make([]Value, mlen)
- var i int
- for i = 0; i < len(a); i++ {
- keyWord, ok := mapiterkey(it)
- if !ok {
- break
- }
- a[i] = valueFromIword(flag, keyType, keyWord)
- mapiternext(it)
- }
- return a[:i]
-}
-
-// Method returns a function value corresponding to v's i'th method.
-// The arguments to a Call on the returned function should not include
-// a receiver; the returned function will always use v as the receiver.
-// Method panics if i is out of range.
-func (v Value) Method(i int) Value {
- iv := v.internal()
- if iv.kind == Invalid {
- panic(&ValueError{"reflect.Value.Method", Invalid})
- }
- if i < 0 || i >= iv.typ.NumMethod() {
- panic("reflect: Method index out of range")
- }
- return Value{v.Internal, i + 1}
-}
-
-// MethodByName returns a function value corresponding to the method
-// of v with the given name.
-// The arguments to a Call on the returned function should not include
-// a receiver; the returned function will always use v as the receiver.
-// It returns the zero Value if no method was found.
-func (v Value) MethodByName(name string) Value {
- iv := v.internal()
- if iv.kind == Invalid {
- panic(&ValueError{"reflect.Value.MethodByName", Invalid})
- }
- m, ok := iv.typ.MethodByName(name)
- if ok {
- return Value{v.Internal, m.Index + 1}
- }
- return Value{}
-}
-
-// NumField returns the number of fields in the struct v.
-// It panics if v's Kind is not Struct.
-func (v Value) NumField() int {
- iv := v.internal()
- iv.mustBe(Struct)
- return iv.typ.NumField()
-}
-
-// OverflowComplex returns true if the complex128 x cannot be represented by v's type.
-// It panics if v's Kind is not Complex64 or Complex128.
-func (v Value) OverflowComplex(x complex128) bool {
- iv := v.internal()
- switch iv.kind {
- case Complex64:
- return overflowFloat32(real(x)) || overflowFloat32(imag(x))
- case Complex128:
- return false
- }
- panic(&ValueError{"reflect.Value.OverflowComplex", iv.kind})
-}
-
-// OverflowFloat returns true if the float64 x cannot be represented by v's type.
-// It panics if v's Kind is not Float32 or Float64.
-func (v Value) OverflowFloat(x float64) bool {
- iv := v.internal()
- switch iv.kind {
- case Float32:
- return overflowFloat32(x)
- case Float64:
- return false
- }
- panic(&ValueError{"reflect.Value.OverflowFloat", iv.kind})
-}
-
-func overflowFloat32(x float64) bool {
- if x < 0 {
- x = -x
- }
- return math.MaxFloat32 <= x && x <= math.MaxFloat64
-}
-
-// OverflowInt returns true if the int64 x cannot be represented by v's type.
-// It panics if v's Kind is not Int, Int8, int16, Int32, or Int64.
-func (v Value) OverflowInt(x int64) bool {
- iv := v.internal()
- switch iv.kind {
- case Int, Int8, Int16, Int32, Int64:
- bitSize := iv.typ.size * 8
- trunc := (x << (64 - bitSize)) >> (64 - bitSize)
- return x != trunc
- }
- panic(&ValueError{"reflect.Value.OverflowInt", iv.kind})
-}
-
-// OverflowUint returns true if the uint64 x cannot be represented by v's type.
-// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
-func (v Value) OverflowUint(x uint64) bool {
- iv := v.internal()
- switch iv.kind {
- case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64:
- bitSize := iv.typ.size * 8
- trunc := (x << (64 - bitSize)) >> (64 - bitSize)
- return x != trunc
- }
- panic(&ValueError{"reflect.Value.OverflowUint", iv.kind})
-}
-
-// Pointer returns v's value as a uintptr.
-// It returns uintptr instead of unsafe.Pointer so that
-// code using reflect cannot obtain unsafe.Pointers
-// without importing the unsafe package explicitly.
-// It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer.
-func (v Value) Pointer() uintptr {
- iv := v.internal()
- switch iv.kind {
- case Chan, Func, Map, Ptr, UnsafePointer:
- if iv.kind == Func && v.InternalMethod != 0 {
- panic("reflect.Value.Pointer of method Value")
- }
- return uintptr(iv.word)
- case Slice:
- return (*SliceHeader)(iv.addr).Data
- }
- panic(&ValueError{"reflect.Value.Pointer", iv.kind})
-}
-
-// Recv receives and returns a value from the channel v.
-// It panics if v's Kind is not Chan.
-// The receive blocks until a value is ready.
-// The boolean value ok is true if the value x corresponds to a send
-// on the channel, false if it is a zero value received because the channel is closed.
-func (v Value) Recv() (x Value, ok bool) {
- iv := v.internal()
- iv.mustBe(Chan)
- iv.mustBeExported()
- return iv.recv(false)
-}
-
-// internal recv, possibly non-blocking (nb)
-func (iv internalValue) recv(nb bool) (val Value, ok bool) {
- t := iv.typ.toType()
- if t.ChanDir()&RecvDir == 0 {
- panic("recv on send-only channel")
- }
- ch := iv.word
- if ch == 0 {
- panic("recv on nil channel")
- }
- valWord, selected, ok := chanrecv(ch, nb)
- if selected {
- val = valueFromIword(0, t.Elem(), valWord)
- }
- return
-}
-
-// Send sends x on the channel v.
-// It panics if v's kind is not Chan or if x's type is not the same type as v's element type.
-// As in Go, x's value must be assignable to the channel's element type.
-func (v Value) Send(x Value) {
- iv := v.internal()
- iv.mustBe(Chan)
- iv.mustBeExported()
- iv.send(x, false)
-}
-
-// internal send, possibly non-blocking
-func (iv internalValue) send(x Value, nb bool) (selected bool) {
- t := iv.typ.toType()
- if t.ChanDir()&SendDir == 0 {
- panic("send on recv-only channel")
- }
- ix := x.internal()
- ix.mustBeExported() // do not let unexported x leak
- ix = convertForAssignment("reflect.Value.Send", nil, t.Elem(), ix)
- ch := iv.word
- if ch == 0 {
- panic("send on nil channel")
- }
- return chansend(ch, ix.word, nb)
-}
-
-// Set assigns x to the value v.
-// It panics if CanSet returns false.
-// As in Go, x's value must be assignable to v's type.
-func (v Value) Set(x Value) {
- iv := v.internal()
- ix := x.internal()
-
- iv.mustBeAssignable()
- ix.mustBeExported() // do not let unexported x leak
-
- ix = convertForAssignment("reflect.Set", iv.addr, iv.typ, ix)
-
- n := ix.typ.size
- if n <= ptrSize {
- storeIword(iv.addr, ix.word, n)
- } else {
- memmove(iv.addr, ix.addr, n)
- }
-}
-
-// SetBool sets v's underlying value.
-// It panics if v's Kind is not Bool or if CanSet() is false.
-func (v Value) SetBool(x bool) {
- iv := v.internal()
- iv.mustBeAssignable()
- iv.mustBe(Bool)
- *(*bool)(iv.addr) = x
-}
-
-// SetComplex sets v's underlying value to x.
-// It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false.
-func (v Value) SetComplex(x complex128) {
- iv := v.internal()
- iv.mustBeAssignable()
- switch iv.kind {
- default:
- panic(&ValueError{"reflect.Value.SetComplex", iv.kind})
- case Complex64:
- *(*complex64)(iv.addr) = complex64(x)
- case Complex128:
- *(*complex128)(iv.addr) = x
- }
-}
-
-// SetFloat sets v's underlying value to x.
-// It panics if v's Kind is not Float32 or Float64, or if CanSet() is false.
-func (v Value) SetFloat(x float64) {
- iv := v.internal()
- iv.mustBeAssignable()
- switch iv.kind {
- default:
- panic(&ValueError{"reflect.Value.SetFloat", iv.kind})
- case Float32:
- *(*float32)(iv.addr) = float32(x)
- case Float64:
- *(*float64)(iv.addr) = x
- }
-}
-
-// SetInt sets v's underlying value to x.
-// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false.
-func (v Value) SetInt(x int64) {
- iv := v.internal()
- iv.mustBeAssignable()
- switch iv.kind {
- default:
- panic(&ValueError{"reflect.Value.SetInt", iv.kind})
- case Int:
- *(*int)(iv.addr) = int(x)
- case Int8:
- *(*int8)(iv.addr) = int8(x)
- case Int16:
- *(*int16)(iv.addr) = int16(x)
- case Int32:
- *(*int32)(iv.addr) = int32(x)
- case Int64:
- *(*int64)(iv.addr) = x
- }
-}
-
-// SetLen sets v's length to n.
-// It panics if v's Kind is not Slice.
-func (v Value) SetLen(n int) {
- iv := v.internal()
- iv.mustBeAssignable()
- iv.mustBe(Slice)
- s := (*SliceHeader)(iv.addr)
- if n < 0 || n > int(s.Cap) {
- panic("reflect: slice length out of range in SetLen")
- }
- s.Len = n
-}
-
-// SetMapIndex sets the value associated with key in the map v to val.
-// It panics if v's Kind is not Map.
-// If val is the zero Value, SetMapIndex deletes the key from the map.
-// As in Go, key's value must be assignable to the map's key type,
-// and val's value must be assignable to the map's value type.
-func (v Value) SetMapIndex(key, val Value) {
- iv := v.internal()
- ikey := key.internal()
- ival := val.internal()
-
- iv.mustBe(Map)
- iv.mustBeExported()
-
- ikey.mustBeExported()
- ikey = convertForAssignment("reflect.Value.SetMapIndex", nil, iv.typ.Key(), ikey)
-
- if ival.kind != Invalid {
- ival.mustBeExported()
- ival = convertForAssignment("reflect.Value.SetMapIndex", nil, iv.typ.Elem(), ival)
- }
-
- mapassign(iv.word, ikey.word, ival.word, ival.kind != Invalid)
-}
-
-// SetUint sets v's underlying value to x.
-// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false.
-func (v Value) SetUint(x uint64) {
- iv := v.internal()
- iv.mustBeAssignable()
- switch iv.kind {
- default:
- panic(&ValueError{"reflect.Value.SetUint", iv.kind})
- case Uint:
- *(*uint)(iv.addr) = uint(x)
- case Uint8:
- *(*uint8)(iv.addr) = uint8(x)
- case Uint16:
- *(*uint16)(iv.addr) = uint16(x)
- case Uint32:
- *(*uint32)(iv.addr) = uint32(x)
- case Uint64:
- *(*uint64)(iv.addr) = x
- case Uintptr:
- *(*uintptr)(iv.addr) = uintptr(x)
- }
-}
-
-// SetPointer sets the unsafe.Pointer value v to x.
-// It panics if v's Kind is not UnsafePointer.
-func (v Value) SetPointer(x unsafe.Pointer) {
- iv := v.internal()
- iv.mustBeAssignable()
- iv.mustBe(UnsafePointer)
- *(*unsafe.Pointer)(iv.addr) = x
-}
-
-// SetString sets v's underlying value to x.
-// It panics if v's Kind is not String or if CanSet() is false.
-func (v Value) SetString(x string) {
- iv := v.internal()
- iv.mustBeAssignable()
- iv.mustBe(String)
- *(*string)(iv.addr) = x
-}
-
-// Slice returns a slice of v.
-// It panics if v's Kind is not Array or Slice.
-func (v Value) Slice(beg, end int) Value {
- iv := v.internal()
- if iv.kind != Array && iv.kind != Slice {
- panic(&ValueError{"reflect.Value.Slice", iv.kind})
- }
- cap := v.Cap()
- if beg < 0 || end < beg || end > cap {
- panic("reflect.Value.Slice: slice index out of bounds")
- }
- var typ Type
- var base uintptr
- switch iv.kind {
- case Array:
- if iv.flag&flagAddr == 0 {
- panic("reflect.Value.Slice: slice of unaddressable array")
- }
- typ = toType((*arrayType)(unsafe.Pointer(iv.typ)).slice)
- base = uintptr(iv.addr)
- case Slice:
- typ = iv.typ.toType()
- base = (*SliceHeader)(iv.addr).Data
- }
- s := new(SliceHeader)
- s.Data = base + uintptr(beg)*typ.Elem().Size()
- s.Len = end - beg
- s.Cap = cap - beg
- return valueFromAddr(iv.flag&flagRO, typ, unsafe.Pointer(s))
-}
-
-// String returns the string v's underlying value, as a string.
-// String is a special case because of Go's String method convention.
-// Unlike the other getters, it does not panic if v's Kind is not String.
-// Instead, it returns a string of the form "<T value>" where T is v's type.
-func (v Value) String() string {
- iv := v.internal()
- switch iv.kind {
- case Invalid:
- return "<invalid Value>"
- case String:
- return *(*string)(iv.addr)
- }
- return "<" + iv.typ.String() + " Value>"
-}
-
-// TryRecv attempts to receive a value from the channel v but will not block.
-// It panics if v's Kind is not Chan.
-// If the receive cannot finish without blocking, x is the zero Value.
-// The boolean ok is true if the value x corresponds to a send
-// on the channel, false if it is a zero value received because the channel is closed.
-func (v Value) TryRecv() (x Value, ok bool) {
- iv := v.internal()
- iv.mustBe(Chan)
- iv.mustBeExported()
- return iv.recv(true)
-}
-
-// TrySend attempts to send x on the channel v but will not block.
-// It panics if v's Kind is not Chan.
-// It returns true if the value was sent, false otherwise.
-// As in Go, x's value must be assignable to the channel's element type.
-func (v Value) TrySend(x Value) bool {
- iv := v.internal()
- iv.mustBe(Chan)
- iv.mustBeExported()
- return iv.send(x, true)
-}
-
-// Type returns v's type.
-func (v Value) Type() Type {
- t := v.internal().typ
- if t == nil {
- panic(&ValueError{"reflect.Value.Type", Invalid})
- }
- return t.toType()
-}
-
-// Uint returns v's underlying value, as a uint64.
-// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
-func (v Value) Uint() uint64 {
- iv := v.internal()
- switch iv.kind {
- case Uint:
- return uint64(*(*uint)(unsafe.Pointer(&iv.word)))
- case Uint8:
- return uint64(*(*uint8)(unsafe.Pointer(&iv.word)))
- case Uint16:
- return uint64(*(*uint16)(unsafe.Pointer(&iv.word)))
- case Uint32:
- return uint64(*(*uint32)(unsafe.Pointer(&iv.word)))
- case Uintptr:
- return uint64(*(*uintptr)(unsafe.Pointer(&iv.word)))
- case Uint64:
- if iv.addr == nil {
- return *(*uint64)(unsafe.Pointer(&iv.word))
- }
- return *(*uint64)(iv.addr)
- }
- panic(&ValueError{"reflect.Value.Uint", iv.kind})
-}
-
-// UnsafeAddr returns a pointer to v's data.
-// It is for advanced clients that also import the "unsafe" package.
-// It panics if v is not addressable.
-func (v Value) UnsafeAddr() uintptr {
- iv := v.internal()
- if iv.kind == Invalid {
- panic(&ValueError{"reflect.Value.UnsafeAddr", iv.kind})
- }
- if iv.flag&flagAddr == 0 {
- panic("reflect.Value.UnsafeAddr of unaddressable value")
- }
- return uintptr(iv.addr)
-}
-
-// StringHeader is the runtime representation of a string.
-// It cannot be used safely or portably.
-type StringHeader struct {
- Data uintptr
- Len int
-}
-
-// SliceHeader is the runtime representation of a slice.
-// It cannot be used safely or portably.
-type SliceHeader struct {
- Data uintptr
- Len int
- Cap int
-}
-
-func typesMustMatch(what string, t1, t2 Type) {
- if t1 != t2 {
- panic("reflect: " + what + ": " + t1.String() + " != " + t2.String())
- }
-}
-
-// grow grows the slice s so that it can hold extra more values, allocating
-// more capacity if needed. It also returns the old and new slice lengths.
-func grow(s Value, extra int) (Value, int, int) {
- i0 := s.Len()
- i1 := i0 + extra
- if i1 < i0 {
- panic("reflect.Append: slice overflow")
- }
- m := s.Cap()
- if i1 <= m {
- return s.Slice(0, i1), i0, i1
- }
- if m == 0 {
- m = extra
- } else {
- for m < i1 {
- if i0 < 1024 {
- m += m
- } else {
- m += m / 4
- }
- }
- }
- t := MakeSlice(s.Type(), i1, m)
- Copy(t, s)
- return t, i0, i1
-}
-
-// Append appends the values x to a slice s and returns the resulting slice.
-// As in Go, each x's value must be assignable to the slice's element type.
-func Append(s Value, x ...Value) Value {
- s.internal().mustBe(Slice)
- s, i0, i1 := grow(s, len(x))
- for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
- s.Index(i).Set(x[j])
- }
- return s
-}
-
-// AppendSlice appends a slice t to a slice s and returns the resulting slice.
-// The slices s and t must have the same element type.
-func AppendSlice(s, t Value) Value {
- s.internal().mustBe(Slice)
- t.internal().mustBe(Slice)
- typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem())
- s, i0, i1 := grow(s, t.Len())
- Copy(s.Slice(i0, i1), t)
- return s
-}
-
-// Copy copies the contents of src into dst until either
-// dst has been filled or src has been exhausted.
-// It returns the number of elements copied.
-// Dst and src each must have kind Slice or Array, and
-// dst and src must have the same element type.
-func Copy(dst, src Value) int {
- idst := dst.internal()
- isrc := src.internal()
-
- if idst.kind != Array && idst.kind != Slice {
- panic(&ValueError{"reflect.Copy", idst.kind})
- }
- if idst.kind == Array {
- idst.mustBeAssignable()
- }
- idst.mustBeExported()
- if isrc.kind != Array && isrc.kind != Slice {
- panic(&ValueError{"reflect.Copy", isrc.kind})
- }
- isrc.mustBeExported()
-
- de := idst.typ.Elem()
- se := isrc.typ.Elem()
- typesMustMatch("reflect.Copy", de, se)
-
- n := dst.Len()
- if sn := src.Len(); n > sn {
- n = sn
- }
-
- // If sk is an in-line array, cannot take its address.
- // Instead, copy element by element.
- if isrc.addr == nil {
- for i := 0; i < n; i++ {
- dst.Index(i).Set(src.Index(i))
- }
- return n
- }
-
- // Copy via memmove.
- var da, sa unsafe.Pointer
- if idst.kind == Array {
- da = idst.addr
- } else {
- da = unsafe.Pointer((*SliceHeader)(idst.addr).Data)
- }
- if isrc.kind == Array {
- sa = isrc.addr
- } else {
- sa = unsafe.Pointer((*SliceHeader)(isrc.addr).Data)
- }
- memmove(da, sa, uintptr(n)*de.Size())
- return n
-}
-
-/*
- * constructors
- */
-
-// MakeSlice creates a new zero-initialized slice value
-// for the specified slice type, length, and capacity.
-func MakeSlice(typ Type, len, cap int) Value {
- if typ.Kind() != Slice {
- panic("reflect: MakeSlice of non-slice type")
- }
- s := &SliceHeader{
- Data: uintptr(unsafe.NewArray(typ.Elem(), cap)),
- Len: len,
- Cap: cap,
- }
- return valueFromAddr(0, typ, unsafe.Pointer(s))
-}
-
-// MakeChan creates a new channel with the specified type and buffer size.
-func MakeChan(typ Type, buffer int) Value {
- if typ.Kind() != Chan {
- panic("reflect: MakeChan of non-chan type")
- }
- if buffer < 0 {
- panic("MakeChan: negative buffer size")
- }
- if typ.ChanDir() != BothDir {
- panic("MakeChan: unidirectional channel type")
- }
- ch := makechan(typ.runtimeType(), uint32(buffer))
- return valueFromIword(0, typ, ch)
-}
-
-// MakeMap creates a new map of the specified type.
-func MakeMap(typ Type) Value {
- if typ.Kind() != Map {
- panic("reflect: MakeMap of non-map type")
- }
- m := makemap(typ.runtimeType())
- return valueFromIword(0, typ, m)
-}
-
-// Indirect returns the value that v points to.
-// If v is a nil pointer, Indirect returns a nil Value.
-// If v is not a pointer, Indirect returns v.
-func Indirect(v Value) Value {
- if v.Kind() != Ptr {
- return v
- }
- return v.Elem()
-}
-
-// ValueOf returns a new Value initialized to the concrete value
-// stored in the interface i. ValueOf(nil) returns the zero Value.
-func ValueOf(i interface{}) Value {
- if i == nil {
- return Value{}
- }
- // For an interface value with the noAddr bit set,
- // the representation is identical to an empty interface.
- eface := *(*emptyInterface)(unsafe.Pointer(&i))
- return packValue(0, eface.typ, eface.word)
-}
-
-// Zero returns a Value representing a zero value for the specified type.
-// The result is different from the zero value of the Value struct,
-// which represents no value at all.
-// For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0.
-func Zero(typ Type) Value {
- if typ == nil {
- panic("reflect: Zero(nil)")
- }
- if typ.Size() <= ptrSize {
- return valueFromIword(0, typ, 0)
- }
- return valueFromAddr(0, typ, unsafe.New(typ))
-}
-
-// New returns a Value representing a pointer to a new zero value
-// for the specified type. That is, the returned Value's Type is PtrTo(t).
-func New(typ Type) Value {
- if typ == nil {
- panic("reflect: New(nil)")
- }
- ptr := unsafe.New(typ)
- return valueFromIword(0, PtrTo(typ), iword(ptr))
-}
-
-// convertForAssignment
-func convertForAssignment(what string, addr unsafe.Pointer, dst Type, iv internalValue) internalValue {
- if iv.method {
- panic(what + ": cannot assign method value to type " + dst.String())
- }
-
- dst1 := dst.(*commonType)
- if directlyAssignable(dst1, iv.typ) {
- // Overwrite type so that they match.
- // Same memory layout, so no harm done.
- iv.typ = dst1
- return iv
- }
- if implements(dst1, iv.typ) {
- if addr == nil {
- addr = unsafe.Pointer(new(interface{}))
- }
- x := iv.Interface()
- if dst.NumMethod() == 0 {
- *(*interface{})(addr) = x
- } else {
- ifaceE2I(dst1.runtimeType(), x, addr)
- }
- iv.addr = addr
- iv.word = iword(addr)
- iv.typ = dst1
- return iv
- }
-
- // Failed.
- panic(what + ": value of type " + iv.typ.String() + " is not assignable to type " + dst.String())
-}
-
-// implemented in ../pkg/runtime
-func chancap(ch iword) int32
-func chanclose(ch iword)
-func chanlen(ch iword) int32
-func chanrecv(ch iword, nb bool) (val iword, selected, received bool)
-func chansend(ch iword, val iword, nb bool) bool
-
-func makechan(typ *runtime.Type, size uint32) (ch iword)
-func makemap(t *runtime.Type) iword
-func mapaccess(m iword, key iword) (val iword, ok bool)
-func mapassign(m iword, key, val iword, ok bool)
-func mapiterinit(m iword) *byte
-func mapiterkey(it *byte) (key iword, ok bool)
-func mapiternext(it *byte)
-func maplen(m iword) int32
-
-func call(fn, arg unsafe.Pointer, n uint32)
-func ifaceE2I(t *runtime.Type, src interface{}, dst unsafe.Pointer)