diff options
Diffstat (limited to 'src/pkg/reflect/value.go')
-rw-r--r-- | src/pkg/reflect/value.go | 2684 |
1 files changed, 0 insertions, 2684 deletions
diff --git a/src/pkg/reflect/value.go b/src/pkg/reflect/value.go deleted file mode 100644 index 576cbc398..000000000 --- a/src/pkg/reflect/value.go +++ /dev/null @@ -1,2684 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package reflect - -import ( - "math" - "runtime" - "strconv" - "unsafe" -) - -const bigEndian = false // can be smarter if we find a big-endian machine -const ptrSize = unsafe.Sizeof((*byte)(nil)) -const cannotSet = "cannot set value obtained from unexported struct field" - -// TODO: This will have to go away when -// the new gc goes in. -func memmove(adst, asrc unsafe.Pointer, n uintptr) { - dst := uintptr(adst) - src := uintptr(asrc) - switch { - case src < dst && src+n > dst: - // byte copy backward - // careful: i is unsigned - for i := n; i > 0; { - i-- - *(*byte)(unsafe.Pointer(dst + i)) = *(*byte)(unsafe.Pointer(src + i)) - } - case (n|src|dst)&(ptrSize-1) != 0: - // byte copy forward - for i := uintptr(0); i < n; i++ { - *(*byte)(unsafe.Pointer(dst + i)) = *(*byte)(unsafe.Pointer(src + i)) - } - default: - // word copy forward - for i := uintptr(0); i < n; i += ptrSize { - *(*uintptr)(unsafe.Pointer(dst + i)) = *(*uintptr)(unsafe.Pointer(src + i)) - } - } -} - -// Value is the reflection interface to a Go value. -// -// Not all methods apply to all kinds of values. Restrictions, -// if any, are noted in the documentation for each method. -// Use the Kind method to find out the kind of value before -// calling kind-specific methods. Calling a method -// inappropriate to the kind of type causes a run time panic. -// -// The zero Value represents no value. -// Its IsValid method returns false, its Kind method returns Invalid, -// its String method returns "<invalid Value>", and all other methods panic. -// Most functions and methods never return an invalid value. -// If one does, its documentation states the conditions explicitly. -// -// A Value can be used concurrently by multiple goroutines provided that -// the underlying Go value can be used concurrently for the equivalent -// direct operations. -type Value struct { - // typ holds the type of the value represented by a Value. - typ *rtype - - // Pointer-valued data or, if flagIndir is set, pointer to data. - // Valid when either flagIndir is set or typ.pointers() is true. - ptr unsafe.Pointer - - // Non-pointer-valued data. When the data is smaller - // than a word, it begins at the first byte (in the memory - // address sense) of this field. - // Valid when flagIndir is not set and typ.pointers() is false. - scalar uintptr - - // flag holds metadata about the value. - // The lowest bits are flag bits: - // - flagRO: obtained via unexported field, so read-only - // - flagIndir: val holds a pointer to the data - // - flagAddr: v.CanAddr is true (implies flagIndir) - // - flagMethod: v is a method value. - // The next five bits give the Kind of the value. - // This repeats typ.Kind() except for method values. - // The remaining 23+ bits give a method number for method values. - // If flag.kind() != Func, code can assume that flagMethod is unset. - // If typ.size > ptrSize, code can assume that flagIndir is set. - flag - - // A method value represents a curried method invocation - // like r.Read for some receiver r. The typ+val+flag bits describe - // the receiver r, but the flag's Kind bits say Func (methods are - // functions), and the top bits of the flag give the method number - // in r's type's method table. -} - -type flag uintptr - -const ( - flagRO flag = 1 << iota - flagIndir - flagAddr - flagMethod - flagKindShift = iota - flagKindWidth = 5 // there are 27 kinds - flagKindMask flag = 1<<flagKindWidth - 1 - flagMethodShift = flagKindShift + flagKindWidth -) - -func (f flag) kind() Kind { - return Kind((f >> flagKindShift) & flagKindMask) -} - -// pointer returns the underlying pointer represented by v. -// v.Kind() must be Ptr, Map, Chan, Func, or UnsafePointer -func (v Value) pointer() unsafe.Pointer { - if v.typ.size != ptrSize || !v.typ.pointers() { - panic("can't call pointer on a non-pointer Value") - } - if v.flag&flagIndir != 0 { - return *(*unsafe.Pointer)(v.ptr) - } - return v.ptr -} - -// packEface converts v to the empty interface. -func packEface(v Value) interface{} { - t := v.typ - var i interface{} - e := (*emptyInterface)(unsafe.Pointer(&i)) - // First, fill in the data portion of the interface. - switch { - case t.size > ptrSize: - // Value is indirect, and so is the interface we're making. - ptr := v.ptr - if v.flag&flagAddr != 0 { - // TODO: pass safe boolean from valueInterface so - // we don't need to copy if safe==true? - c := unsafe_New(t) - memmove(c, ptr, t.size) - ptr = c - } - e.word = iword(ptr) - case v.flag&flagIndir != 0: - // Value is indirect, but interface is direct. We need - // to load the data at v.ptr into the interface data word. - if t.pointers() { - e.word = iword(*(*unsafe.Pointer)(v.ptr)) - } else { - e.word = iword(loadScalar(v.ptr, t.size)) - } - default: - // Value is direct, and so is the interface. - if t.pointers() { - e.word = iword(v.ptr) - } else { - e.word = iword(v.scalar) - } - } - // Now, fill in the type portion. We're very careful here not - // to have any operation between the e.word and e.typ assignments - // that would let the garbage collector observe the partially-built - // interface value. - e.typ = t - return i -} - -// unpackEface converts the empty interface i to a Value. -func unpackEface(i interface{}) Value { - e := (*emptyInterface)(unsafe.Pointer(&i)) - // NOTE: don't read e.word until we know whether it is really a pointer or not. - t := e.typ - if t == nil { - return Value{} - } - f := flag(t.Kind()) << flagKindShift - if t.size > ptrSize { - return Value{t, unsafe.Pointer(e.word), 0, f | flagIndir} - } - if t.pointers() { - return Value{t, unsafe.Pointer(e.word), 0, f} - } - return Value{t, nil, uintptr(e.word), f} -} - -// A ValueError occurs when a Value method is invoked on -// a Value that does not support it. Such cases are documented -// in the description of each method. -type ValueError struct { - Method string - Kind Kind -} - -func (e *ValueError) Error() string { - if e.Kind == 0 { - return "reflect: call of " + e.Method + " on zero Value" - } - return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value" -} - -// methodName returns the name of the calling method, -// assumed to be two stack frames above. -func methodName() string { - pc, _, _, _ := runtime.Caller(2) - f := runtime.FuncForPC(pc) - if f == nil { - return "unknown method" - } - return f.Name() -} - -// An iword is the word that would be stored in an -// interface to represent a given value v. Specifically, if v is -// bigger than a pointer, its word is a pointer to v's data. -// Otherwise, its word holds the data stored -// in its leading bytes (so is not a pointer). -// This type is very dangerous for the garbage collector because -// it must be treated conservatively. We try to never expose it -// to the GC here so that GC remains precise. -type iword unsafe.Pointer - -// loadScalar loads n bytes at p from memory into a uintptr -// that forms the second word of an interface. The data -// must be non-pointer in nature. -func loadScalar(p unsafe.Pointer, n uintptr) uintptr { - // Run the copy ourselves instead of calling memmove - // to avoid moving w to the heap. - var w uintptr - switch n { - default: - panic("reflect: internal error: loadScalar of " + strconv.Itoa(int(n)) + "-byte value") - case 0: - case 1: - *(*uint8)(unsafe.Pointer(&w)) = *(*uint8)(p) - case 2: - *(*uint16)(unsafe.Pointer(&w)) = *(*uint16)(p) - case 3: - *(*[3]byte)(unsafe.Pointer(&w)) = *(*[3]byte)(p) - case 4: - *(*uint32)(unsafe.Pointer(&w)) = *(*uint32)(p) - case 5: - *(*[5]byte)(unsafe.Pointer(&w)) = *(*[5]byte)(p) - case 6: - *(*[6]byte)(unsafe.Pointer(&w)) = *(*[6]byte)(p) - case 7: - *(*[7]byte)(unsafe.Pointer(&w)) = *(*[7]byte)(p) - case 8: - *(*uint64)(unsafe.Pointer(&w)) = *(*uint64)(p) - } - return w -} - -// storeScalar stores n bytes from w into p. -func storeScalar(p unsafe.Pointer, w uintptr, n uintptr) { - // Run the copy ourselves instead of calling memmove - // to avoid moving w to the heap. - switch n { - default: - panic("reflect: internal error: storeScalar of " + strconv.Itoa(int(n)) + "-byte value") - case 0: - case 1: - *(*uint8)(p) = *(*uint8)(unsafe.Pointer(&w)) - case 2: - *(*uint16)(p) = *(*uint16)(unsafe.Pointer(&w)) - case 3: - *(*[3]byte)(p) = *(*[3]byte)(unsafe.Pointer(&w)) - case 4: - *(*uint32)(p) = *(*uint32)(unsafe.Pointer(&w)) - case 5: - *(*[5]byte)(p) = *(*[5]byte)(unsafe.Pointer(&w)) - case 6: - *(*[6]byte)(p) = *(*[6]byte)(unsafe.Pointer(&w)) - case 7: - *(*[7]byte)(p) = *(*[7]byte)(unsafe.Pointer(&w)) - case 8: - *(*uint64)(p) = *(*uint64)(unsafe.Pointer(&w)) - } -} - -// emptyInterface is the header for an interface{} value. -type emptyInterface struct { - typ *rtype - word iword -} - -// nonEmptyInterface is the header for a interface value with methods. -type nonEmptyInterface struct { - // see ../runtime/iface.c:/Itab - itab *struct { - ityp *rtype // static interface type - typ *rtype // dynamic concrete type - link unsafe.Pointer - bad int32 - unused int32 - fun [100000]unsafe.Pointer // method table - } - word iword -} - -// mustBe panics if f's kind is not expected. -// Making this a method on flag instead of on Value -// (and embedding flag in Value) means that we can write -// the very clear v.mustBe(Bool) and have it compile into -// v.flag.mustBe(Bool), which will only bother to copy the -// single important word for the receiver. -func (f flag) mustBe(expected Kind) { - k := f.kind() - if k != expected { - panic(&ValueError{methodName(), k}) - } -} - -// mustBeExported panics if f records that the value was obtained using -// an unexported field. -func (f flag) mustBeExported() { - if f == 0 { - panic(&ValueError{methodName(), 0}) - } - if f&flagRO != 0 { - panic("reflect: " + methodName() + " using value obtained using unexported field") - } -} - -// mustBeAssignable panics if f records that the value is not assignable, -// which is to say that either it was obtained using an unexported field -// or it is not addressable. -func (f flag) mustBeAssignable() { - if f == 0 { - panic(&ValueError{methodName(), Invalid}) - } - // Assignable if addressable and not read-only. - if f&flagRO != 0 { - panic("reflect: " + methodName() + " using value obtained using unexported field") - } - if f&flagAddr == 0 { - panic("reflect: " + methodName() + " using unaddressable value") - } -} - -// Addr returns a pointer value representing the address of v. -// It panics if CanAddr() returns false. -// Addr is typically used to obtain a pointer to a struct field -// or slice element in order to call a method that requires a -// pointer receiver. -func (v Value) Addr() Value { - if v.flag&flagAddr == 0 { - panic("reflect.Value.Addr of unaddressable value") - } - return Value{v.typ.ptrTo(), v.ptr, 0, (v.flag & flagRO) | flag(Ptr)<<flagKindShift} -} - -// Bool returns v's underlying value. -// It panics if v's kind is not Bool. -func (v Value) Bool() bool { - v.mustBe(Bool) - if v.flag&flagIndir != 0 { - return *(*bool)(v.ptr) - } - return *(*bool)(unsafe.Pointer(&v.scalar)) -} - -// Bytes returns v's underlying value. -// It panics if v's underlying value is not a slice of bytes. -func (v Value) Bytes() []byte { - v.mustBe(Slice) - if v.typ.Elem().Kind() != Uint8 { - panic("reflect.Value.Bytes of non-byte slice") - } - // Slice is always bigger than a word; assume flagIndir. - return *(*[]byte)(v.ptr) -} - -// runes returns v's underlying value. -// It panics if v's underlying value is not a slice of runes (int32s). -func (v Value) runes() []rune { - v.mustBe(Slice) - if v.typ.Elem().Kind() != Int32 { - panic("reflect.Value.Bytes of non-rune slice") - } - // Slice is always bigger than a word; assume flagIndir. - return *(*[]rune)(v.ptr) -} - -// CanAddr returns true if the value's address can be obtained with Addr. -// Such values are called addressable. A value is addressable if it is -// an element of a slice, an element of an addressable array, -// a field of an addressable struct, or the result of dereferencing a pointer. -// If CanAddr returns false, calling Addr will panic. -func (v Value) CanAddr() bool { - return v.flag&flagAddr != 0 -} - -// CanSet returns true if the value of v can be changed. -// A Value can be changed only if it is addressable and was not -// obtained by the use of unexported struct fields. -// If CanSet returns false, calling Set or any type-specific -// setter (e.g., SetBool, SetInt64) will panic. -func (v Value) CanSet() bool { - return v.flag&(flagAddr|flagRO) == flagAddr -} - -// Call calls the function v with the input arguments in. -// For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]). -// Call panics if v's Kind is not Func. -// It returns the output results as Values. -// As in Go, each input argument must be assignable to the -// type of the function's corresponding input parameter. -// If v is a variadic function, Call creates the variadic slice parameter -// itself, copying in the corresponding values. -func (v Value) Call(in []Value) []Value { - v.mustBe(Func) - v.mustBeExported() - return v.call("Call", in) -} - -// CallSlice calls the variadic function v with the input arguments in, -// assigning the slice in[len(in)-1] to v's final variadic argument. -// For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]...). -// Call panics if v's Kind is not Func or if v is not variadic. -// It returns the output results as Values. -// As in Go, each input argument must be assignable to the -// type of the function's corresponding input parameter. -func (v Value) CallSlice(in []Value) []Value { - v.mustBe(Func) - v.mustBeExported() - return v.call("CallSlice", in) -} - -var callGC bool // for testing; see TestCallMethodJump - -var makeFuncStubFn = makeFuncStub -var makeFuncStubCode = **(**uintptr)(unsafe.Pointer(&makeFuncStubFn)) -var methodValueCallFn = methodValueCall -var methodValueCallCode = **(**uintptr)(unsafe.Pointer(&methodValueCallFn)) - -func (v Value) call(op string, in []Value) []Value { - // Get function pointer, type. - t := v.typ - var ( - fn unsafe.Pointer - rcvr Value - rcvrtype *rtype - ) - if v.flag&flagMethod != 0 { - rcvr = v - rcvrtype, t, fn = methodReceiver(op, v, int(v.flag)>>flagMethodShift) - } else if v.flag&flagIndir != 0 { - fn = *(*unsafe.Pointer)(v.ptr) - } else { - fn = v.ptr - } - - if fn == nil { - panic("reflect.Value.Call: call of nil function") - } - - isSlice := op == "CallSlice" - n := t.NumIn() - if isSlice { - if !t.IsVariadic() { - panic("reflect: CallSlice of non-variadic function") - } - if len(in) < n { - panic("reflect: CallSlice with too few input arguments") - } - if len(in) > n { - panic("reflect: CallSlice with too many input arguments") - } - } else { - if t.IsVariadic() { - n-- - } - if len(in) < n { - panic("reflect: Call with too few input arguments") - } - if !t.IsVariadic() && len(in) > n { - panic("reflect: Call with too many input arguments") - } - } - for _, x := range in { - if x.Kind() == Invalid { - panic("reflect: " + op + " using zero Value argument") - } - } - for i := 0; i < n; i++ { - if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(targ) { - panic("reflect: " + op + " using " + xt.String() + " as type " + targ.String()) - } - } - if !isSlice && t.IsVariadic() { - // prepare slice for remaining values - m := len(in) - n - slice := MakeSlice(t.In(n), m, m) - elem := t.In(n).Elem() - for i := 0; i < m; i++ { - x := in[n+i] - if xt := x.Type(); !xt.AssignableTo(elem) { - panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + op) - } - slice.Index(i).Set(x) - } - origIn := in - in = make([]Value, n+1) - copy(in[:n], origIn) - in[n] = slice - } - - nin := len(in) - if nin != t.NumIn() { - panic("reflect.Value.Call: wrong argument count") - } - nout := t.NumOut() - - // If target is makeFuncStub, short circuit the unpack onto stack / - // pack back into []Value for the args and return values. Just do the - // call directly. - // We need to do this here because otherwise we have a situation where - // reflect.callXX calls makeFuncStub, neither of which knows the - // layout of the args. That's bad for precise gc & stack copying. - x := (*makeFuncImpl)(fn) - if x.code == makeFuncStubCode { - return x.fn(in) - } - - // If the target is methodValueCall, do its work here: add the receiver - // argument and call the real target directly. - // We need to do this here because otherwise we have a situation where - // reflect.callXX calls methodValueCall, neither of which knows the - // layout of the args. That's bad for precise gc & stack copying. - y := (*methodValue)(fn) - if y.fn == methodValueCallCode { - rcvr = y.rcvr - rcvrtype, t, fn = methodReceiver("call", rcvr, y.method) - } - - // Compute frame type, allocate a chunk of memory for frame - frametype, _, retOffset := funcLayout(t, rcvrtype) - args := unsafe_New(frametype) - off := uintptr(0) - - // Copy inputs into args. - if rcvrtype != nil { - storeRcvr(rcvr, args) - off = ptrSize - } - for i, v := range in { - v.mustBeExported() - targ := t.In(i).(*rtype) - a := uintptr(targ.align) - off = (off + a - 1) &^ (a - 1) - n := targ.size - addr := unsafe.Pointer(uintptr(args) + off) - v = v.assignTo("reflect.Value.Call", targ, (*interface{})(addr)) - if v.flag&flagIndir != 0 { - memmove(addr, v.ptr, n) - } else if targ.pointers() { - *(*unsafe.Pointer)(addr) = v.ptr - } else { - storeScalar(addr, v.scalar, n) - } - off += n - } - - // Call. - call(fn, args, uint32(frametype.size), uint32(retOffset)) - - // For testing; see TestCallMethodJump. - if callGC { - runtime.GC() - } - - // Copy return values out of args. - ret := make([]Value, nout) - off = retOffset - for i := 0; i < nout; i++ { - tv := t.Out(i) - a := uintptr(tv.Align()) - off = (off + a - 1) &^ (a - 1) - fl := flagIndir | flag(tv.Kind())<<flagKindShift - ret[i] = Value{tv.common(), unsafe.Pointer(uintptr(args) + off), 0, fl} - off += tv.Size() - } - - return ret -} - -// callReflect is the call implementation used by a function -// returned by MakeFunc. In many ways it is the opposite of the -// method Value.call above. The method above converts a call using Values -// into a call of a function with a concrete argument frame, while -// callReflect converts a call of a function with a concrete argument -// frame into a call using Values. -// It is in this file so that it can be next to the call method above. -// The remainder of the MakeFunc implementation is in makefunc.go. -// -// NOTE: This function must be marked as a "wrapper" in the generated code, -// so that the linker can make it work correctly for panic and recover. -// The gc compilers know to do that for the name "reflect.callReflect". -func callReflect(ctxt *makeFuncImpl, frame unsafe.Pointer) { - ftyp := ctxt.typ - f := ctxt.fn - - // Copy argument frame into Values. - ptr := frame - off := uintptr(0) - in := make([]Value, 0, len(ftyp.in)) - for _, arg := range ftyp.in { - typ := arg - off += -off & uintptr(typ.align-1) - addr := unsafe.Pointer(uintptr(ptr) + off) - v := Value{typ, nil, 0, flag(typ.Kind()) << flagKindShift} - if typ.size > ptrSize { - // value does not fit in word. - // Must make a copy, because f might keep a reference to it, - // and we cannot let f keep a reference to the stack frame - // after this function returns, not even a read-only reference. - v.ptr = unsafe_New(typ) - memmove(v.ptr, addr, typ.size) - v.flag |= flagIndir - } else if typ.pointers() { - v.ptr = *(*unsafe.Pointer)(addr) - } else { - v.scalar = loadScalar(addr, typ.size) - } - in = append(in, v) - off += typ.size - } - - // Call underlying function. - out := f(in) - if len(out) != len(ftyp.out) { - panic("reflect: wrong return count from function created by MakeFunc") - } - - // Copy results back into argument frame. - if len(ftyp.out) > 0 { - off += -off & (ptrSize - 1) - if runtime.GOARCH == "amd64p32" { - off = align(off, 8) - } - for i, arg := range ftyp.out { - typ := arg - v := out[i] - if v.typ != typ { - panic("reflect: function created by MakeFunc using " + funcName(f) + - " returned wrong type: have " + - out[i].typ.String() + " for " + typ.String()) - } - if v.flag&flagRO != 0 { - panic("reflect: function created by MakeFunc using " + funcName(f) + - " returned value obtained from unexported field") - } - off += -off & uintptr(typ.align-1) - addr := unsafe.Pointer(uintptr(ptr) + off) - if v.flag&flagIndir != 0 { - memmove(addr, v.ptr, typ.size) - } else if typ.pointers() { - *(*unsafe.Pointer)(addr) = v.ptr - } else { - storeScalar(addr, v.scalar, typ.size) - } - off += typ.size - } - } -} - -// methodReceiver returns information about the receiver -// described by v. The Value v may or may not have the -// flagMethod bit set, so the kind cached in v.flag should -// not be used. -// The return value rcvrtype gives the method's actual receiver type. -// The return value t gives the method type signature (without the receiver). -// The return value fn is a pointer to the method code. -func methodReceiver(op string, v Value, methodIndex int) (rcvrtype, t *rtype, fn unsafe.Pointer) { - i := methodIndex - if v.typ.Kind() == Interface { - tt := (*interfaceType)(unsafe.Pointer(v.typ)) - if i < 0 || i >= len(tt.methods) { - panic("reflect: internal error: invalid method index") - } - m := &tt.methods[i] - if m.pkgPath != nil { - panic("reflect: " + op + " of unexported method") - } - iface := (*nonEmptyInterface)(v.ptr) - if iface.itab == nil { - panic("reflect: " + op + " of method on nil interface value") - } - rcvrtype = iface.itab.typ - fn = unsafe.Pointer(&iface.itab.fun[i]) - t = m.typ - } else { - rcvrtype = v.typ - ut := v.typ.uncommon() - if ut == nil || i < 0 || i >= len(ut.methods) { - panic("reflect: internal error: invalid method index") - } - m := &ut.methods[i] - if m.pkgPath != nil { - panic("reflect: " + op + " of unexported method") - } - fn = unsafe.Pointer(&m.ifn) - t = m.mtyp - } - return -} - -// v is a method receiver. Store at p the word which is used to -// encode that receiver at the start of the argument list. -// Reflect uses the "interface" calling convention for -// methods, which always uses one word to record the receiver. -func storeRcvr(v Value, p unsafe.Pointer) { - t := v.typ - if t.Kind() == Interface { - // the interface data word becomes the receiver word - iface := (*nonEmptyInterface)(v.ptr) - *(*unsafe.Pointer)(p) = unsafe.Pointer(iface.word) - } else if v.flag&flagIndir != 0 { - if t.size > ptrSize { - *(*unsafe.Pointer)(p) = v.ptr - } else if t.pointers() { - *(*unsafe.Pointer)(p) = *(*unsafe.Pointer)(v.ptr) - } else { - *(*uintptr)(p) = loadScalar(v.ptr, t.size) - } - } else if t.pointers() { - *(*unsafe.Pointer)(p) = v.ptr - } else { - *(*uintptr)(p) = v.scalar - } -} - -// align returns the result of rounding x up to a multiple of n. -// n must be a power of two. -func align(x, n uintptr) uintptr { - return (x + n - 1) &^ (n - 1) -} - -// callMethod is the call implementation used by a function returned -// by makeMethodValue (used by v.Method(i).Interface()). -// It is a streamlined version of the usual reflect call: the caller has -// already laid out the argument frame for us, so we don't have -// to deal with individual Values for each argument. -// It is in this file so that it can be next to the two similar functions above. -// The remainder of the makeMethodValue implementation is in makefunc.go. -// -// NOTE: This function must be marked as a "wrapper" in the generated code, -// so that the linker can make it work correctly for panic and recover. -// The gc compilers know to do that for the name "reflect.callMethod". -func callMethod(ctxt *methodValue, frame unsafe.Pointer) { - rcvr := ctxt.rcvr - rcvrtype, t, fn := methodReceiver("call", rcvr, ctxt.method) - frametype, argSize, retOffset := funcLayout(t, rcvrtype) - - // Make a new frame that is one word bigger so we can store the receiver. - args := unsafe_New(frametype) - - // Copy in receiver and rest of args. - storeRcvr(rcvr, args) - memmove(unsafe.Pointer(uintptr(args)+ptrSize), frame, argSize-ptrSize) - - // Call. - call(fn, args, uint32(frametype.size), uint32(retOffset)) - - // Copy return values. On amd64p32, the beginning of return values - // is 64-bit aligned, so the caller's frame layout (which doesn't have - // a receiver) is different from the layout of the fn call, which has - // a receiver. - // Ignore any changes to args and just copy return values. - callerRetOffset := retOffset - ptrSize - if runtime.GOARCH == "amd64p32" { - callerRetOffset = align(argSize-ptrSize, 8) - } - memmove(unsafe.Pointer(uintptr(frame)+callerRetOffset), - unsafe.Pointer(uintptr(args)+retOffset), frametype.size-retOffset) -} - -// funcName returns the name of f, for use in error messages. -func funcName(f func([]Value) []Value) string { - pc := *(*uintptr)(unsafe.Pointer(&f)) - rf := runtime.FuncForPC(pc) - if rf != nil { - return rf.Name() - } - return "closure" -} - -// Cap returns v's capacity. -// It panics if v's Kind is not Array, Chan, or Slice. -func (v Value) Cap() int { - k := v.kind() - switch k { - case Array: - return v.typ.Len() - case Chan: - return int(chancap(v.pointer())) - case Slice: - // Slice is always bigger than a word; assume flagIndir. - return (*sliceHeader)(v.ptr).Cap - } - panic(&ValueError{"reflect.Value.Cap", k}) -} - -// Close closes the channel v. -// It panics if v's Kind is not Chan. -func (v Value) Close() { - v.mustBe(Chan) - v.mustBeExported() - chanclose(v.pointer()) -} - -// Complex returns v's underlying value, as a complex128. -// It panics if v's Kind is not Complex64 or Complex128 -func (v Value) Complex() complex128 { - k := v.kind() - switch k { - case Complex64: - if v.flag&flagIndir != 0 { - return complex128(*(*complex64)(v.ptr)) - } - return complex128(*(*complex64)(unsafe.Pointer(&v.scalar))) - case Complex128: - // complex128 is always bigger than a word; assume flagIndir. - return *(*complex128)(v.ptr) - } - panic(&ValueError{"reflect.Value.Complex", k}) -} - -// Elem returns the value that the interface v contains -// or that the pointer v points to. -// It panics if v's Kind is not Interface or Ptr. -// It returns the zero Value if v is nil. -func (v Value) Elem() Value { - k := v.kind() - switch k { - case Interface: - var eface interface{} - if v.typ.NumMethod() == 0 { - eface = *(*interface{})(v.ptr) - } else { - eface = (interface{})(*(*interface { - M() - })(v.ptr)) - } - x := unpackEface(eface) - x.flag |= v.flag & flagRO - return x - case Ptr: - ptr := v.ptr - if v.flag&flagIndir != 0 { - ptr = *(*unsafe.Pointer)(ptr) - } - // The returned value's address is v's value. - if ptr == nil { - return Value{} - } - tt := (*ptrType)(unsafe.Pointer(v.typ)) - typ := tt.elem - fl := v.flag&flagRO | flagIndir | flagAddr - fl |= flag(typ.Kind() << flagKindShift) - return Value{typ, ptr, 0, fl} - } - panic(&ValueError{"reflect.Value.Elem", k}) -} - -// Field returns the i'th field of the struct v. -// It panics if v's Kind is not Struct or i is out of range. -func (v Value) Field(i int) Value { - v.mustBe(Struct) - tt := (*structType)(unsafe.Pointer(v.typ)) - if i < 0 || i >= len(tt.fields) { - panic("reflect: Field index out of range") - } - field := &tt.fields[i] - typ := field.typ - - // Inherit permission bits from v. - fl := v.flag & (flagRO | flagIndir | flagAddr) - // Using an unexported field forces flagRO. - if field.pkgPath != nil { - fl |= flagRO - } - fl |= flag(typ.Kind()) << flagKindShift - - var ptr unsafe.Pointer - var scalar uintptr - switch { - case fl&flagIndir != 0: - // Indirect. Just bump pointer. - ptr = unsafe.Pointer(uintptr(v.ptr) + field.offset) - case typ.pointers(): - if field.offset != 0 { - panic("field access of ptr value isn't at offset 0") - } - ptr = v.ptr - case bigEndian: - // Must be scalar. Discard leading bytes. - scalar = v.scalar << (field.offset * 8) - default: - // Must be scalar. Discard leading bytes. - scalar = v.scalar >> (field.offset * 8) - } - - return Value{typ, ptr, scalar, fl} -} - -// FieldByIndex returns the nested field corresponding to index. -// It panics if v's Kind is not struct. -func (v Value) FieldByIndex(index []int) Value { - v.mustBe(Struct) - for i, x := range index { - if i > 0 { - if v.Kind() == Ptr && v.typ.Elem().Kind() == Struct { - if v.IsNil() { - panic("reflect: indirection through nil pointer to embedded struct") - } - v = v.Elem() - } - } - v = v.Field(x) - } - return v -} - -// FieldByName returns the struct field with the given name. -// It returns the zero Value if no field was found. -// It panics if v's Kind is not struct. -func (v Value) FieldByName(name string) Value { - v.mustBe(Struct) - if f, ok := v.typ.FieldByName(name); ok { - return v.FieldByIndex(f.Index) - } - return Value{} -} - -// FieldByNameFunc returns the struct field with a name -// that satisfies the match function. -// It panics if v's Kind is not struct. -// It returns the zero Value if no field was found. -func (v Value) FieldByNameFunc(match func(string) bool) Value { - v.mustBe(Struct) - if f, ok := v.typ.FieldByNameFunc(match); ok { - return v.FieldByIndex(f.Index) - } - return Value{} -} - -// Float returns v's underlying value, as a float64. -// It panics if v's Kind is not Float32 or Float64 -func (v Value) Float() float64 { - k := v.kind() - switch k { - case Float32: - if v.flag&flagIndir != 0 { - return float64(*(*float32)(v.ptr)) - } - return float64(*(*float32)(unsafe.Pointer(&v.scalar))) - case Float64: - if v.flag&flagIndir != 0 { - return *(*float64)(v.ptr) - } - return *(*float64)(unsafe.Pointer(&v.scalar)) - } - panic(&ValueError{"reflect.Value.Float", k}) -} - -var uint8Type = TypeOf(uint8(0)).(*rtype) - -// Index returns v's i'th element. -// It panics if v's Kind is not Array, Slice, or String or i is out of range. -func (v Value) Index(i int) Value { - k := v.kind() - switch k { - case Array: - tt := (*arrayType)(unsafe.Pointer(v.typ)) - if i < 0 || i > int(tt.len) { - panic("reflect: array index out of range") - } - typ := tt.elem - fl := v.flag & (flagRO | flagIndir | flagAddr) // bits same as overall array - fl |= flag(typ.Kind()) << flagKindShift - offset := uintptr(i) * typ.size - - var val unsafe.Pointer - var scalar uintptr - switch { - case fl&flagIndir != 0: - // Indirect. Just bump pointer. - val = unsafe.Pointer(uintptr(v.ptr) + offset) - case typ.pointers(): - if offset != 0 { - panic("can't Index(i) with i!=0 on ptrLike value") - } - val = v.ptr - case bigEndian: - // Direct. Discard leading bytes. - scalar = v.scalar << (offset * 8) - default: - // Direct. Discard leading bytes. - scalar = v.scalar >> (offset * 8) - } - return Value{typ, val, scalar, fl} - - case Slice: - // Element flag same as Elem of Ptr. - // Addressable, indirect, possibly read-only. - fl := flagAddr | flagIndir | v.flag&flagRO - s := (*sliceHeader)(v.ptr) - if i < 0 || i >= s.Len { - panic("reflect: slice index out of range") - } - tt := (*sliceType)(unsafe.Pointer(v.typ)) - typ := tt.elem - fl |= flag(typ.Kind()) << flagKindShift - val := unsafe.Pointer(uintptr(s.Data) + uintptr(i)*typ.size) - return Value{typ, val, 0, fl} - - case String: - fl := v.flag&flagRO | flag(Uint8<<flagKindShift) - s := (*stringHeader)(v.ptr) - if i < 0 || i >= s.Len { - panic("reflect: string index out of range") - } - b := uintptr(0) - *(*byte)(unsafe.Pointer(&b)) = *(*byte)(unsafe.Pointer(uintptr(s.Data) + uintptr(i))) - return Value{uint8Type, nil, b, fl} - } - panic(&ValueError{"reflect.Value.Index", k}) -} - -// Int returns v's underlying value, as an int64. -// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64. -func (v Value) Int() int64 { - k := v.kind() - var p unsafe.Pointer - if v.flag&flagIndir != 0 { - p = v.ptr - } else { - // The escape analysis is good enough that &v.scalar - // does not trigger a heap allocation. - p = unsafe.Pointer(&v.scalar) - } - switch k { - case Int: - return int64(*(*int)(p)) - case Int8: - return int64(*(*int8)(p)) - case Int16: - return int64(*(*int16)(p)) - case Int32: - return int64(*(*int32)(p)) - case Int64: - return int64(*(*int64)(p)) - } - panic(&ValueError{"reflect.Value.Int", k}) -} - -// CanInterface returns true if Interface can be used without panicking. -func (v Value) CanInterface() bool { - if v.flag == 0 { - panic(&ValueError{"reflect.Value.CanInterface", Invalid}) - } - return v.flag&flagRO == 0 -} - -// Interface returns v's current value as an interface{}. -// It is equivalent to: -// var i interface{} = (v's underlying value) -// It panics if the Value was obtained by accessing -// unexported struct fields. -func (v Value) Interface() (i interface{}) { - return valueInterface(v, true) -} - -func valueInterface(v Value, safe bool) interface{} { - if v.flag == 0 { - panic(&ValueError{"reflect.Value.Interface", 0}) - } - if safe && v.flag&flagRO != 0 { - // Do not allow access to unexported values via Interface, - // because they might be pointers that should not be - // writable or methods or function that should not be callable. - panic("reflect.Value.Interface: cannot return value obtained from unexported field or method") - } - if v.flag&flagMethod != 0 { - v = makeMethodValue("Interface", v) - } - - if v.kind() == Interface { - // Special case: return the element inside the interface. - // Empty interface has one layout, all interfaces with - // methods have a second layout. - if v.NumMethod() == 0 { - return *(*interface{})(v.ptr) - } - return *(*interface { - M() - })(v.ptr) - } - - // TODO: pass safe to packEface so we don't need to copy if safe==true? - return packEface(v) -} - -// InterfaceData returns the interface v's value as a uintptr pair. -// It panics if v's Kind is not Interface. -func (v Value) InterfaceData() [2]uintptr { - // TODO: deprecate this - v.mustBe(Interface) - // We treat this as a read operation, so we allow - // it even for unexported data, because the caller - // has to import "unsafe" to turn it into something - // that can be abused. - // Interface value is always bigger than a word; assume flagIndir. - return *(*[2]uintptr)(v.ptr) -} - -// IsNil reports whether its argument v is nil. The argument must be -// a chan, func, interface, map, pointer, or slice value; if it is -// not, IsNil panics. Note that IsNil is not always equivalent to a -// regular comparison with nil in Go. For example, if v was created -// by calling ValueOf with an uninitialized interface variable i, -// i==nil will be true but v.IsNil will panic as v will be the zero -// Value. -func (v Value) IsNil() bool { - k := v.kind() - switch k { - case Chan, Func, Map, Ptr: - if v.flag&flagMethod != 0 { - return false - } - ptr := v.ptr - if v.flag&flagIndir != 0 { - ptr = *(*unsafe.Pointer)(ptr) - } - return ptr == nil - case Interface, Slice: - // Both interface and slice are nil if first word is 0. - // Both are always bigger than a word; assume flagIndir. - return *(*unsafe.Pointer)(v.ptr) == nil - } - panic(&ValueError{"reflect.Value.IsNil", k}) -} - -// IsValid returns true if v represents a value. -// It returns false if v is the zero Value. -// If IsValid returns false, all other methods except String panic. -// Most functions and methods never return an invalid value. -// If one does, its documentation states the conditions explicitly. -func (v Value) IsValid() bool { - return v.flag != 0 -} - -// Kind returns v's Kind. -// If v is the zero Value (IsValid returns false), Kind returns Invalid. -func (v Value) Kind() Kind { - return v.kind() -} - -// Len returns v's length. -// It panics if v's Kind is not Array, Chan, Map, Slice, or String. -func (v Value) Len() int { - k := v.kind() - switch k { - case Array: - tt := (*arrayType)(unsafe.Pointer(v.typ)) - return int(tt.len) - case Chan: - return chanlen(v.pointer()) - case Map: - return maplen(v.pointer()) - case Slice: - // Slice is bigger than a word; assume flagIndir. - return (*sliceHeader)(v.ptr).Len - case String: - // String is bigger than a word; assume flagIndir. - return (*stringHeader)(v.ptr).Len - } - panic(&ValueError{"reflect.Value.Len", k}) -} - -// MapIndex returns the value associated with key in the map v. -// It panics if v's Kind is not Map. -// It returns the zero Value if key is not found in the map or if v represents a nil map. -// As in Go, the key's value must be assignable to the map's key type. -func (v Value) MapIndex(key Value) Value { - v.mustBe(Map) - tt := (*mapType)(unsafe.Pointer(v.typ)) - - // Do not require key to be exported, so that DeepEqual - // and other programs can use all the keys returned by - // MapKeys as arguments to MapIndex. If either the map - // or the key is unexported, though, the result will be - // considered unexported. This is consistent with the - // behavior for structs, which allow read but not write - // of unexported fields. - key = key.assignTo("reflect.Value.MapIndex", tt.key, nil) - - var k unsafe.Pointer - if key.flag&flagIndir != 0 { - k = key.ptr - } else if key.typ.pointers() { - k = unsafe.Pointer(&key.ptr) - } else { - k = unsafe.Pointer(&key.scalar) - } - e := mapaccess(v.typ, v.pointer(), k) - if e == nil { - return Value{} - } - typ := tt.elem - fl := (v.flag | key.flag) & flagRO - fl |= flag(typ.Kind()) << flagKindShift - if typ.size > ptrSize { - // Copy result so future changes to the map - // won't change the underlying value. - c := unsafe_New(typ) - memmove(c, e, typ.size) - return Value{typ, c, 0, fl | flagIndir} - } else if typ.pointers() { - return Value{typ, *(*unsafe.Pointer)(e), 0, fl} - } else { - return Value{typ, nil, loadScalar(e, typ.size), fl} - } -} - -// MapKeys returns a slice containing all the keys present in the map, -// in unspecified order. -// It panics if v's Kind is not Map. -// It returns an empty slice if v represents a nil map. -func (v Value) MapKeys() []Value { - v.mustBe(Map) - tt := (*mapType)(unsafe.Pointer(v.typ)) - keyType := tt.key - - fl := v.flag&flagRO | flag(keyType.Kind())<<flagKindShift - - m := v.pointer() - mlen := int(0) - if m != nil { - mlen = maplen(m) - } - it := mapiterinit(v.typ, m) - a := make([]Value, mlen) - var i int - for i = 0; i < len(a); i++ { - key := mapiterkey(it) - if key == nil { - // Someone deleted an entry from the map since we - // called maplen above. It's a data race, but nothing - // we can do about it. - break - } - if keyType.size > ptrSize { - // Copy result so future changes to the map - // won't change the underlying value. - c := unsafe_New(keyType) - memmove(c, key, keyType.size) - a[i] = Value{keyType, c, 0, fl | flagIndir} - } else if keyType.pointers() { - a[i] = Value{keyType, *(*unsafe.Pointer)(key), 0, fl} - } else { - a[i] = Value{keyType, nil, loadScalar(key, keyType.size), fl} - } - mapiternext(it) - } - return a[:i] -} - -// Method returns a function value corresponding to v's i'th method. -// The arguments to a Call on the returned function should not include -// a receiver; the returned function will always use v as the receiver. -// Method panics if i is out of range or if v is a nil interface value. -func (v Value) Method(i int) Value { - if v.typ == nil { - panic(&ValueError{"reflect.Value.Method", Invalid}) - } - if v.flag&flagMethod != 0 || i < 0 || i >= v.typ.NumMethod() { - panic("reflect: Method index out of range") - } - if v.typ.Kind() == Interface && v.IsNil() { - panic("reflect: Method on nil interface value") - } - fl := v.flag & (flagRO | flagIndir) - fl |= flag(Func) << flagKindShift - fl |= flag(i)<<flagMethodShift | flagMethod - return Value{v.typ, v.ptr, v.scalar, fl} -} - -// NumMethod returns the number of methods in the value's method set. -func (v Value) NumMethod() int { - if v.typ == nil { - panic(&ValueError{"reflect.Value.NumMethod", Invalid}) - } - if v.flag&flagMethod != 0 { - return 0 - } - return v.typ.NumMethod() -} - -// MethodByName returns a function value corresponding to the method -// of v with the given name. -// The arguments to a Call on the returned function should not include -// a receiver; the returned function will always use v as the receiver. -// It returns the zero Value if no method was found. -func (v Value) MethodByName(name string) Value { - if v.typ == nil { - panic(&ValueError{"reflect.Value.MethodByName", Invalid}) - } - if v.flag&flagMethod != 0 { - return Value{} - } - m, ok := v.typ.MethodByName(name) - if !ok { - return Value{} - } - return v.Method(m.Index) -} - -// NumField returns the number of fields in the struct v. -// It panics if v's Kind is not Struct. -func (v Value) NumField() int { - v.mustBe(Struct) - tt := (*structType)(unsafe.Pointer(v.typ)) - return len(tt.fields) -} - -// OverflowComplex returns true if the complex128 x cannot be represented by v's type. -// It panics if v's Kind is not Complex64 or Complex128. -func (v Value) OverflowComplex(x complex128) bool { - k := v.kind() - switch k { - case Complex64: - return overflowFloat32(real(x)) || overflowFloat32(imag(x)) - case Complex128: - return false - } - panic(&ValueError{"reflect.Value.OverflowComplex", k}) -} - -// OverflowFloat returns true if the float64 x cannot be represented by v's type. -// It panics if v's Kind is not Float32 or Float64. -func (v Value) OverflowFloat(x float64) bool { - k := v.kind() - switch k { - case Float32: - return overflowFloat32(x) - case Float64: - return false - } - panic(&ValueError{"reflect.Value.OverflowFloat", k}) -} - -func overflowFloat32(x float64) bool { - if x < 0 { - x = -x - } - return math.MaxFloat32 < x && x <= math.MaxFloat64 -} - -// OverflowInt returns true if the int64 x cannot be represented by v's type. -// It panics if v's Kind is not Int, Int8, int16, Int32, or Int64. -func (v Value) OverflowInt(x int64) bool { - k := v.kind() - switch k { - case Int, Int8, Int16, Int32, Int64: - bitSize := v.typ.size * 8 - trunc := (x << (64 - bitSize)) >> (64 - bitSize) - return x != trunc - } - panic(&ValueError{"reflect.Value.OverflowInt", k}) -} - -// OverflowUint returns true if the uint64 x cannot be represented by v's type. -// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64. -func (v Value) OverflowUint(x uint64) bool { - k := v.kind() - switch k { - case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64: - bitSize := v.typ.size * 8 - trunc := (x << (64 - bitSize)) >> (64 - bitSize) - return x != trunc - } - panic(&ValueError{"reflect.Value.OverflowUint", k}) -} - -// Pointer returns v's value as a uintptr. -// It returns uintptr instead of unsafe.Pointer so that -// code using reflect cannot obtain unsafe.Pointers -// without importing the unsafe package explicitly. -// It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer. -// -// If v's Kind is Func, the returned pointer is an underlying -// code pointer, but not necessarily enough to identify a -// single function uniquely. The only guarantee is that the -// result is zero if and only if v is a nil func Value. -// -// If v's Kind is Slice, the returned pointer is to the first -// element of the slice. If the slice is nil the returned value -// is 0. If the slice is empty but non-nil the return value is non-zero. -func (v Value) Pointer() uintptr { - // TODO: deprecate - k := v.kind() - switch k { - case Chan, Map, Ptr, UnsafePointer: - return uintptr(v.pointer()) - case Func: - if v.flag&flagMethod != 0 { - // As the doc comment says, the returned pointer is an - // underlying code pointer but not necessarily enough to - // identify a single function uniquely. All method expressions - // created via reflect have the same underlying code pointer, - // so their Pointers are equal. The function used here must - // match the one used in makeMethodValue. - f := methodValueCall - return **(**uintptr)(unsafe.Pointer(&f)) - } - p := v.pointer() - // Non-nil func value points at data block. - // First word of data block is actual code. - if p != nil { - p = *(*unsafe.Pointer)(p) - } - return uintptr(p) - - case Slice: - return (*SliceHeader)(v.ptr).Data - } - panic(&ValueError{"reflect.Value.Pointer", k}) -} - -// Recv receives and returns a value from the channel v. -// It panics if v's Kind is not Chan. -// The receive blocks until a value is ready. -// The boolean value ok is true if the value x corresponds to a send -// on the channel, false if it is a zero value received because the channel is closed. -func (v Value) Recv() (x Value, ok bool) { - v.mustBe(Chan) - v.mustBeExported() - return v.recv(false) -} - -// internal recv, possibly non-blocking (nb). -// v is known to be a channel. -func (v Value) recv(nb bool) (val Value, ok bool) { - tt := (*chanType)(unsafe.Pointer(v.typ)) - if ChanDir(tt.dir)&RecvDir == 0 { - panic("reflect: recv on send-only channel") - } - t := tt.elem - val = Value{t, nil, 0, flag(t.Kind()) << flagKindShift} - var p unsafe.Pointer - if t.size > ptrSize { - p = unsafe_New(t) - val.ptr = p - val.flag |= flagIndir - } else if t.pointers() { - p = unsafe.Pointer(&val.ptr) - } else { - p = unsafe.Pointer(&val.scalar) - } - selected, ok := chanrecv(v.typ, v.pointer(), nb, p) - if !selected { - val = Value{} - } - return -} - -// Send sends x on the channel v. -// It panics if v's kind is not Chan or if x's type is not the same type as v's element type. -// As in Go, x's value must be assignable to the channel's element type. -func (v Value) Send(x Value) { - v.mustBe(Chan) - v.mustBeExported() - v.send(x, false) -} - -// internal send, possibly non-blocking. -// v is known to be a channel. -func (v Value) send(x Value, nb bool) (selected bool) { - tt := (*chanType)(unsafe.Pointer(v.typ)) - if ChanDir(tt.dir)&SendDir == 0 { - panic("reflect: send on recv-only channel") - } - x.mustBeExported() - x = x.assignTo("reflect.Value.Send", tt.elem, nil) - var p unsafe.Pointer - if x.flag&flagIndir != 0 { - p = x.ptr - } else if x.typ.pointers() { - p = unsafe.Pointer(&x.ptr) - } else { - p = unsafe.Pointer(&x.scalar) - } - return chansend(v.typ, v.pointer(), p, nb) -} - -// Set assigns x to the value v. -// It panics if CanSet returns false. -// As in Go, x's value must be assignable to v's type. -func (v Value) Set(x Value) { - v.mustBeAssignable() - x.mustBeExported() // do not let unexported x leak - var target *interface{} - if v.kind() == Interface { - target = (*interface{})(v.ptr) - } - x = x.assignTo("reflect.Set", v.typ, target) - if x.flag&flagIndir != 0 { - memmove(v.ptr, x.ptr, v.typ.size) - } else if x.typ.pointers() { - *(*unsafe.Pointer)(v.ptr) = x.ptr - } else { - memmove(v.ptr, unsafe.Pointer(&x.scalar), v.typ.size) - } -} - -// SetBool sets v's underlying value. -// It panics if v's Kind is not Bool or if CanSet() is false. -func (v Value) SetBool(x bool) { - v.mustBeAssignable() - v.mustBe(Bool) - *(*bool)(v.ptr) = x -} - -// SetBytes sets v's underlying value. -// It panics if v's underlying value is not a slice of bytes. -func (v Value) SetBytes(x []byte) { - v.mustBeAssignable() - v.mustBe(Slice) - if v.typ.Elem().Kind() != Uint8 { - panic("reflect.Value.SetBytes of non-byte slice") - } - *(*[]byte)(v.ptr) = x -} - -// setRunes sets v's underlying value. -// It panics if v's underlying value is not a slice of runes (int32s). -func (v Value) setRunes(x []rune) { - v.mustBeAssignable() - v.mustBe(Slice) - if v.typ.Elem().Kind() != Int32 { - panic("reflect.Value.setRunes of non-rune slice") - } - *(*[]rune)(v.ptr) = x -} - -// SetComplex sets v's underlying value to x. -// It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false. -func (v Value) SetComplex(x complex128) { - v.mustBeAssignable() - switch k := v.kind(); k { - default: - panic(&ValueError{"reflect.Value.SetComplex", k}) - case Complex64: - *(*complex64)(v.ptr) = complex64(x) - case Complex128: - *(*complex128)(v.ptr) = x - } -} - -// SetFloat sets v's underlying value to x. -// It panics if v's Kind is not Float32 or Float64, or if CanSet() is false. -func (v Value) SetFloat(x float64) { - v.mustBeAssignable() - switch k := v.kind(); k { - default: - panic(&ValueError{"reflect.Value.SetFloat", k}) - case Float32: - *(*float32)(v.ptr) = float32(x) - case Float64: - *(*float64)(v.ptr) = x - } -} - -// SetInt sets v's underlying value to x. -// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false. -func (v Value) SetInt(x int64) { - v.mustBeAssignable() - switch k := v.kind(); k { - default: - panic(&ValueError{"reflect.Value.SetInt", k}) - case Int: - *(*int)(v.ptr) = int(x) - case Int8: - *(*int8)(v.ptr) = int8(x) - case Int16: - *(*int16)(v.ptr) = int16(x) - case Int32: - *(*int32)(v.ptr) = int32(x) - case Int64: - *(*int64)(v.ptr) = x - } -} - -// SetLen sets v's length to n. -// It panics if v's Kind is not Slice or if n is negative or -// greater than the capacity of the slice. -func (v Value) SetLen(n int) { - v.mustBeAssignable() - v.mustBe(Slice) - s := (*sliceHeader)(v.ptr) - if n < 0 || n > int(s.Cap) { - panic("reflect: slice length out of range in SetLen") - } - s.Len = n -} - -// SetCap sets v's capacity to n. -// It panics if v's Kind is not Slice or if n is smaller than the length or -// greater than the capacity of the slice. -func (v Value) SetCap(n int) { - v.mustBeAssignable() - v.mustBe(Slice) - s := (*sliceHeader)(v.ptr) - if n < int(s.Len) || n > int(s.Cap) { - panic("reflect: slice capacity out of range in SetCap") - } - s.Cap = n -} - -// SetMapIndex sets the value associated with key in the map v to val. -// It panics if v's Kind is not Map. -// If val is the zero Value, SetMapIndex deletes the key from the map. -// Otherwise if v holds a nil map, SetMapIndex will panic. -// As in Go, key's value must be assignable to the map's key type, -// and val's value must be assignable to the map's value type. -func (v Value) SetMapIndex(key, val Value) { - v.mustBe(Map) - v.mustBeExported() - key.mustBeExported() - tt := (*mapType)(unsafe.Pointer(v.typ)) - key = key.assignTo("reflect.Value.SetMapIndex", tt.key, nil) - var k unsafe.Pointer - if key.flag&flagIndir != 0 { - k = key.ptr - } else if key.typ.pointers() { - k = unsafe.Pointer(&key.ptr) - } else { - k = unsafe.Pointer(&key.scalar) - } - if val.typ == nil { - mapdelete(v.typ, v.pointer(), k) - return - } - val.mustBeExported() - val = val.assignTo("reflect.Value.SetMapIndex", tt.elem, nil) - var e unsafe.Pointer - if val.flag&flagIndir != 0 { - e = val.ptr - } else if val.typ.pointers() { - e = unsafe.Pointer(&val.ptr) - } else { - e = unsafe.Pointer(&val.scalar) - } - mapassign(v.typ, v.pointer(), k, e) -} - -// SetUint sets v's underlying value to x. -// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false. -func (v Value) SetUint(x uint64) { - v.mustBeAssignable() - switch k := v.kind(); k { - default: - panic(&ValueError{"reflect.Value.SetUint", k}) - case Uint: - *(*uint)(v.ptr) = uint(x) - case Uint8: - *(*uint8)(v.ptr) = uint8(x) - case Uint16: - *(*uint16)(v.ptr) = uint16(x) - case Uint32: - *(*uint32)(v.ptr) = uint32(x) - case Uint64: - *(*uint64)(v.ptr) = x - case Uintptr: - *(*uintptr)(v.ptr) = uintptr(x) - } -} - -// SetPointer sets the unsafe.Pointer value v to x. -// It panics if v's Kind is not UnsafePointer. -func (v Value) SetPointer(x unsafe.Pointer) { - v.mustBeAssignable() - v.mustBe(UnsafePointer) - *(*unsafe.Pointer)(v.ptr) = x -} - -// SetString sets v's underlying value to x. -// It panics if v's Kind is not String or if CanSet() is false. -func (v Value) SetString(x string) { - v.mustBeAssignable() - v.mustBe(String) - *(*string)(v.ptr) = x -} - -// Slice returns v[i:j]. -// It panics if v's Kind is not Array, Slice or String, or if v is an unaddressable array, -// or if the indexes are out of bounds. -func (v Value) Slice(i, j int) Value { - var ( - cap int - typ *sliceType - base unsafe.Pointer - ) - switch kind := v.kind(); kind { - default: - panic(&ValueError{"reflect.Value.Slice", kind}) - - case Array: - if v.flag&flagAddr == 0 { - panic("reflect.Value.Slice: slice of unaddressable array") - } - tt := (*arrayType)(unsafe.Pointer(v.typ)) - cap = int(tt.len) - typ = (*sliceType)(unsafe.Pointer(tt.slice)) - base = v.ptr - - case Slice: - typ = (*sliceType)(unsafe.Pointer(v.typ)) - s := (*sliceHeader)(v.ptr) - base = unsafe.Pointer(s.Data) - cap = s.Cap - - case String: - s := (*stringHeader)(v.ptr) - if i < 0 || j < i || j > s.Len { - panic("reflect.Value.Slice: string slice index out of bounds") - } - t := stringHeader{unsafe.Pointer(uintptr(s.Data) + uintptr(i)), j - i} - return Value{v.typ, unsafe.Pointer(&t), 0, v.flag} - } - - if i < 0 || j < i || j > cap { - panic("reflect.Value.Slice: slice index out of bounds") - } - - // Declare slice so that gc can see the base pointer in it. - var x []unsafe.Pointer - - // Reinterpret as *sliceHeader to edit. - s := (*sliceHeader)(unsafe.Pointer(&x)) - s.Data = unsafe.Pointer(uintptr(base) + uintptr(i)*typ.elem.Size()) - s.Len = j - i - s.Cap = cap - i - - fl := v.flag&flagRO | flagIndir | flag(Slice)<<flagKindShift - return Value{typ.common(), unsafe.Pointer(&x), 0, fl} -} - -// Slice3 is the 3-index form of the slice operation: it returns v[i:j:k]. -// It panics if v's Kind is not Array or Slice, or if v is an unaddressable array, -// or if the indexes are out of bounds. -func (v Value) Slice3(i, j, k int) Value { - var ( - cap int - typ *sliceType - base unsafe.Pointer - ) - switch kind := v.kind(); kind { - default: - panic(&ValueError{"reflect.Value.Slice3", kind}) - - case Array: - if v.flag&flagAddr == 0 { - panic("reflect.Value.Slice3: slice of unaddressable array") - } - tt := (*arrayType)(unsafe.Pointer(v.typ)) - cap = int(tt.len) - typ = (*sliceType)(unsafe.Pointer(tt.slice)) - base = v.ptr - - case Slice: - typ = (*sliceType)(unsafe.Pointer(v.typ)) - s := (*sliceHeader)(v.ptr) - base = s.Data - cap = s.Cap - } - - if i < 0 || j < i || k < j || k > cap { - panic("reflect.Value.Slice3: slice index out of bounds") - } - - // Declare slice so that the garbage collector - // can see the base pointer in it. - var x []unsafe.Pointer - - // Reinterpret as *sliceHeader to edit. - s := (*sliceHeader)(unsafe.Pointer(&x)) - s.Data = unsafe.Pointer(uintptr(base) + uintptr(i)*typ.elem.Size()) - s.Len = j - i - s.Cap = k - i - - fl := v.flag&flagRO | flagIndir | flag(Slice)<<flagKindShift - return Value{typ.common(), unsafe.Pointer(&x), 0, fl} -} - -// String returns the string v's underlying value, as a string. -// String is a special case because of Go's String method convention. -// Unlike the other getters, it does not panic if v's Kind is not String. -// Instead, it returns a string of the form "<T value>" where T is v's type. -func (v Value) String() string { - switch k := v.kind(); k { - case Invalid: - return "<invalid Value>" - case String: - return *(*string)(v.ptr) - } - // If you call String on a reflect.Value of other type, it's better to - // print something than to panic. Useful in debugging. - return "<" + v.typ.String() + " Value>" -} - -// TryRecv attempts to receive a value from the channel v but will not block. -// It panics if v's Kind is not Chan. -// If the receive delivers a value, x is the transferred value and ok is true. -// If the receive cannot finish without blocking, x is the zero Value and ok is false. -// If the channel is closed, x is the zero value for the channel's element type and ok is false. -func (v Value) TryRecv() (x Value, ok bool) { - v.mustBe(Chan) - v.mustBeExported() - return v.recv(true) -} - -// TrySend attempts to send x on the channel v but will not block. -// It panics if v's Kind is not Chan. -// It returns true if the value was sent, false otherwise. -// As in Go, x's value must be assignable to the channel's element type. -func (v Value) TrySend(x Value) bool { - v.mustBe(Chan) - v.mustBeExported() - return v.send(x, true) -} - -// Type returns v's type. -func (v Value) Type() Type { - f := v.flag - if f == 0 { - panic(&ValueError{"reflect.Value.Type", Invalid}) - } - if f&flagMethod == 0 { - // Easy case - return v.typ - } - - // Method value. - // v.typ describes the receiver, not the method type. - i := int(v.flag) >> flagMethodShift - if v.typ.Kind() == Interface { - // Method on interface. - tt := (*interfaceType)(unsafe.Pointer(v.typ)) - if i < 0 || i >= len(tt.methods) { - panic("reflect: internal error: invalid method index") - } - m := &tt.methods[i] - return m.typ - } - // Method on concrete type. - ut := v.typ.uncommon() - if ut == nil || i < 0 || i >= len(ut.methods) { - panic("reflect: internal error: invalid method index") - } - m := &ut.methods[i] - return m.mtyp -} - -// Uint returns v's underlying value, as a uint64. -// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64. -func (v Value) Uint() uint64 { - k := v.kind() - var p unsafe.Pointer - if v.flag&flagIndir != 0 { - p = v.ptr - } else { - // The escape analysis is good enough that &v.scalar - // does not trigger a heap allocation. - p = unsafe.Pointer(&v.scalar) - } - switch k { - case Uint: - return uint64(*(*uint)(p)) - case Uint8: - return uint64(*(*uint8)(p)) - case Uint16: - return uint64(*(*uint16)(p)) - case Uint32: - return uint64(*(*uint32)(p)) - case Uint64: - return uint64(*(*uint64)(p)) - case Uintptr: - return uint64(*(*uintptr)(p)) - } - panic(&ValueError{"reflect.Value.Uint", k}) -} - -// UnsafeAddr returns a pointer to v's data. -// It is for advanced clients that also import the "unsafe" package. -// It panics if v is not addressable. -func (v Value) UnsafeAddr() uintptr { - // TODO: deprecate - if v.typ == nil { - panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid}) - } - if v.flag&flagAddr == 0 { - panic("reflect.Value.UnsafeAddr of unaddressable value") - } - return uintptr(v.ptr) -} - -// StringHeader is the runtime representation of a string. -// It cannot be used safely or portably and its representation may -// change in a later release. -// Moreover, the Data field is not sufficient to guarantee the data -// it references will not be garbage collected, so programs must keep -// a separate, correctly typed pointer to the underlying data. -type StringHeader struct { - Data uintptr - Len int -} - -// stringHeader is a safe version of StringHeader used within this package. -type stringHeader struct { - Data unsafe.Pointer - Len int -} - -// SliceHeader is the runtime representation of a slice. -// It cannot be used safely or portably and its representation may -// change in a later release. -// Moreover, the Data field is not sufficient to guarantee the data -// it references will not be garbage collected, so programs must keep -// a separate, correctly typed pointer to the underlying data. -type SliceHeader struct { - Data uintptr - Len int - Cap int -} - -// sliceHeader is a safe version of SliceHeader used within this package. -type sliceHeader struct { - Data unsafe.Pointer - Len int - Cap int -} - -func typesMustMatch(what string, t1, t2 Type) { - if t1 != t2 { - panic(what + ": " + t1.String() + " != " + t2.String()) - } -} - -// grow grows the slice s so that it can hold extra more values, allocating -// more capacity if needed. It also returns the old and new slice lengths. -func grow(s Value, extra int) (Value, int, int) { - i0 := s.Len() - i1 := i0 + extra - if i1 < i0 { - panic("reflect.Append: slice overflow") - } - m := s.Cap() - if i1 <= m { - return s.Slice(0, i1), i0, i1 - } - if m == 0 { - m = extra - } else { - for m < i1 { - if i0 < 1024 { - m += m - } else { - m += m / 4 - } - } - } - t := MakeSlice(s.Type(), i1, m) - Copy(t, s) - return t, i0, i1 -} - -// Append appends the values x to a slice s and returns the resulting slice. -// As in Go, each x's value must be assignable to the slice's element type. -func Append(s Value, x ...Value) Value { - s.mustBe(Slice) - s, i0, i1 := grow(s, len(x)) - for i, j := i0, 0; i < i1; i, j = i+1, j+1 { - s.Index(i).Set(x[j]) - } - return s -} - -// AppendSlice appends a slice t to a slice s and returns the resulting slice. -// The slices s and t must have the same element type. -func AppendSlice(s, t Value) Value { - s.mustBe(Slice) - t.mustBe(Slice) - typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem()) - s, i0, i1 := grow(s, t.Len()) - Copy(s.Slice(i0, i1), t) - return s -} - -// Copy copies the contents of src into dst until either -// dst has been filled or src has been exhausted. -// It returns the number of elements copied. -// Dst and src each must have kind Slice or Array, and -// dst and src must have the same element type. -func Copy(dst, src Value) int { - dk := dst.kind() - if dk != Array && dk != Slice { - panic(&ValueError{"reflect.Copy", dk}) - } - if dk == Array { - dst.mustBeAssignable() - } - dst.mustBeExported() - - sk := src.kind() - if sk != Array && sk != Slice { - panic(&ValueError{"reflect.Copy", sk}) - } - src.mustBeExported() - - de := dst.typ.Elem() - se := src.typ.Elem() - typesMustMatch("reflect.Copy", de, se) - - n := dst.Len() - if sn := src.Len(); n > sn { - n = sn - } - - // If sk is an in-line array, cannot take its address. - // Instead, copy element by element. - // TODO: memmove would be ok for this (sa = unsafe.Pointer(&v.scalar)) - // if we teach the compiler that ptrs don't escape from memmove. - if src.flag&flagIndir == 0 { - for i := 0; i < n; i++ { - dst.Index(i).Set(src.Index(i)) - } - return n - } - - // Copy via memmove. - var da, sa unsafe.Pointer - if dk == Array { - da = dst.ptr - } else { - da = (*sliceHeader)(dst.ptr).Data - } - if sk == Array { - sa = src.ptr - } else { - sa = (*sliceHeader)(src.ptr).Data - } - memmove(da, sa, uintptr(n)*de.Size()) - return n -} - -// A runtimeSelect is a single case passed to rselect. -// This must match ../runtime/chan.c:/runtimeSelect -type runtimeSelect struct { - dir uintptr // 0, SendDir, or RecvDir - typ *rtype // channel type - ch unsafe.Pointer // channel - val unsafe.Pointer // ptr to data (SendDir) or ptr to receive buffer (RecvDir) -} - -// rselect runs a select. It returns the index of the chosen case. -// If the case was a receive, val is filled in with the received value. -// The conventional OK bool indicates whether the receive corresponds -// to a sent value. -//go:noescape -func rselect([]runtimeSelect) (chosen int, recvOK bool) - -// A SelectDir describes the communication direction of a select case. -type SelectDir int - -// NOTE: These values must match ../runtime/chan.c:/SelectDir. - -const ( - _ SelectDir = iota - SelectSend // case Chan <- Send - SelectRecv // case <-Chan: - SelectDefault // default -) - -// A SelectCase describes a single case in a select operation. -// The kind of case depends on Dir, the communication direction. -// -// If Dir is SelectDefault, the case represents a default case. -// Chan and Send must be zero Values. -// -// If Dir is SelectSend, the case represents a send operation. -// Normally Chan's underlying value must be a channel, and Send's underlying value must be -// assignable to the channel's element type. As a special case, if Chan is a zero Value, -// then the case is ignored, and the field Send will also be ignored and may be either zero -// or non-zero. -// -// If Dir is SelectRecv, the case represents a receive operation. -// Normally Chan's underlying value must be a channel and Send must be a zero Value. -// If Chan is a zero Value, then the case is ignored, but Send must still be a zero Value. -// When a receive operation is selected, the received Value is returned by Select. -// -type SelectCase struct { - Dir SelectDir // direction of case - Chan Value // channel to use (for send or receive) - Send Value // value to send (for send) -} - -// Select executes a select operation described by the list of cases. -// Like the Go select statement, it blocks until at least one of the cases -// can proceed, makes a uniform pseudo-random choice, -// and then executes that case. It returns the index of the chosen case -// and, if that case was a receive operation, the value received and a -// boolean indicating whether the value corresponds to a send on the channel -// (as opposed to a zero value received because the channel is closed). -func Select(cases []SelectCase) (chosen int, recv Value, recvOK bool) { - // NOTE: Do not trust that caller is not modifying cases data underfoot. - // The range is safe because the caller cannot modify our copy of the len - // and each iteration makes its own copy of the value c. - runcases := make([]runtimeSelect, len(cases)) - haveDefault := false - for i, c := range cases { - rc := &runcases[i] - rc.dir = uintptr(c.Dir) - switch c.Dir { - default: - panic("reflect.Select: invalid Dir") - - case SelectDefault: // default - if haveDefault { - panic("reflect.Select: multiple default cases") - } - haveDefault = true - if c.Chan.IsValid() { - panic("reflect.Select: default case has Chan value") - } - if c.Send.IsValid() { - panic("reflect.Select: default case has Send value") - } - - case SelectSend: - ch := c.Chan - if !ch.IsValid() { - break - } - ch.mustBe(Chan) - ch.mustBeExported() - tt := (*chanType)(unsafe.Pointer(ch.typ)) - if ChanDir(tt.dir)&SendDir == 0 { - panic("reflect.Select: SendDir case using recv-only channel") - } - rc.ch = ch.pointer() - rc.typ = &tt.rtype - v := c.Send - if !v.IsValid() { - panic("reflect.Select: SendDir case missing Send value") - } - v.mustBeExported() - v = v.assignTo("reflect.Select", tt.elem, nil) - if v.flag&flagIndir != 0 { - rc.val = v.ptr - } else if v.typ.pointers() { - rc.val = unsafe.Pointer(&v.ptr) - } else { - rc.val = unsafe.Pointer(&v.scalar) - } - - case SelectRecv: - if c.Send.IsValid() { - panic("reflect.Select: RecvDir case has Send value") - } - ch := c.Chan - if !ch.IsValid() { - break - } - ch.mustBe(Chan) - ch.mustBeExported() - tt := (*chanType)(unsafe.Pointer(ch.typ)) - if ChanDir(tt.dir)&RecvDir == 0 { - panic("reflect.Select: RecvDir case using send-only channel") - } - rc.ch = ch.pointer() - rc.typ = &tt.rtype - rc.val = unsafe_New(tt.elem) - } - } - - chosen, recvOK = rselect(runcases) - if runcases[chosen].dir == uintptr(SelectRecv) { - tt := (*chanType)(unsafe.Pointer(runcases[chosen].typ)) - t := tt.elem - p := runcases[chosen].val - fl := flag(t.Kind()) << flagKindShift - if t.size > ptrSize { - recv = Value{t, p, 0, fl | flagIndir} - } else if t.pointers() { - recv = Value{t, *(*unsafe.Pointer)(p), 0, fl} - } else { - recv = Value{t, nil, loadScalar(p, t.size), fl} - } - } - return chosen, recv, recvOK -} - -/* - * constructors - */ - -// implemented in package runtime -func unsafe_New(*rtype) unsafe.Pointer -func unsafe_NewArray(*rtype, int) unsafe.Pointer - -// MakeSlice creates a new zero-initialized slice value -// for the specified slice type, length, and capacity. -func MakeSlice(typ Type, len, cap int) Value { - if typ.Kind() != Slice { - panic("reflect.MakeSlice of non-slice type") - } - if len < 0 { - panic("reflect.MakeSlice: negative len") - } - if cap < 0 { - panic("reflect.MakeSlice: negative cap") - } - if len > cap { - panic("reflect.MakeSlice: len > cap") - } - - s := sliceHeader{unsafe_NewArray(typ.Elem().(*rtype), cap), len, cap} - return Value{typ.common(), unsafe.Pointer(&s), 0, flagIndir | flag(Slice)<<flagKindShift} -} - -// MakeChan creates a new channel with the specified type and buffer size. -func MakeChan(typ Type, buffer int) Value { - if typ.Kind() != Chan { - panic("reflect.MakeChan of non-chan type") - } - if buffer < 0 { - panic("reflect.MakeChan: negative buffer size") - } - if typ.ChanDir() != BothDir { - panic("reflect.MakeChan: unidirectional channel type") - } - ch := makechan(typ.(*rtype), uint64(buffer)) - return Value{typ.common(), ch, 0, flag(Chan) << flagKindShift} -} - -// MakeMap creates a new map of the specified type. -func MakeMap(typ Type) Value { - if typ.Kind() != Map { - panic("reflect.MakeMap of non-map type") - } - m := makemap(typ.(*rtype)) - return Value{typ.common(), m, 0, flag(Map) << flagKindShift} -} - -// Indirect returns the value that v points to. -// If v is a nil pointer, Indirect returns a zero Value. -// If v is not a pointer, Indirect returns v. -func Indirect(v Value) Value { - if v.Kind() != Ptr { - return v - } - return v.Elem() -} - -// ValueOf returns a new Value initialized to the concrete value -// stored in the interface i. ValueOf(nil) returns the zero Value. -func ValueOf(i interface{}) Value { - if i == nil { - return Value{} - } - - // TODO(rsc): Eliminate this terrible hack. - // In the call to unpackEface, i.typ doesn't escape, - // and i.word is an integer. So it looks like - // i doesn't escape. But really it does, - // because i.word is actually a pointer. - escapes(i) - - return unpackEface(i) -} - -// Zero returns a Value representing the zero value for the specified type. -// The result is different from the zero value of the Value struct, -// which represents no value at all. -// For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0. -// The returned value is neither addressable nor settable. -func Zero(typ Type) Value { - if typ == nil { - panic("reflect: Zero(nil)") - } - t := typ.common() - fl := flag(t.Kind()) << flagKindShift - if t.size <= ptrSize { - return Value{t, nil, 0, fl} - } - return Value{t, unsafe_New(typ.(*rtype)), 0, fl | flagIndir} -} - -// New returns a Value representing a pointer to a new zero value -// for the specified type. That is, the returned Value's Type is PtrTo(typ). -func New(typ Type) Value { - if typ == nil { - panic("reflect: New(nil)") - } - ptr := unsafe_New(typ.(*rtype)) - fl := flag(Ptr) << flagKindShift - return Value{typ.common().ptrTo(), ptr, 0, fl} -} - -// NewAt returns a Value representing a pointer to a value of the -// specified type, using p as that pointer. -func NewAt(typ Type, p unsafe.Pointer) Value { - fl := flag(Ptr) << flagKindShift - return Value{typ.common().ptrTo(), p, 0, fl} -} - -// assignTo returns a value v that can be assigned directly to typ. -// It panics if v is not assignable to typ. -// For a conversion to an interface type, target is a suggested scratch space to use. -func (v Value) assignTo(context string, dst *rtype, target *interface{}) Value { - if v.flag&flagMethod != 0 { - v = makeMethodValue(context, v) - } - - switch { - case directlyAssignable(dst, v.typ): - // Overwrite type so that they match. - // Same memory layout, so no harm done. - v.typ = dst - fl := v.flag & (flagRO | flagAddr | flagIndir) - fl |= flag(dst.Kind()) << flagKindShift - return Value{dst, v.ptr, v.scalar, fl} - - case implements(dst, v.typ): - if target == nil { - target = new(interface{}) - } - x := valueInterface(v, false) - if dst.NumMethod() == 0 { - *target = x - } else { - ifaceE2I(dst, x, unsafe.Pointer(target)) - } - return Value{dst, unsafe.Pointer(target), 0, flagIndir | flag(Interface)<<flagKindShift} - } - - // Failed. - panic(context + ": value of type " + v.typ.String() + " is not assignable to type " + dst.String()) -} - -// Convert returns the value v converted to type t. -// If the usual Go conversion rules do not allow conversion -// of the value v to type t, Convert panics. -func (v Value) Convert(t Type) Value { - if v.flag&flagMethod != 0 { - v = makeMethodValue("Convert", v) - } - op := convertOp(t.common(), v.typ) - if op == nil { - panic("reflect.Value.Convert: value of type " + v.typ.String() + " cannot be converted to type " + t.String()) - } - return op(v, t) -} - -// convertOp returns the function to convert a value of type src -// to a value of type dst. If the conversion is illegal, convertOp returns nil. -func convertOp(dst, src *rtype) func(Value, Type) Value { - switch src.Kind() { - case Int, Int8, Int16, Int32, Int64: - switch dst.Kind() { - case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr: - return cvtInt - case Float32, Float64: - return cvtIntFloat - case String: - return cvtIntString - } - - case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr: - switch dst.Kind() { - case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr: - return cvtUint - case Float32, Float64: - return cvtUintFloat - case String: - return cvtUintString - } - - case Float32, Float64: - switch dst.Kind() { - case Int, Int8, Int16, Int32, Int64: - return cvtFloatInt - case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr: - return cvtFloatUint - case Float32, Float64: - return cvtFloat - } - - case Complex64, Complex128: - switch dst.Kind() { - case Complex64, Complex128: - return cvtComplex - } - - case String: - if dst.Kind() == Slice && dst.Elem().PkgPath() == "" { - switch dst.Elem().Kind() { - case Uint8: - return cvtStringBytes - case Int32: - return cvtStringRunes - } - } - - case Slice: - if dst.Kind() == String && src.Elem().PkgPath() == "" { - switch src.Elem().Kind() { - case Uint8: - return cvtBytesString - case Int32: - return cvtRunesString - } - } - } - - // dst and src have same underlying type. - if haveIdenticalUnderlyingType(dst, src) { - return cvtDirect - } - - // dst and src are unnamed pointer types with same underlying base type. - if dst.Kind() == Ptr && dst.Name() == "" && - src.Kind() == Ptr && src.Name() == "" && - haveIdenticalUnderlyingType(dst.Elem().common(), src.Elem().common()) { - return cvtDirect - } - - if implements(dst, src) { - if src.Kind() == Interface { - return cvtI2I - } - return cvtT2I - } - - return nil -} - -// makeInt returns a Value of type t equal to bits (possibly truncated), -// where t is a signed or unsigned int type. -func makeInt(f flag, bits uint64, t Type) Value { - typ := t.common() - if typ.size > ptrSize { - // Assume ptrSize >= 4, so this must be uint64. - ptr := unsafe_New(typ) - *(*uint64)(unsafe.Pointer(ptr)) = bits - return Value{typ, ptr, 0, f | flagIndir | flag(typ.Kind())<<flagKindShift} - } - var s uintptr - switch typ.size { - case 1: - *(*uint8)(unsafe.Pointer(&s)) = uint8(bits) - case 2: - *(*uint16)(unsafe.Pointer(&s)) = uint16(bits) - case 4: - *(*uint32)(unsafe.Pointer(&s)) = uint32(bits) - case 8: - *(*uint64)(unsafe.Pointer(&s)) = uint64(bits) - } - return Value{typ, nil, s, f | flag(typ.Kind())<<flagKindShift} -} - -// makeFloat returns a Value of type t equal to v (possibly truncated to float32), -// where t is a float32 or float64 type. -func makeFloat(f flag, v float64, t Type) Value { - typ := t.common() - if typ.size > ptrSize { - // Assume ptrSize >= 4, so this must be float64. - ptr := unsafe_New(typ) - *(*float64)(unsafe.Pointer(ptr)) = v - return Value{typ, ptr, 0, f | flagIndir | flag(typ.Kind())<<flagKindShift} - } - - var s uintptr - switch typ.size { - case 4: - *(*float32)(unsafe.Pointer(&s)) = float32(v) - case 8: - *(*float64)(unsafe.Pointer(&s)) = v - } - return Value{typ, nil, s, f | flag(typ.Kind())<<flagKindShift} -} - -// makeComplex returns a Value of type t equal to v (possibly truncated to complex64), -// where t is a complex64 or complex128 type. -func makeComplex(f flag, v complex128, t Type) Value { - typ := t.common() - if typ.size > ptrSize { - ptr := unsafe_New(typ) - switch typ.size { - case 8: - *(*complex64)(unsafe.Pointer(ptr)) = complex64(v) - case 16: - *(*complex128)(unsafe.Pointer(ptr)) = v - } - return Value{typ, ptr, 0, f | flagIndir | flag(typ.Kind())<<flagKindShift} - } - - // Assume ptrSize <= 8 so this must be complex64. - var s uintptr - *(*complex64)(unsafe.Pointer(&s)) = complex64(v) - return Value{typ, nil, s, f | flag(typ.Kind())<<flagKindShift} -} - -func makeString(f flag, v string, t Type) Value { - ret := New(t).Elem() - ret.SetString(v) - ret.flag = ret.flag&^flagAddr | f - return ret -} - -func makeBytes(f flag, v []byte, t Type) Value { - ret := New(t).Elem() - ret.SetBytes(v) - ret.flag = ret.flag&^flagAddr | f - return ret -} - -func makeRunes(f flag, v []rune, t Type) Value { - ret := New(t).Elem() - ret.setRunes(v) - ret.flag = ret.flag&^flagAddr | f - return ret -} - -// These conversion functions are returned by convertOp -// for classes of conversions. For example, the first function, cvtInt, -// takes any value v of signed int type and returns the value converted -// to type t, where t is any signed or unsigned int type. - -// convertOp: intXX -> [u]intXX -func cvtInt(v Value, t Type) Value { - return makeInt(v.flag&flagRO, uint64(v.Int()), t) -} - -// convertOp: uintXX -> [u]intXX -func cvtUint(v Value, t Type) Value { - return makeInt(v.flag&flagRO, v.Uint(), t) -} - -// convertOp: floatXX -> intXX -func cvtFloatInt(v Value, t Type) Value { - return makeInt(v.flag&flagRO, uint64(int64(v.Float())), t) -} - -// convertOp: floatXX -> uintXX -func cvtFloatUint(v Value, t Type) Value { - return makeInt(v.flag&flagRO, uint64(v.Float()), t) -} - -// convertOp: intXX -> floatXX -func cvtIntFloat(v Value, t Type) Value { - return makeFloat(v.flag&flagRO, float64(v.Int()), t) -} - -// convertOp: uintXX -> floatXX -func cvtUintFloat(v Value, t Type) Value { - return makeFloat(v.flag&flagRO, float64(v.Uint()), t) -} - -// convertOp: floatXX -> floatXX -func cvtFloat(v Value, t Type) Value { - return makeFloat(v.flag&flagRO, v.Float(), t) -} - -// convertOp: complexXX -> complexXX -func cvtComplex(v Value, t Type) Value { - return makeComplex(v.flag&flagRO, v.Complex(), t) -} - -// convertOp: intXX -> string -func cvtIntString(v Value, t Type) Value { - return makeString(v.flag&flagRO, string(v.Int()), t) -} - -// convertOp: uintXX -> string -func cvtUintString(v Value, t Type) Value { - return makeString(v.flag&flagRO, string(v.Uint()), t) -} - -// convertOp: []byte -> string -func cvtBytesString(v Value, t Type) Value { - return makeString(v.flag&flagRO, string(v.Bytes()), t) -} - -// convertOp: string -> []byte -func cvtStringBytes(v Value, t Type) Value { - return makeBytes(v.flag&flagRO, []byte(v.String()), t) -} - -// convertOp: []rune -> string -func cvtRunesString(v Value, t Type) Value { - return makeString(v.flag&flagRO, string(v.runes()), t) -} - -// convertOp: string -> []rune -func cvtStringRunes(v Value, t Type) Value { - return makeRunes(v.flag&flagRO, []rune(v.String()), t) -} - -// convertOp: direct copy -func cvtDirect(v Value, typ Type) Value { - f := v.flag - t := typ.common() - ptr := v.ptr - if f&flagAddr != 0 { - // indirect, mutable word - make a copy - c := unsafe_New(t) - memmove(c, ptr, t.size) - ptr = c - f &^= flagAddr - } - return Value{t, ptr, v.scalar, v.flag&flagRO | f} // v.flag&flagRO|f == f? -} - -// convertOp: concrete -> interface -func cvtT2I(v Value, typ Type) Value { - target := new(interface{}) - x := valueInterface(v, false) - if typ.NumMethod() == 0 { - *target = x - } else { - ifaceE2I(typ.(*rtype), x, unsafe.Pointer(target)) - } - return Value{typ.common(), unsafe.Pointer(target), 0, v.flag&flagRO | flagIndir | flag(Interface)<<flagKindShift} -} - -// convertOp: interface -> interface -func cvtI2I(v Value, typ Type) Value { - if v.IsNil() { - ret := Zero(typ) - ret.flag |= v.flag & flagRO - return ret - } - return cvtT2I(v.Elem(), typ) -} - -// implemented in ../pkg/runtime -func chancap(ch unsafe.Pointer) int -func chanclose(ch unsafe.Pointer) -func chanlen(ch unsafe.Pointer) int - -//go:noescape -func chanrecv(t *rtype, ch unsafe.Pointer, nb bool, val unsafe.Pointer) (selected, received bool) - -//go:noescape -func chansend(t *rtype, ch unsafe.Pointer, val unsafe.Pointer, nb bool) bool - -func makechan(typ *rtype, size uint64) (ch unsafe.Pointer) -func makemap(t *rtype) (m unsafe.Pointer) -func mapaccess(t *rtype, m unsafe.Pointer, key unsafe.Pointer) (val unsafe.Pointer) -func mapassign(t *rtype, m unsafe.Pointer, key, val unsafe.Pointer) -func mapdelete(t *rtype, m unsafe.Pointer, key unsafe.Pointer) -func mapiterinit(t *rtype, m unsafe.Pointer) unsafe.Pointer -func mapiterkey(it unsafe.Pointer) (key unsafe.Pointer) -func mapiternext(it unsafe.Pointer) -func maplen(m unsafe.Pointer) int - -func call(fn, arg unsafe.Pointer, n uint32, retoffset uint32) -func ifaceE2I(t *rtype, src interface{}, dst unsafe.Pointer) - -// Dummy annotation marking that the value x escapes, -// for use in cases where the reflect code is so clever that -// the compiler cannot follow. -func escapes(x interface{}) { - if dummy.b { - dummy.x = x - } -} - -var dummy struct { - b bool - x interface{} -} |