summaryrefslogtreecommitdiff
path: root/src/pkg/reflect/value.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/reflect/value.go')
-rw-r--r--src/pkg/reflect/value.go2684
1 files changed, 0 insertions, 2684 deletions
diff --git a/src/pkg/reflect/value.go b/src/pkg/reflect/value.go
deleted file mode 100644
index 576cbc398..000000000
--- a/src/pkg/reflect/value.go
+++ /dev/null
@@ -1,2684 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package reflect
-
-import (
- "math"
- "runtime"
- "strconv"
- "unsafe"
-)
-
-const bigEndian = false // can be smarter if we find a big-endian machine
-const ptrSize = unsafe.Sizeof((*byte)(nil))
-const cannotSet = "cannot set value obtained from unexported struct field"
-
-// TODO: This will have to go away when
-// the new gc goes in.
-func memmove(adst, asrc unsafe.Pointer, n uintptr) {
- dst := uintptr(adst)
- src := uintptr(asrc)
- switch {
- case src < dst && src+n > dst:
- // byte copy backward
- // careful: i is unsigned
- for i := n; i > 0; {
- i--
- *(*byte)(unsafe.Pointer(dst + i)) = *(*byte)(unsafe.Pointer(src + i))
- }
- case (n|src|dst)&(ptrSize-1) != 0:
- // byte copy forward
- for i := uintptr(0); i < n; i++ {
- *(*byte)(unsafe.Pointer(dst + i)) = *(*byte)(unsafe.Pointer(src + i))
- }
- default:
- // word copy forward
- for i := uintptr(0); i < n; i += ptrSize {
- *(*uintptr)(unsafe.Pointer(dst + i)) = *(*uintptr)(unsafe.Pointer(src + i))
- }
- }
-}
-
-// Value is the reflection interface to a Go value.
-//
-// Not all methods apply to all kinds of values. Restrictions,
-// if any, are noted in the documentation for each method.
-// Use the Kind method to find out the kind of value before
-// calling kind-specific methods. Calling a method
-// inappropriate to the kind of type causes a run time panic.
-//
-// The zero Value represents no value.
-// Its IsValid method returns false, its Kind method returns Invalid,
-// its String method returns "<invalid Value>", and all other methods panic.
-// Most functions and methods never return an invalid value.
-// If one does, its documentation states the conditions explicitly.
-//
-// A Value can be used concurrently by multiple goroutines provided that
-// the underlying Go value can be used concurrently for the equivalent
-// direct operations.
-type Value struct {
- // typ holds the type of the value represented by a Value.
- typ *rtype
-
- // Pointer-valued data or, if flagIndir is set, pointer to data.
- // Valid when either flagIndir is set or typ.pointers() is true.
- ptr unsafe.Pointer
-
- // Non-pointer-valued data. When the data is smaller
- // than a word, it begins at the first byte (in the memory
- // address sense) of this field.
- // Valid when flagIndir is not set and typ.pointers() is false.
- scalar uintptr
-
- // flag holds metadata about the value.
- // The lowest bits are flag bits:
- // - flagRO: obtained via unexported field, so read-only
- // - flagIndir: val holds a pointer to the data
- // - flagAddr: v.CanAddr is true (implies flagIndir)
- // - flagMethod: v is a method value.
- // The next five bits give the Kind of the value.
- // This repeats typ.Kind() except for method values.
- // The remaining 23+ bits give a method number for method values.
- // If flag.kind() != Func, code can assume that flagMethod is unset.
- // If typ.size > ptrSize, code can assume that flagIndir is set.
- flag
-
- // A method value represents a curried method invocation
- // like r.Read for some receiver r. The typ+val+flag bits describe
- // the receiver r, but the flag's Kind bits say Func (methods are
- // functions), and the top bits of the flag give the method number
- // in r's type's method table.
-}
-
-type flag uintptr
-
-const (
- flagRO flag = 1 << iota
- flagIndir
- flagAddr
- flagMethod
- flagKindShift = iota
- flagKindWidth = 5 // there are 27 kinds
- flagKindMask flag = 1<<flagKindWidth - 1
- flagMethodShift = flagKindShift + flagKindWidth
-)
-
-func (f flag) kind() Kind {
- return Kind((f >> flagKindShift) & flagKindMask)
-}
-
-// pointer returns the underlying pointer represented by v.
-// v.Kind() must be Ptr, Map, Chan, Func, or UnsafePointer
-func (v Value) pointer() unsafe.Pointer {
- if v.typ.size != ptrSize || !v.typ.pointers() {
- panic("can't call pointer on a non-pointer Value")
- }
- if v.flag&flagIndir != 0 {
- return *(*unsafe.Pointer)(v.ptr)
- }
- return v.ptr
-}
-
-// packEface converts v to the empty interface.
-func packEface(v Value) interface{} {
- t := v.typ
- var i interface{}
- e := (*emptyInterface)(unsafe.Pointer(&i))
- // First, fill in the data portion of the interface.
- switch {
- case t.size > ptrSize:
- // Value is indirect, and so is the interface we're making.
- ptr := v.ptr
- if v.flag&flagAddr != 0 {
- // TODO: pass safe boolean from valueInterface so
- // we don't need to copy if safe==true?
- c := unsafe_New(t)
- memmove(c, ptr, t.size)
- ptr = c
- }
- e.word = iword(ptr)
- case v.flag&flagIndir != 0:
- // Value is indirect, but interface is direct. We need
- // to load the data at v.ptr into the interface data word.
- if t.pointers() {
- e.word = iword(*(*unsafe.Pointer)(v.ptr))
- } else {
- e.word = iword(loadScalar(v.ptr, t.size))
- }
- default:
- // Value is direct, and so is the interface.
- if t.pointers() {
- e.word = iword(v.ptr)
- } else {
- e.word = iword(v.scalar)
- }
- }
- // Now, fill in the type portion. We're very careful here not
- // to have any operation between the e.word and e.typ assignments
- // that would let the garbage collector observe the partially-built
- // interface value.
- e.typ = t
- return i
-}
-
-// unpackEface converts the empty interface i to a Value.
-func unpackEface(i interface{}) Value {
- e := (*emptyInterface)(unsafe.Pointer(&i))
- // NOTE: don't read e.word until we know whether it is really a pointer or not.
- t := e.typ
- if t == nil {
- return Value{}
- }
- f := flag(t.Kind()) << flagKindShift
- if t.size > ptrSize {
- return Value{t, unsafe.Pointer(e.word), 0, f | flagIndir}
- }
- if t.pointers() {
- return Value{t, unsafe.Pointer(e.word), 0, f}
- }
- return Value{t, nil, uintptr(e.word), f}
-}
-
-// A ValueError occurs when a Value method is invoked on
-// a Value that does not support it. Such cases are documented
-// in the description of each method.
-type ValueError struct {
- Method string
- Kind Kind
-}
-
-func (e *ValueError) Error() string {
- if e.Kind == 0 {
- return "reflect: call of " + e.Method + " on zero Value"
- }
- return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"
-}
-
-// methodName returns the name of the calling method,
-// assumed to be two stack frames above.
-func methodName() string {
- pc, _, _, _ := runtime.Caller(2)
- f := runtime.FuncForPC(pc)
- if f == nil {
- return "unknown method"
- }
- return f.Name()
-}
-
-// An iword is the word that would be stored in an
-// interface to represent a given value v. Specifically, if v is
-// bigger than a pointer, its word is a pointer to v's data.
-// Otherwise, its word holds the data stored
-// in its leading bytes (so is not a pointer).
-// This type is very dangerous for the garbage collector because
-// it must be treated conservatively. We try to never expose it
-// to the GC here so that GC remains precise.
-type iword unsafe.Pointer
-
-// loadScalar loads n bytes at p from memory into a uintptr
-// that forms the second word of an interface. The data
-// must be non-pointer in nature.
-func loadScalar(p unsafe.Pointer, n uintptr) uintptr {
- // Run the copy ourselves instead of calling memmove
- // to avoid moving w to the heap.
- var w uintptr
- switch n {
- default:
- panic("reflect: internal error: loadScalar of " + strconv.Itoa(int(n)) + "-byte value")
- case 0:
- case 1:
- *(*uint8)(unsafe.Pointer(&w)) = *(*uint8)(p)
- case 2:
- *(*uint16)(unsafe.Pointer(&w)) = *(*uint16)(p)
- case 3:
- *(*[3]byte)(unsafe.Pointer(&w)) = *(*[3]byte)(p)
- case 4:
- *(*uint32)(unsafe.Pointer(&w)) = *(*uint32)(p)
- case 5:
- *(*[5]byte)(unsafe.Pointer(&w)) = *(*[5]byte)(p)
- case 6:
- *(*[6]byte)(unsafe.Pointer(&w)) = *(*[6]byte)(p)
- case 7:
- *(*[7]byte)(unsafe.Pointer(&w)) = *(*[7]byte)(p)
- case 8:
- *(*uint64)(unsafe.Pointer(&w)) = *(*uint64)(p)
- }
- return w
-}
-
-// storeScalar stores n bytes from w into p.
-func storeScalar(p unsafe.Pointer, w uintptr, n uintptr) {
- // Run the copy ourselves instead of calling memmove
- // to avoid moving w to the heap.
- switch n {
- default:
- panic("reflect: internal error: storeScalar of " + strconv.Itoa(int(n)) + "-byte value")
- case 0:
- case 1:
- *(*uint8)(p) = *(*uint8)(unsafe.Pointer(&w))
- case 2:
- *(*uint16)(p) = *(*uint16)(unsafe.Pointer(&w))
- case 3:
- *(*[3]byte)(p) = *(*[3]byte)(unsafe.Pointer(&w))
- case 4:
- *(*uint32)(p) = *(*uint32)(unsafe.Pointer(&w))
- case 5:
- *(*[5]byte)(p) = *(*[5]byte)(unsafe.Pointer(&w))
- case 6:
- *(*[6]byte)(p) = *(*[6]byte)(unsafe.Pointer(&w))
- case 7:
- *(*[7]byte)(p) = *(*[7]byte)(unsafe.Pointer(&w))
- case 8:
- *(*uint64)(p) = *(*uint64)(unsafe.Pointer(&w))
- }
-}
-
-// emptyInterface is the header for an interface{} value.
-type emptyInterface struct {
- typ *rtype
- word iword
-}
-
-// nonEmptyInterface is the header for a interface value with methods.
-type nonEmptyInterface struct {
- // see ../runtime/iface.c:/Itab
- itab *struct {
- ityp *rtype // static interface type
- typ *rtype // dynamic concrete type
- link unsafe.Pointer
- bad int32
- unused int32
- fun [100000]unsafe.Pointer // method table
- }
- word iword
-}
-
-// mustBe panics if f's kind is not expected.
-// Making this a method on flag instead of on Value
-// (and embedding flag in Value) means that we can write
-// the very clear v.mustBe(Bool) and have it compile into
-// v.flag.mustBe(Bool), which will only bother to copy the
-// single important word for the receiver.
-func (f flag) mustBe(expected Kind) {
- k := f.kind()
- if k != expected {
- panic(&ValueError{methodName(), k})
- }
-}
-
-// mustBeExported panics if f records that the value was obtained using
-// an unexported field.
-func (f flag) mustBeExported() {
- if f == 0 {
- panic(&ValueError{methodName(), 0})
- }
- if f&flagRO != 0 {
- panic("reflect: " + methodName() + " using value obtained using unexported field")
- }
-}
-
-// mustBeAssignable panics if f records that the value is not assignable,
-// which is to say that either it was obtained using an unexported field
-// or it is not addressable.
-func (f flag) mustBeAssignable() {
- if f == 0 {
- panic(&ValueError{methodName(), Invalid})
- }
- // Assignable if addressable and not read-only.
- if f&flagRO != 0 {
- panic("reflect: " + methodName() + " using value obtained using unexported field")
- }
- if f&flagAddr == 0 {
- panic("reflect: " + methodName() + " using unaddressable value")
- }
-}
-
-// Addr returns a pointer value representing the address of v.
-// It panics if CanAddr() returns false.
-// Addr is typically used to obtain a pointer to a struct field
-// or slice element in order to call a method that requires a
-// pointer receiver.
-func (v Value) Addr() Value {
- if v.flag&flagAddr == 0 {
- panic("reflect.Value.Addr of unaddressable value")
- }
- return Value{v.typ.ptrTo(), v.ptr, 0, (v.flag & flagRO) | flag(Ptr)<<flagKindShift}
-}
-
-// Bool returns v's underlying value.
-// It panics if v's kind is not Bool.
-func (v Value) Bool() bool {
- v.mustBe(Bool)
- if v.flag&flagIndir != 0 {
- return *(*bool)(v.ptr)
- }
- return *(*bool)(unsafe.Pointer(&v.scalar))
-}
-
-// Bytes returns v's underlying value.
-// It panics if v's underlying value is not a slice of bytes.
-func (v Value) Bytes() []byte {
- v.mustBe(Slice)
- if v.typ.Elem().Kind() != Uint8 {
- panic("reflect.Value.Bytes of non-byte slice")
- }
- // Slice is always bigger than a word; assume flagIndir.
- return *(*[]byte)(v.ptr)
-}
-
-// runes returns v's underlying value.
-// It panics if v's underlying value is not a slice of runes (int32s).
-func (v Value) runes() []rune {
- v.mustBe(Slice)
- if v.typ.Elem().Kind() != Int32 {
- panic("reflect.Value.Bytes of non-rune slice")
- }
- // Slice is always bigger than a word; assume flagIndir.
- return *(*[]rune)(v.ptr)
-}
-
-// CanAddr returns true if the value's address can be obtained with Addr.
-// Such values are called addressable. A value is addressable if it is
-// an element of a slice, an element of an addressable array,
-// a field of an addressable struct, or the result of dereferencing a pointer.
-// If CanAddr returns false, calling Addr will panic.
-func (v Value) CanAddr() bool {
- return v.flag&flagAddr != 0
-}
-
-// CanSet returns true if the value of v can be changed.
-// A Value can be changed only if it is addressable and was not
-// obtained by the use of unexported struct fields.
-// If CanSet returns false, calling Set or any type-specific
-// setter (e.g., SetBool, SetInt64) will panic.
-func (v Value) CanSet() bool {
- return v.flag&(flagAddr|flagRO) == flagAddr
-}
-
-// Call calls the function v with the input arguments in.
-// For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]).
-// Call panics if v's Kind is not Func.
-// It returns the output results as Values.
-// As in Go, each input argument must be assignable to the
-// type of the function's corresponding input parameter.
-// If v is a variadic function, Call creates the variadic slice parameter
-// itself, copying in the corresponding values.
-func (v Value) Call(in []Value) []Value {
- v.mustBe(Func)
- v.mustBeExported()
- return v.call("Call", in)
-}
-
-// CallSlice calls the variadic function v with the input arguments in,
-// assigning the slice in[len(in)-1] to v's final variadic argument.
-// For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]...).
-// Call panics if v's Kind is not Func or if v is not variadic.
-// It returns the output results as Values.
-// As in Go, each input argument must be assignable to the
-// type of the function's corresponding input parameter.
-func (v Value) CallSlice(in []Value) []Value {
- v.mustBe(Func)
- v.mustBeExported()
- return v.call("CallSlice", in)
-}
-
-var callGC bool // for testing; see TestCallMethodJump
-
-var makeFuncStubFn = makeFuncStub
-var makeFuncStubCode = **(**uintptr)(unsafe.Pointer(&makeFuncStubFn))
-var methodValueCallFn = methodValueCall
-var methodValueCallCode = **(**uintptr)(unsafe.Pointer(&methodValueCallFn))
-
-func (v Value) call(op string, in []Value) []Value {
- // Get function pointer, type.
- t := v.typ
- var (
- fn unsafe.Pointer
- rcvr Value
- rcvrtype *rtype
- )
- if v.flag&flagMethod != 0 {
- rcvr = v
- rcvrtype, t, fn = methodReceiver(op, v, int(v.flag)>>flagMethodShift)
- } else if v.flag&flagIndir != 0 {
- fn = *(*unsafe.Pointer)(v.ptr)
- } else {
- fn = v.ptr
- }
-
- if fn == nil {
- panic("reflect.Value.Call: call of nil function")
- }
-
- isSlice := op == "CallSlice"
- n := t.NumIn()
- if isSlice {
- if !t.IsVariadic() {
- panic("reflect: CallSlice of non-variadic function")
- }
- if len(in) < n {
- panic("reflect: CallSlice with too few input arguments")
- }
- if len(in) > n {
- panic("reflect: CallSlice with too many input arguments")
- }
- } else {
- if t.IsVariadic() {
- n--
- }
- if len(in) < n {
- panic("reflect: Call with too few input arguments")
- }
- if !t.IsVariadic() && len(in) > n {
- panic("reflect: Call with too many input arguments")
- }
- }
- for _, x := range in {
- if x.Kind() == Invalid {
- panic("reflect: " + op + " using zero Value argument")
- }
- }
- for i := 0; i < n; i++ {
- if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(targ) {
- panic("reflect: " + op + " using " + xt.String() + " as type " + targ.String())
- }
- }
- if !isSlice && t.IsVariadic() {
- // prepare slice for remaining values
- m := len(in) - n
- slice := MakeSlice(t.In(n), m, m)
- elem := t.In(n).Elem()
- for i := 0; i < m; i++ {
- x := in[n+i]
- if xt := x.Type(); !xt.AssignableTo(elem) {
- panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + op)
- }
- slice.Index(i).Set(x)
- }
- origIn := in
- in = make([]Value, n+1)
- copy(in[:n], origIn)
- in[n] = slice
- }
-
- nin := len(in)
- if nin != t.NumIn() {
- panic("reflect.Value.Call: wrong argument count")
- }
- nout := t.NumOut()
-
- // If target is makeFuncStub, short circuit the unpack onto stack /
- // pack back into []Value for the args and return values. Just do the
- // call directly.
- // We need to do this here because otherwise we have a situation where
- // reflect.callXX calls makeFuncStub, neither of which knows the
- // layout of the args. That's bad for precise gc & stack copying.
- x := (*makeFuncImpl)(fn)
- if x.code == makeFuncStubCode {
- return x.fn(in)
- }
-
- // If the target is methodValueCall, do its work here: add the receiver
- // argument and call the real target directly.
- // We need to do this here because otherwise we have a situation where
- // reflect.callXX calls methodValueCall, neither of which knows the
- // layout of the args. That's bad for precise gc & stack copying.
- y := (*methodValue)(fn)
- if y.fn == methodValueCallCode {
- rcvr = y.rcvr
- rcvrtype, t, fn = methodReceiver("call", rcvr, y.method)
- }
-
- // Compute frame type, allocate a chunk of memory for frame
- frametype, _, retOffset := funcLayout(t, rcvrtype)
- args := unsafe_New(frametype)
- off := uintptr(0)
-
- // Copy inputs into args.
- if rcvrtype != nil {
- storeRcvr(rcvr, args)
- off = ptrSize
- }
- for i, v := range in {
- v.mustBeExported()
- targ := t.In(i).(*rtype)
- a := uintptr(targ.align)
- off = (off + a - 1) &^ (a - 1)
- n := targ.size
- addr := unsafe.Pointer(uintptr(args) + off)
- v = v.assignTo("reflect.Value.Call", targ, (*interface{})(addr))
- if v.flag&flagIndir != 0 {
- memmove(addr, v.ptr, n)
- } else if targ.pointers() {
- *(*unsafe.Pointer)(addr) = v.ptr
- } else {
- storeScalar(addr, v.scalar, n)
- }
- off += n
- }
-
- // Call.
- call(fn, args, uint32(frametype.size), uint32(retOffset))
-
- // For testing; see TestCallMethodJump.
- if callGC {
- runtime.GC()
- }
-
- // Copy return values out of args.
- ret := make([]Value, nout)
- off = retOffset
- for i := 0; i < nout; i++ {
- tv := t.Out(i)
- a := uintptr(tv.Align())
- off = (off + a - 1) &^ (a - 1)
- fl := flagIndir | flag(tv.Kind())<<flagKindShift
- ret[i] = Value{tv.common(), unsafe.Pointer(uintptr(args) + off), 0, fl}
- off += tv.Size()
- }
-
- return ret
-}
-
-// callReflect is the call implementation used by a function
-// returned by MakeFunc. In many ways it is the opposite of the
-// method Value.call above. The method above converts a call using Values
-// into a call of a function with a concrete argument frame, while
-// callReflect converts a call of a function with a concrete argument
-// frame into a call using Values.
-// It is in this file so that it can be next to the call method above.
-// The remainder of the MakeFunc implementation is in makefunc.go.
-//
-// NOTE: This function must be marked as a "wrapper" in the generated code,
-// so that the linker can make it work correctly for panic and recover.
-// The gc compilers know to do that for the name "reflect.callReflect".
-func callReflect(ctxt *makeFuncImpl, frame unsafe.Pointer) {
- ftyp := ctxt.typ
- f := ctxt.fn
-
- // Copy argument frame into Values.
- ptr := frame
- off := uintptr(0)
- in := make([]Value, 0, len(ftyp.in))
- for _, arg := range ftyp.in {
- typ := arg
- off += -off & uintptr(typ.align-1)
- addr := unsafe.Pointer(uintptr(ptr) + off)
- v := Value{typ, nil, 0, flag(typ.Kind()) << flagKindShift}
- if typ.size > ptrSize {
- // value does not fit in word.
- // Must make a copy, because f might keep a reference to it,
- // and we cannot let f keep a reference to the stack frame
- // after this function returns, not even a read-only reference.
- v.ptr = unsafe_New(typ)
- memmove(v.ptr, addr, typ.size)
- v.flag |= flagIndir
- } else if typ.pointers() {
- v.ptr = *(*unsafe.Pointer)(addr)
- } else {
- v.scalar = loadScalar(addr, typ.size)
- }
- in = append(in, v)
- off += typ.size
- }
-
- // Call underlying function.
- out := f(in)
- if len(out) != len(ftyp.out) {
- panic("reflect: wrong return count from function created by MakeFunc")
- }
-
- // Copy results back into argument frame.
- if len(ftyp.out) > 0 {
- off += -off & (ptrSize - 1)
- if runtime.GOARCH == "amd64p32" {
- off = align(off, 8)
- }
- for i, arg := range ftyp.out {
- typ := arg
- v := out[i]
- if v.typ != typ {
- panic("reflect: function created by MakeFunc using " + funcName(f) +
- " returned wrong type: have " +
- out[i].typ.String() + " for " + typ.String())
- }
- if v.flag&flagRO != 0 {
- panic("reflect: function created by MakeFunc using " + funcName(f) +
- " returned value obtained from unexported field")
- }
- off += -off & uintptr(typ.align-1)
- addr := unsafe.Pointer(uintptr(ptr) + off)
- if v.flag&flagIndir != 0 {
- memmove(addr, v.ptr, typ.size)
- } else if typ.pointers() {
- *(*unsafe.Pointer)(addr) = v.ptr
- } else {
- storeScalar(addr, v.scalar, typ.size)
- }
- off += typ.size
- }
- }
-}
-
-// methodReceiver returns information about the receiver
-// described by v. The Value v may or may not have the
-// flagMethod bit set, so the kind cached in v.flag should
-// not be used.
-// The return value rcvrtype gives the method's actual receiver type.
-// The return value t gives the method type signature (without the receiver).
-// The return value fn is a pointer to the method code.
-func methodReceiver(op string, v Value, methodIndex int) (rcvrtype, t *rtype, fn unsafe.Pointer) {
- i := methodIndex
- if v.typ.Kind() == Interface {
- tt := (*interfaceType)(unsafe.Pointer(v.typ))
- if i < 0 || i >= len(tt.methods) {
- panic("reflect: internal error: invalid method index")
- }
- m := &tt.methods[i]
- if m.pkgPath != nil {
- panic("reflect: " + op + " of unexported method")
- }
- iface := (*nonEmptyInterface)(v.ptr)
- if iface.itab == nil {
- panic("reflect: " + op + " of method on nil interface value")
- }
- rcvrtype = iface.itab.typ
- fn = unsafe.Pointer(&iface.itab.fun[i])
- t = m.typ
- } else {
- rcvrtype = v.typ
- ut := v.typ.uncommon()
- if ut == nil || i < 0 || i >= len(ut.methods) {
- panic("reflect: internal error: invalid method index")
- }
- m := &ut.methods[i]
- if m.pkgPath != nil {
- panic("reflect: " + op + " of unexported method")
- }
- fn = unsafe.Pointer(&m.ifn)
- t = m.mtyp
- }
- return
-}
-
-// v is a method receiver. Store at p the word which is used to
-// encode that receiver at the start of the argument list.
-// Reflect uses the "interface" calling convention for
-// methods, which always uses one word to record the receiver.
-func storeRcvr(v Value, p unsafe.Pointer) {
- t := v.typ
- if t.Kind() == Interface {
- // the interface data word becomes the receiver word
- iface := (*nonEmptyInterface)(v.ptr)
- *(*unsafe.Pointer)(p) = unsafe.Pointer(iface.word)
- } else if v.flag&flagIndir != 0 {
- if t.size > ptrSize {
- *(*unsafe.Pointer)(p) = v.ptr
- } else if t.pointers() {
- *(*unsafe.Pointer)(p) = *(*unsafe.Pointer)(v.ptr)
- } else {
- *(*uintptr)(p) = loadScalar(v.ptr, t.size)
- }
- } else if t.pointers() {
- *(*unsafe.Pointer)(p) = v.ptr
- } else {
- *(*uintptr)(p) = v.scalar
- }
-}
-
-// align returns the result of rounding x up to a multiple of n.
-// n must be a power of two.
-func align(x, n uintptr) uintptr {
- return (x + n - 1) &^ (n - 1)
-}
-
-// callMethod is the call implementation used by a function returned
-// by makeMethodValue (used by v.Method(i).Interface()).
-// It is a streamlined version of the usual reflect call: the caller has
-// already laid out the argument frame for us, so we don't have
-// to deal with individual Values for each argument.
-// It is in this file so that it can be next to the two similar functions above.
-// The remainder of the makeMethodValue implementation is in makefunc.go.
-//
-// NOTE: This function must be marked as a "wrapper" in the generated code,
-// so that the linker can make it work correctly for panic and recover.
-// The gc compilers know to do that for the name "reflect.callMethod".
-func callMethod(ctxt *methodValue, frame unsafe.Pointer) {
- rcvr := ctxt.rcvr
- rcvrtype, t, fn := methodReceiver("call", rcvr, ctxt.method)
- frametype, argSize, retOffset := funcLayout(t, rcvrtype)
-
- // Make a new frame that is one word bigger so we can store the receiver.
- args := unsafe_New(frametype)
-
- // Copy in receiver and rest of args.
- storeRcvr(rcvr, args)
- memmove(unsafe.Pointer(uintptr(args)+ptrSize), frame, argSize-ptrSize)
-
- // Call.
- call(fn, args, uint32(frametype.size), uint32(retOffset))
-
- // Copy return values. On amd64p32, the beginning of return values
- // is 64-bit aligned, so the caller's frame layout (which doesn't have
- // a receiver) is different from the layout of the fn call, which has
- // a receiver.
- // Ignore any changes to args and just copy return values.
- callerRetOffset := retOffset - ptrSize
- if runtime.GOARCH == "amd64p32" {
- callerRetOffset = align(argSize-ptrSize, 8)
- }
- memmove(unsafe.Pointer(uintptr(frame)+callerRetOffset),
- unsafe.Pointer(uintptr(args)+retOffset), frametype.size-retOffset)
-}
-
-// funcName returns the name of f, for use in error messages.
-func funcName(f func([]Value) []Value) string {
- pc := *(*uintptr)(unsafe.Pointer(&f))
- rf := runtime.FuncForPC(pc)
- if rf != nil {
- return rf.Name()
- }
- return "closure"
-}
-
-// Cap returns v's capacity.
-// It panics if v's Kind is not Array, Chan, or Slice.
-func (v Value) Cap() int {
- k := v.kind()
- switch k {
- case Array:
- return v.typ.Len()
- case Chan:
- return int(chancap(v.pointer()))
- case Slice:
- // Slice is always bigger than a word; assume flagIndir.
- return (*sliceHeader)(v.ptr).Cap
- }
- panic(&ValueError{"reflect.Value.Cap", k})
-}
-
-// Close closes the channel v.
-// It panics if v's Kind is not Chan.
-func (v Value) Close() {
- v.mustBe(Chan)
- v.mustBeExported()
- chanclose(v.pointer())
-}
-
-// Complex returns v's underlying value, as a complex128.
-// It panics if v's Kind is not Complex64 or Complex128
-func (v Value) Complex() complex128 {
- k := v.kind()
- switch k {
- case Complex64:
- if v.flag&flagIndir != 0 {
- return complex128(*(*complex64)(v.ptr))
- }
- return complex128(*(*complex64)(unsafe.Pointer(&v.scalar)))
- case Complex128:
- // complex128 is always bigger than a word; assume flagIndir.
- return *(*complex128)(v.ptr)
- }
- panic(&ValueError{"reflect.Value.Complex", k})
-}
-
-// Elem returns the value that the interface v contains
-// or that the pointer v points to.
-// It panics if v's Kind is not Interface or Ptr.
-// It returns the zero Value if v is nil.
-func (v Value) Elem() Value {
- k := v.kind()
- switch k {
- case Interface:
- var eface interface{}
- if v.typ.NumMethod() == 0 {
- eface = *(*interface{})(v.ptr)
- } else {
- eface = (interface{})(*(*interface {
- M()
- })(v.ptr))
- }
- x := unpackEface(eface)
- x.flag |= v.flag & flagRO
- return x
- case Ptr:
- ptr := v.ptr
- if v.flag&flagIndir != 0 {
- ptr = *(*unsafe.Pointer)(ptr)
- }
- // The returned value's address is v's value.
- if ptr == nil {
- return Value{}
- }
- tt := (*ptrType)(unsafe.Pointer(v.typ))
- typ := tt.elem
- fl := v.flag&flagRO | flagIndir | flagAddr
- fl |= flag(typ.Kind() << flagKindShift)
- return Value{typ, ptr, 0, fl}
- }
- panic(&ValueError{"reflect.Value.Elem", k})
-}
-
-// Field returns the i'th field of the struct v.
-// It panics if v's Kind is not Struct or i is out of range.
-func (v Value) Field(i int) Value {
- v.mustBe(Struct)
- tt := (*structType)(unsafe.Pointer(v.typ))
- if i < 0 || i >= len(tt.fields) {
- panic("reflect: Field index out of range")
- }
- field := &tt.fields[i]
- typ := field.typ
-
- // Inherit permission bits from v.
- fl := v.flag & (flagRO | flagIndir | flagAddr)
- // Using an unexported field forces flagRO.
- if field.pkgPath != nil {
- fl |= flagRO
- }
- fl |= flag(typ.Kind()) << flagKindShift
-
- var ptr unsafe.Pointer
- var scalar uintptr
- switch {
- case fl&flagIndir != 0:
- // Indirect. Just bump pointer.
- ptr = unsafe.Pointer(uintptr(v.ptr) + field.offset)
- case typ.pointers():
- if field.offset != 0 {
- panic("field access of ptr value isn't at offset 0")
- }
- ptr = v.ptr
- case bigEndian:
- // Must be scalar. Discard leading bytes.
- scalar = v.scalar << (field.offset * 8)
- default:
- // Must be scalar. Discard leading bytes.
- scalar = v.scalar >> (field.offset * 8)
- }
-
- return Value{typ, ptr, scalar, fl}
-}
-
-// FieldByIndex returns the nested field corresponding to index.
-// It panics if v's Kind is not struct.
-func (v Value) FieldByIndex(index []int) Value {
- v.mustBe(Struct)
- for i, x := range index {
- if i > 0 {
- if v.Kind() == Ptr && v.typ.Elem().Kind() == Struct {
- if v.IsNil() {
- panic("reflect: indirection through nil pointer to embedded struct")
- }
- v = v.Elem()
- }
- }
- v = v.Field(x)
- }
- return v
-}
-
-// FieldByName returns the struct field with the given name.
-// It returns the zero Value if no field was found.
-// It panics if v's Kind is not struct.
-func (v Value) FieldByName(name string) Value {
- v.mustBe(Struct)
- if f, ok := v.typ.FieldByName(name); ok {
- return v.FieldByIndex(f.Index)
- }
- return Value{}
-}
-
-// FieldByNameFunc returns the struct field with a name
-// that satisfies the match function.
-// It panics if v's Kind is not struct.
-// It returns the zero Value if no field was found.
-func (v Value) FieldByNameFunc(match func(string) bool) Value {
- v.mustBe(Struct)
- if f, ok := v.typ.FieldByNameFunc(match); ok {
- return v.FieldByIndex(f.Index)
- }
- return Value{}
-}
-
-// Float returns v's underlying value, as a float64.
-// It panics if v's Kind is not Float32 or Float64
-func (v Value) Float() float64 {
- k := v.kind()
- switch k {
- case Float32:
- if v.flag&flagIndir != 0 {
- return float64(*(*float32)(v.ptr))
- }
- return float64(*(*float32)(unsafe.Pointer(&v.scalar)))
- case Float64:
- if v.flag&flagIndir != 0 {
- return *(*float64)(v.ptr)
- }
- return *(*float64)(unsafe.Pointer(&v.scalar))
- }
- panic(&ValueError{"reflect.Value.Float", k})
-}
-
-var uint8Type = TypeOf(uint8(0)).(*rtype)
-
-// Index returns v's i'th element.
-// It panics if v's Kind is not Array, Slice, or String or i is out of range.
-func (v Value) Index(i int) Value {
- k := v.kind()
- switch k {
- case Array:
- tt := (*arrayType)(unsafe.Pointer(v.typ))
- if i < 0 || i > int(tt.len) {
- panic("reflect: array index out of range")
- }
- typ := tt.elem
- fl := v.flag & (flagRO | flagIndir | flagAddr) // bits same as overall array
- fl |= flag(typ.Kind()) << flagKindShift
- offset := uintptr(i) * typ.size
-
- var val unsafe.Pointer
- var scalar uintptr
- switch {
- case fl&flagIndir != 0:
- // Indirect. Just bump pointer.
- val = unsafe.Pointer(uintptr(v.ptr) + offset)
- case typ.pointers():
- if offset != 0 {
- panic("can't Index(i) with i!=0 on ptrLike value")
- }
- val = v.ptr
- case bigEndian:
- // Direct. Discard leading bytes.
- scalar = v.scalar << (offset * 8)
- default:
- // Direct. Discard leading bytes.
- scalar = v.scalar >> (offset * 8)
- }
- return Value{typ, val, scalar, fl}
-
- case Slice:
- // Element flag same as Elem of Ptr.
- // Addressable, indirect, possibly read-only.
- fl := flagAddr | flagIndir | v.flag&flagRO
- s := (*sliceHeader)(v.ptr)
- if i < 0 || i >= s.Len {
- panic("reflect: slice index out of range")
- }
- tt := (*sliceType)(unsafe.Pointer(v.typ))
- typ := tt.elem
- fl |= flag(typ.Kind()) << flagKindShift
- val := unsafe.Pointer(uintptr(s.Data) + uintptr(i)*typ.size)
- return Value{typ, val, 0, fl}
-
- case String:
- fl := v.flag&flagRO | flag(Uint8<<flagKindShift)
- s := (*stringHeader)(v.ptr)
- if i < 0 || i >= s.Len {
- panic("reflect: string index out of range")
- }
- b := uintptr(0)
- *(*byte)(unsafe.Pointer(&b)) = *(*byte)(unsafe.Pointer(uintptr(s.Data) + uintptr(i)))
- return Value{uint8Type, nil, b, fl}
- }
- panic(&ValueError{"reflect.Value.Index", k})
-}
-
-// Int returns v's underlying value, as an int64.
-// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
-func (v Value) Int() int64 {
- k := v.kind()
- var p unsafe.Pointer
- if v.flag&flagIndir != 0 {
- p = v.ptr
- } else {
- // The escape analysis is good enough that &v.scalar
- // does not trigger a heap allocation.
- p = unsafe.Pointer(&v.scalar)
- }
- switch k {
- case Int:
- return int64(*(*int)(p))
- case Int8:
- return int64(*(*int8)(p))
- case Int16:
- return int64(*(*int16)(p))
- case Int32:
- return int64(*(*int32)(p))
- case Int64:
- return int64(*(*int64)(p))
- }
- panic(&ValueError{"reflect.Value.Int", k})
-}
-
-// CanInterface returns true if Interface can be used without panicking.
-func (v Value) CanInterface() bool {
- if v.flag == 0 {
- panic(&ValueError{"reflect.Value.CanInterface", Invalid})
- }
- return v.flag&flagRO == 0
-}
-
-// Interface returns v's current value as an interface{}.
-// It is equivalent to:
-// var i interface{} = (v's underlying value)
-// It panics if the Value was obtained by accessing
-// unexported struct fields.
-func (v Value) Interface() (i interface{}) {
- return valueInterface(v, true)
-}
-
-func valueInterface(v Value, safe bool) interface{} {
- if v.flag == 0 {
- panic(&ValueError{"reflect.Value.Interface", 0})
- }
- if safe && v.flag&flagRO != 0 {
- // Do not allow access to unexported values via Interface,
- // because they might be pointers that should not be
- // writable or methods or function that should not be callable.
- panic("reflect.Value.Interface: cannot return value obtained from unexported field or method")
- }
- if v.flag&flagMethod != 0 {
- v = makeMethodValue("Interface", v)
- }
-
- if v.kind() == Interface {
- // Special case: return the element inside the interface.
- // Empty interface has one layout, all interfaces with
- // methods have a second layout.
- if v.NumMethod() == 0 {
- return *(*interface{})(v.ptr)
- }
- return *(*interface {
- M()
- })(v.ptr)
- }
-
- // TODO: pass safe to packEface so we don't need to copy if safe==true?
- return packEface(v)
-}
-
-// InterfaceData returns the interface v's value as a uintptr pair.
-// It panics if v's Kind is not Interface.
-func (v Value) InterfaceData() [2]uintptr {
- // TODO: deprecate this
- v.mustBe(Interface)
- // We treat this as a read operation, so we allow
- // it even for unexported data, because the caller
- // has to import "unsafe" to turn it into something
- // that can be abused.
- // Interface value is always bigger than a word; assume flagIndir.
- return *(*[2]uintptr)(v.ptr)
-}
-
-// IsNil reports whether its argument v is nil. The argument must be
-// a chan, func, interface, map, pointer, or slice value; if it is
-// not, IsNil panics. Note that IsNil is not always equivalent to a
-// regular comparison with nil in Go. For example, if v was created
-// by calling ValueOf with an uninitialized interface variable i,
-// i==nil will be true but v.IsNil will panic as v will be the zero
-// Value.
-func (v Value) IsNil() bool {
- k := v.kind()
- switch k {
- case Chan, Func, Map, Ptr:
- if v.flag&flagMethod != 0 {
- return false
- }
- ptr := v.ptr
- if v.flag&flagIndir != 0 {
- ptr = *(*unsafe.Pointer)(ptr)
- }
- return ptr == nil
- case Interface, Slice:
- // Both interface and slice are nil if first word is 0.
- // Both are always bigger than a word; assume flagIndir.
- return *(*unsafe.Pointer)(v.ptr) == nil
- }
- panic(&ValueError{"reflect.Value.IsNil", k})
-}
-
-// IsValid returns true if v represents a value.
-// It returns false if v is the zero Value.
-// If IsValid returns false, all other methods except String panic.
-// Most functions and methods never return an invalid value.
-// If one does, its documentation states the conditions explicitly.
-func (v Value) IsValid() bool {
- return v.flag != 0
-}
-
-// Kind returns v's Kind.
-// If v is the zero Value (IsValid returns false), Kind returns Invalid.
-func (v Value) Kind() Kind {
- return v.kind()
-}
-
-// Len returns v's length.
-// It panics if v's Kind is not Array, Chan, Map, Slice, or String.
-func (v Value) Len() int {
- k := v.kind()
- switch k {
- case Array:
- tt := (*arrayType)(unsafe.Pointer(v.typ))
- return int(tt.len)
- case Chan:
- return chanlen(v.pointer())
- case Map:
- return maplen(v.pointer())
- case Slice:
- // Slice is bigger than a word; assume flagIndir.
- return (*sliceHeader)(v.ptr).Len
- case String:
- // String is bigger than a word; assume flagIndir.
- return (*stringHeader)(v.ptr).Len
- }
- panic(&ValueError{"reflect.Value.Len", k})
-}
-
-// MapIndex returns the value associated with key in the map v.
-// It panics if v's Kind is not Map.
-// It returns the zero Value if key is not found in the map or if v represents a nil map.
-// As in Go, the key's value must be assignable to the map's key type.
-func (v Value) MapIndex(key Value) Value {
- v.mustBe(Map)
- tt := (*mapType)(unsafe.Pointer(v.typ))
-
- // Do not require key to be exported, so that DeepEqual
- // and other programs can use all the keys returned by
- // MapKeys as arguments to MapIndex. If either the map
- // or the key is unexported, though, the result will be
- // considered unexported. This is consistent with the
- // behavior for structs, which allow read but not write
- // of unexported fields.
- key = key.assignTo("reflect.Value.MapIndex", tt.key, nil)
-
- var k unsafe.Pointer
- if key.flag&flagIndir != 0 {
- k = key.ptr
- } else if key.typ.pointers() {
- k = unsafe.Pointer(&key.ptr)
- } else {
- k = unsafe.Pointer(&key.scalar)
- }
- e := mapaccess(v.typ, v.pointer(), k)
- if e == nil {
- return Value{}
- }
- typ := tt.elem
- fl := (v.flag | key.flag) & flagRO
- fl |= flag(typ.Kind()) << flagKindShift
- if typ.size > ptrSize {
- // Copy result so future changes to the map
- // won't change the underlying value.
- c := unsafe_New(typ)
- memmove(c, e, typ.size)
- return Value{typ, c, 0, fl | flagIndir}
- } else if typ.pointers() {
- return Value{typ, *(*unsafe.Pointer)(e), 0, fl}
- } else {
- return Value{typ, nil, loadScalar(e, typ.size), fl}
- }
-}
-
-// MapKeys returns a slice containing all the keys present in the map,
-// in unspecified order.
-// It panics if v's Kind is not Map.
-// It returns an empty slice if v represents a nil map.
-func (v Value) MapKeys() []Value {
- v.mustBe(Map)
- tt := (*mapType)(unsafe.Pointer(v.typ))
- keyType := tt.key
-
- fl := v.flag&flagRO | flag(keyType.Kind())<<flagKindShift
-
- m := v.pointer()
- mlen := int(0)
- if m != nil {
- mlen = maplen(m)
- }
- it := mapiterinit(v.typ, m)
- a := make([]Value, mlen)
- var i int
- for i = 0; i < len(a); i++ {
- key := mapiterkey(it)
- if key == nil {
- // Someone deleted an entry from the map since we
- // called maplen above. It's a data race, but nothing
- // we can do about it.
- break
- }
- if keyType.size > ptrSize {
- // Copy result so future changes to the map
- // won't change the underlying value.
- c := unsafe_New(keyType)
- memmove(c, key, keyType.size)
- a[i] = Value{keyType, c, 0, fl | flagIndir}
- } else if keyType.pointers() {
- a[i] = Value{keyType, *(*unsafe.Pointer)(key), 0, fl}
- } else {
- a[i] = Value{keyType, nil, loadScalar(key, keyType.size), fl}
- }
- mapiternext(it)
- }
- return a[:i]
-}
-
-// Method returns a function value corresponding to v's i'th method.
-// The arguments to a Call on the returned function should not include
-// a receiver; the returned function will always use v as the receiver.
-// Method panics if i is out of range or if v is a nil interface value.
-func (v Value) Method(i int) Value {
- if v.typ == nil {
- panic(&ValueError{"reflect.Value.Method", Invalid})
- }
- if v.flag&flagMethod != 0 || i < 0 || i >= v.typ.NumMethod() {
- panic("reflect: Method index out of range")
- }
- if v.typ.Kind() == Interface && v.IsNil() {
- panic("reflect: Method on nil interface value")
- }
- fl := v.flag & (flagRO | flagIndir)
- fl |= flag(Func) << flagKindShift
- fl |= flag(i)<<flagMethodShift | flagMethod
- return Value{v.typ, v.ptr, v.scalar, fl}
-}
-
-// NumMethod returns the number of methods in the value's method set.
-func (v Value) NumMethod() int {
- if v.typ == nil {
- panic(&ValueError{"reflect.Value.NumMethod", Invalid})
- }
- if v.flag&flagMethod != 0 {
- return 0
- }
- return v.typ.NumMethod()
-}
-
-// MethodByName returns a function value corresponding to the method
-// of v with the given name.
-// The arguments to a Call on the returned function should not include
-// a receiver; the returned function will always use v as the receiver.
-// It returns the zero Value if no method was found.
-func (v Value) MethodByName(name string) Value {
- if v.typ == nil {
- panic(&ValueError{"reflect.Value.MethodByName", Invalid})
- }
- if v.flag&flagMethod != 0 {
- return Value{}
- }
- m, ok := v.typ.MethodByName(name)
- if !ok {
- return Value{}
- }
- return v.Method(m.Index)
-}
-
-// NumField returns the number of fields in the struct v.
-// It panics if v's Kind is not Struct.
-func (v Value) NumField() int {
- v.mustBe(Struct)
- tt := (*structType)(unsafe.Pointer(v.typ))
- return len(tt.fields)
-}
-
-// OverflowComplex returns true if the complex128 x cannot be represented by v's type.
-// It panics if v's Kind is not Complex64 or Complex128.
-func (v Value) OverflowComplex(x complex128) bool {
- k := v.kind()
- switch k {
- case Complex64:
- return overflowFloat32(real(x)) || overflowFloat32(imag(x))
- case Complex128:
- return false
- }
- panic(&ValueError{"reflect.Value.OverflowComplex", k})
-}
-
-// OverflowFloat returns true if the float64 x cannot be represented by v's type.
-// It panics if v's Kind is not Float32 or Float64.
-func (v Value) OverflowFloat(x float64) bool {
- k := v.kind()
- switch k {
- case Float32:
- return overflowFloat32(x)
- case Float64:
- return false
- }
- panic(&ValueError{"reflect.Value.OverflowFloat", k})
-}
-
-func overflowFloat32(x float64) bool {
- if x < 0 {
- x = -x
- }
- return math.MaxFloat32 < x && x <= math.MaxFloat64
-}
-
-// OverflowInt returns true if the int64 x cannot be represented by v's type.
-// It panics if v's Kind is not Int, Int8, int16, Int32, or Int64.
-func (v Value) OverflowInt(x int64) bool {
- k := v.kind()
- switch k {
- case Int, Int8, Int16, Int32, Int64:
- bitSize := v.typ.size * 8
- trunc := (x << (64 - bitSize)) >> (64 - bitSize)
- return x != trunc
- }
- panic(&ValueError{"reflect.Value.OverflowInt", k})
-}
-
-// OverflowUint returns true if the uint64 x cannot be represented by v's type.
-// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
-func (v Value) OverflowUint(x uint64) bool {
- k := v.kind()
- switch k {
- case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64:
- bitSize := v.typ.size * 8
- trunc := (x << (64 - bitSize)) >> (64 - bitSize)
- return x != trunc
- }
- panic(&ValueError{"reflect.Value.OverflowUint", k})
-}
-
-// Pointer returns v's value as a uintptr.
-// It returns uintptr instead of unsafe.Pointer so that
-// code using reflect cannot obtain unsafe.Pointers
-// without importing the unsafe package explicitly.
-// It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer.
-//
-// If v's Kind is Func, the returned pointer is an underlying
-// code pointer, but not necessarily enough to identify a
-// single function uniquely. The only guarantee is that the
-// result is zero if and only if v is a nil func Value.
-//
-// If v's Kind is Slice, the returned pointer is to the first
-// element of the slice. If the slice is nil the returned value
-// is 0. If the slice is empty but non-nil the return value is non-zero.
-func (v Value) Pointer() uintptr {
- // TODO: deprecate
- k := v.kind()
- switch k {
- case Chan, Map, Ptr, UnsafePointer:
- return uintptr(v.pointer())
- case Func:
- if v.flag&flagMethod != 0 {
- // As the doc comment says, the returned pointer is an
- // underlying code pointer but not necessarily enough to
- // identify a single function uniquely. All method expressions
- // created via reflect have the same underlying code pointer,
- // so their Pointers are equal. The function used here must
- // match the one used in makeMethodValue.
- f := methodValueCall
- return **(**uintptr)(unsafe.Pointer(&f))
- }
- p := v.pointer()
- // Non-nil func value points at data block.
- // First word of data block is actual code.
- if p != nil {
- p = *(*unsafe.Pointer)(p)
- }
- return uintptr(p)
-
- case Slice:
- return (*SliceHeader)(v.ptr).Data
- }
- panic(&ValueError{"reflect.Value.Pointer", k})
-}
-
-// Recv receives and returns a value from the channel v.
-// It panics if v's Kind is not Chan.
-// The receive blocks until a value is ready.
-// The boolean value ok is true if the value x corresponds to a send
-// on the channel, false if it is a zero value received because the channel is closed.
-func (v Value) Recv() (x Value, ok bool) {
- v.mustBe(Chan)
- v.mustBeExported()
- return v.recv(false)
-}
-
-// internal recv, possibly non-blocking (nb).
-// v is known to be a channel.
-func (v Value) recv(nb bool) (val Value, ok bool) {
- tt := (*chanType)(unsafe.Pointer(v.typ))
- if ChanDir(tt.dir)&RecvDir == 0 {
- panic("reflect: recv on send-only channel")
- }
- t := tt.elem
- val = Value{t, nil, 0, flag(t.Kind()) << flagKindShift}
- var p unsafe.Pointer
- if t.size > ptrSize {
- p = unsafe_New(t)
- val.ptr = p
- val.flag |= flagIndir
- } else if t.pointers() {
- p = unsafe.Pointer(&val.ptr)
- } else {
- p = unsafe.Pointer(&val.scalar)
- }
- selected, ok := chanrecv(v.typ, v.pointer(), nb, p)
- if !selected {
- val = Value{}
- }
- return
-}
-
-// Send sends x on the channel v.
-// It panics if v's kind is not Chan or if x's type is not the same type as v's element type.
-// As in Go, x's value must be assignable to the channel's element type.
-func (v Value) Send(x Value) {
- v.mustBe(Chan)
- v.mustBeExported()
- v.send(x, false)
-}
-
-// internal send, possibly non-blocking.
-// v is known to be a channel.
-func (v Value) send(x Value, nb bool) (selected bool) {
- tt := (*chanType)(unsafe.Pointer(v.typ))
- if ChanDir(tt.dir)&SendDir == 0 {
- panic("reflect: send on recv-only channel")
- }
- x.mustBeExported()
- x = x.assignTo("reflect.Value.Send", tt.elem, nil)
- var p unsafe.Pointer
- if x.flag&flagIndir != 0 {
- p = x.ptr
- } else if x.typ.pointers() {
- p = unsafe.Pointer(&x.ptr)
- } else {
- p = unsafe.Pointer(&x.scalar)
- }
- return chansend(v.typ, v.pointer(), p, nb)
-}
-
-// Set assigns x to the value v.
-// It panics if CanSet returns false.
-// As in Go, x's value must be assignable to v's type.
-func (v Value) Set(x Value) {
- v.mustBeAssignable()
- x.mustBeExported() // do not let unexported x leak
- var target *interface{}
- if v.kind() == Interface {
- target = (*interface{})(v.ptr)
- }
- x = x.assignTo("reflect.Set", v.typ, target)
- if x.flag&flagIndir != 0 {
- memmove(v.ptr, x.ptr, v.typ.size)
- } else if x.typ.pointers() {
- *(*unsafe.Pointer)(v.ptr) = x.ptr
- } else {
- memmove(v.ptr, unsafe.Pointer(&x.scalar), v.typ.size)
- }
-}
-
-// SetBool sets v's underlying value.
-// It panics if v's Kind is not Bool or if CanSet() is false.
-func (v Value) SetBool(x bool) {
- v.mustBeAssignable()
- v.mustBe(Bool)
- *(*bool)(v.ptr) = x
-}
-
-// SetBytes sets v's underlying value.
-// It panics if v's underlying value is not a slice of bytes.
-func (v Value) SetBytes(x []byte) {
- v.mustBeAssignable()
- v.mustBe(Slice)
- if v.typ.Elem().Kind() != Uint8 {
- panic("reflect.Value.SetBytes of non-byte slice")
- }
- *(*[]byte)(v.ptr) = x
-}
-
-// setRunes sets v's underlying value.
-// It panics if v's underlying value is not a slice of runes (int32s).
-func (v Value) setRunes(x []rune) {
- v.mustBeAssignable()
- v.mustBe(Slice)
- if v.typ.Elem().Kind() != Int32 {
- panic("reflect.Value.setRunes of non-rune slice")
- }
- *(*[]rune)(v.ptr) = x
-}
-
-// SetComplex sets v's underlying value to x.
-// It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false.
-func (v Value) SetComplex(x complex128) {
- v.mustBeAssignable()
- switch k := v.kind(); k {
- default:
- panic(&ValueError{"reflect.Value.SetComplex", k})
- case Complex64:
- *(*complex64)(v.ptr) = complex64(x)
- case Complex128:
- *(*complex128)(v.ptr) = x
- }
-}
-
-// SetFloat sets v's underlying value to x.
-// It panics if v's Kind is not Float32 or Float64, or if CanSet() is false.
-func (v Value) SetFloat(x float64) {
- v.mustBeAssignable()
- switch k := v.kind(); k {
- default:
- panic(&ValueError{"reflect.Value.SetFloat", k})
- case Float32:
- *(*float32)(v.ptr) = float32(x)
- case Float64:
- *(*float64)(v.ptr) = x
- }
-}
-
-// SetInt sets v's underlying value to x.
-// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false.
-func (v Value) SetInt(x int64) {
- v.mustBeAssignable()
- switch k := v.kind(); k {
- default:
- panic(&ValueError{"reflect.Value.SetInt", k})
- case Int:
- *(*int)(v.ptr) = int(x)
- case Int8:
- *(*int8)(v.ptr) = int8(x)
- case Int16:
- *(*int16)(v.ptr) = int16(x)
- case Int32:
- *(*int32)(v.ptr) = int32(x)
- case Int64:
- *(*int64)(v.ptr) = x
- }
-}
-
-// SetLen sets v's length to n.
-// It panics if v's Kind is not Slice or if n is negative or
-// greater than the capacity of the slice.
-func (v Value) SetLen(n int) {
- v.mustBeAssignable()
- v.mustBe(Slice)
- s := (*sliceHeader)(v.ptr)
- if n < 0 || n > int(s.Cap) {
- panic("reflect: slice length out of range in SetLen")
- }
- s.Len = n
-}
-
-// SetCap sets v's capacity to n.
-// It panics if v's Kind is not Slice or if n is smaller than the length or
-// greater than the capacity of the slice.
-func (v Value) SetCap(n int) {
- v.mustBeAssignable()
- v.mustBe(Slice)
- s := (*sliceHeader)(v.ptr)
- if n < int(s.Len) || n > int(s.Cap) {
- panic("reflect: slice capacity out of range in SetCap")
- }
- s.Cap = n
-}
-
-// SetMapIndex sets the value associated with key in the map v to val.
-// It panics if v's Kind is not Map.
-// If val is the zero Value, SetMapIndex deletes the key from the map.
-// Otherwise if v holds a nil map, SetMapIndex will panic.
-// As in Go, key's value must be assignable to the map's key type,
-// and val's value must be assignable to the map's value type.
-func (v Value) SetMapIndex(key, val Value) {
- v.mustBe(Map)
- v.mustBeExported()
- key.mustBeExported()
- tt := (*mapType)(unsafe.Pointer(v.typ))
- key = key.assignTo("reflect.Value.SetMapIndex", tt.key, nil)
- var k unsafe.Pointer
- if key.flag&flagIndir != 0 {
- k = key.ptr
- } else if key.typ.pointers() {
- k = unsafe.Pointer(&key.ptr)
- } else {
- k = unsafe.Pointer(&key.scalar)
- }
- if val.typ == nil {
- mapdelete(v.typ, v.pointer(), k)
- return
- }
- val.mustBeExported()
- val = val.assignTo("reflect.Value.SetMapIndex", tt.elem, nil)
- var e unsafe.Pointer
- if val.flag&flagIndir != 0 {
- e = val.ptr
- } else if val.typ.pointers() {
- e = unsafe.Pointer(&val.ptr)
- } else {
- e = unsafe.Pointer(&val.scalar)
- }
- mapassign(v.typ, v.pointer(), k, e)
-}
-
-// SetUint sets v's underlying value to x.
-// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false.
-func (v Value) SetUint(x uint64) {
- v.mustBeAssignable()
- switch k := v.kind(); k {
- default:
- panic(&ValueError{"reflect.Value.SetUint", k})
- case Uint:
- *(*uint)(v.ptr) = uint(x)
- case Uint8:
- *(*uint8)(v.ptr) = uint8(x)
- case Uint16:
- *(*uint16)(v.ptr) = uint16(x)
- case Uint32:
- *(*uint32)(v.ptr) = uint32(x)
- case Uint64:
- *(*uint64)(v.ptr) = x
- case Uintptr:
- *(*uintptr)(v.ptr) = uintptr(x)
- }
-}
-
-// SetPointer sets the unsafe.Pointer value v to x.
-// It panics if v's Kind is not UnsafePointer.
-func (v Value) SetPointer(x unsafe.Pointer) {
- v.mustBeAssignable()
- v.mustBe(UnsafePointer)
- *(*unsafe.Pointer)(v.ptr) = x
-}
-
-// SetString sets v's underlying value to x.
-// It panics if v's Kind is not String or if CanSet() is false.
-func (v Value) SetString(x string) {
- v.mustBeAssignable()
- v.mustBe(String)
- *(*string)(v.ptr) = x
-}
-
-// Slice returns v[i:j].
-// It panics if v's Kind is not Array, Slice or String, or if v is an unaddressable array,
-// or if the indexes are out of bounds.
-func (v Value) Slice(i, j int) Value {
- var (
- cap int
- typ *sliceType
- base unsafe.Pointer
- )
- switch kind := v.kind(); kind {
- default:
- panic(&ValueError{"reflect.Value.Slice", kind})
-
- case Array:
- if v.flag&flagAddr == 0 {
- panic("reflect.Value.Slice: slice of unaddressable array")
- }
- tt := (*arrayType)(unsafe.Pointer(v.typ))
- cap = int(tt.len)
- typ = (*sliceType)(unsafe.Pointer(tt.slice))
- base = v.ptr
-
- case Slice:
- typ = (*sliceType)(unsafe.Pointer(v.typ))
- s := (*sliceHeader)(v.ptr)
- base = unsafe.Pointer(s.Data)
- cap = s.Cap
-
- case String:
- s := (*stringHeader)(v.ptr)
- if i < 0 || j < i || j > s.Len {
- panic("reflect.Value.Slice: string slice index out of bounds")
- }
- t := stringHeader{unsafe.Pointer(uintptr(s.Data) + uintptr(i)), j - i}
- return Value{v.typ, unsafe.Pointer(&t), 0, v.flag}
- }
-
- if i < 0 || j < i || j > cap {
- panic("reflect.Value.Slice: slice index out of bounds")
- }
-
- // Declare slice so that gc can see the base pointer in it.
- var x []unsafe.Pointer
-
- // Reinterpret as *sliceHeader to edit.
- s := (*sliceHeader)(unsafe.Pointer(&x))
- s.Data = unsafe.Pointer(uintptr(base) + uintptr(i)*typ.elem.Size())
- s.Len = j - i
- s.Cap = cap - i
-
- fl := v.flag&flagRO | flagIndir | flag(Slice)<<flagKindShift
- return Value{typ.common(), unsafe.Pointer(&x), 0, fl}
-}
-
-// Slice3 is the 3-index form of the slice operation: it returns v[i:j:k].
-// It panics if v's Kind is not Array or Slice, or if v is an unaddressable array,
-// or if the indexes are out of bounds.
-func (v Value) Slice3(i, j, k int) Value {
- var (
- cap int
- typ *sliceType
- base unsafe.Pointer
- )
- switch kind := v.kind(); kind {
- default:
- panic(&ValueError{"reflect.Value.Slice3", kind})
-
- case Array:
- if v.flag&flagAddr == 0 {
- panic("reflect.Value.Slice3: slice of unaddressable array")
- }
- tt := (*arrayType)(unsafe.Pointer(v.typ))
- cap = int(tt.len)
- typ = (*sliceType)(unsafe.Pointer(tt.slice))
- base = v.ptr
-
- case Slice:
- typ = (*sliceType)(unsafe.Pointer(v.typ))
- s := (*sliceHeader)(v.ptr)
- base = s.Data
- cap = s.Cap
- }
-
- if i < 0 || j < i || k < j || k > cap {
- panic("reflect.Value.Slice3: slice index out of bounds")
- }
-
- // Declare slice so that the garbage collector
- // can see the base pointer in it.
- var x []unsafe.Pointer
-
- // Reinterpret as *sliceHeader to edit.
- s := (*sliceHeader)(unsafe.Pointer(&x))
- s.Data = unsafe.Pointer(uintptr(base) + uintptr(i)*typ.elem.Size())
- s.Len = j - i
- s.Cap = k - i
-
- fl := v.flag&flagRO | flagIndir | flag(Slice)<<flagKindShift
- return Value{typ.common(), unsafe.Pointer(&x), 0, fl}
-}
-
-// String returns the string v's underlying value, as a string.
-// String is a special case because of Go's String method convention.
-// Unlike the other getters, it does not panic if v's Kind is not String.
-// Instead, it returns a string of the form "<T value>" where T is v's type.
-func (v Value) String() string {
- switch k := v.kind(); k {
- case Invalid:
- return "<invalid Value>"
- case String:
- return *(*string)(v.ptr)
- }
- // If you call String on a reflect.Value of other type, it's better to
- // print something than to panic. Useful in debugging.
- return "<" + v.typ.String() + " Value>"
-}
-
-// TryRecv attempts to receive a value from the channel v but will not block.
-// It panics if v's Kind is not Chan.
-// If the receive delivers a value, x is the transferred value and ok is true.
-// If the receive cannot finish without blocking, x is the zero Value and ok is false.
-// If the channel is closed, x is the zero value for the channel's element type and ok is false.
-func (v Value) TryRecv() (x Value, ok bool) {
- v.mustBe(Chan)
- v.mustBeExported()
- return v.recv(true)
-}
-
-// TrySend attempts to send x on the channel v but will not block.
-// It panics if v's Kind is not Chan.
-// It returns true if the value was sent, false otherwise.
-// As in Go, x's value must be assignable to the channel's element type.
-func (v Value) TrySend(x Value) bool {
- v.mustBe(Chan)
- v.mustBeExported()
- return v.send(x, true)
-}
-
-// Type returns v's type.
-func (v Value) Type() Type {
- f := v.flag
- if f == 0 {
- panic(&ValueError{"reflect.Value.Type", Invalid})
- }
- if f&flagMethod == 0 {
- // Easy case
- return v.typ
- }
-
- // Method value.
- // v.typ describes the receiver, not the method type.
- i := int(v.flag) >> flagMethodShift
- if v.typ.Kind() == Interface {
- // Method on interface.
- tt := (*interfaceType)(unsafe.Pointer(v.typ))
- if i < 0 || i >= len(tt.methods) {
- panic("reflect: internal error: invalid method index")
- }
- m := &tt.methods[i]
- return m.typ
- }
- // Method on concrete type.
- ut := v.typ.uncommon()
- if ut == nil || i < 0 || i >= len(ut.methods) {
- panic("reflect: internal error: invalid method index")
- }
- m := &ut.methods[i]
- return m.mtyp
-}
-
-// Uint returns v's underlying value, as a uint64.
-// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
-func (v Value) Uint() uint64 {
- k := v.kind()
- var p unsafe.Pointer
- if v.flag&flagIndir != 0 {
- p = v.ptr
- } else {
- // The escape analysis is good enough that &v.scalar
- // does not trigger a heap allocation.
- p = unsafe.Pointer(&v.scalar)
- }
- switch k {
- case Uint:
- return uint64(*(*uint)(p))
- case Uint8:
- return uint64(*(*uint8)(p))
- case Uint16:
- return uint64(*(*uint16)(p))
- case Uint32:
- return uint64(*(*uint32)(p))
- case Uint64:
- return uint64(*(*uint64)(p))
- case Uintptr:
- return uint64(*(*uintptr)(p))
- }
- panic(&ValueError{"reflect.Value.Uint", k})
-}
-
-// UnsafeAddr returns a pointer to v's data.
-// It is for advanced clients that also import the "unsafe" package.
-// It panics if v is not addressable.
-func (v Value) UnsafeAddr() uintptr {
- // TODO: deprecate
- if v.typ == nil {
- panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid})
- }
- if v.flag&flagAddr == 0 {
- panic("reflect.Value.UnsafeAddr of unaddressable value")
- }
- return uintptr(v.ptr)
-}
-
-// StringHeader is the runtime representation of a string.
-// It cannot be used safely or portably and its representation may
-// change in a later release.
-// Moreover, the Data field is not sufficient to guarantee the data
-// it references will not be garbage collected, so programs must keep
-// a separate, correctly typed pointer to the underlying data.
-type StringHeader struct {
- Data uintptr
- Len int
-}
-
-// stringHeader is a safe version of StringHeader used within this package.
-type stringHeader struct {
- Data unsafe.Pointer
- Len int
-}
-
-// SliceHeader is the runtime representation of a slice.
-// It cannot be used safely or portably and its representation may
-// change in a later release.
-// Moreover, the Data field is not sufficient to guarantee the data
-// it references will not be garbage collected, so programs must keep
-// a separate, correctly typed pointer to the underlying data.
-type SliceHeader struct {
- Data uintptr
- Len int
- Cap int
-}
-
-// sliceHeader is a safe version of SliceHeader used within this package.
-type sliceHeader struct {
- Data unsafe.Pointer
- Len int
- Cap int
-}
-
-func typesMustMatch(what string, t1, t2 Type) {
- if t1 != t2 {
- panic(what + ": " + t1.String() + " != " + t2.String())
- }
-}
-
-// grow grows the slice s so that it can hold extra more values, allocating
-// more capacity if needed. It also returns the old and new slice lengths.
-func grow(s Value, extra int) (Value, int, int) {
- i0 := s.Len()
- i1 := i0 + extra
- if i1 < i0 {
- panic("reflect.Append: slice overflow")
- }
- m := s.Cap()
- if i1 <= m {
- return s.Slice(0, i1), i0, i1
- }
- if m == 0 {
- m = extra
- } else {
- for m < i1 {
- if i0 < 1024 {
- m += m
- } else {
- m += m / 4
- }
- }
- }
- t := MakeSlice(s.Type(), i1, m)
- Copy(t, s)
- return t, i0, i1
-}
-
-// Append appends the values x to a slice s and returns the resulting slice.
-// As in Go, each x's value must be assignable to the slice's element type.
-func Append(s Value, x ...Value) Value {
- s.mustBe(Slice)
- s, i0, i1 := grow(s, len(x))
- for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
- s.Index(i).Set(x[j])
- }
- return s
-}
-
-// AppendSlice appends a slice t to a slice s and returns the resulting slice.
-// The slices s and t must have the same element type.
-func AppendSlice(s, t Value) Value {
- s.mustBe(Slice)
- t.mustBe(Slice)
- typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem())
- s, i0, i1 := grow(s, t.Len())
- Copy(s.Slice(i0, i1), t)
- return s
-}
-
-// Copy copies the contents of src into dst until either
-// dst has been filled or src has been exhausted.
-// It returns the number of elements copied.
-// Dst and src each must have kind Slice or Array, and
-// dst and src must have the same element type.
-func Copy(dst, src Value) int {
- dk := dst.kind()
- if dk != Array && dk != Slice {
- panic(&ValueError{"reflect.Copy", dk})
- }
- if dk == Array {
- dst.mustBeAssignable()
- }
- dst.mustBeExported()
-
- sk := src.kind()
- if sk != Array && sk != Slice {
- panic(&ValueError{"reflect.Copy", sk})
- }
- src.mustBeExported()
-
- de := dst.typ.Elem()
- se := src.typ.Elem()
- typesMustMatch("reflect.Copy", de, se)
-
- n := dst.Len()
- if sn := src.Len(); n > sn {
- n = sn
- }
-
- // If sk is an in-line array, cannot take its address.
- // Instead, copy element by element.
- // TODO: memmove would be ok for this (sa = unsafe.Pointer(&v.scalar))
- // if we teach the compiler that ptrs don't escape from memmove.
- if src.flag&flagIndir == 0 {
- for i := 0; i < n; i++ {
- dst.Index(i).Set(src.Index(i))
- }
- return n
- }
-
- // Copy via memmove.
- var da, sa unsafe.Pointer
- if dk == Array {
- da = dst.ptr
- } else {
- da = (*sliceHeader)(dst.ptr).Data
- }
- if sk == Array {
- sa = src.ptr
- } else {
- sa = (*sliceHeader)(src.ptr).Data
- }
- memmove(da, sa, uintptr(n)*de.Size())
- return n
-}
-
-// A runtimeSelect is a single case passed to rselect.
-// This must match ../runtime/chan.c:/runtimeSelect
-type runtimeSelect struct {
- dir uintptr // 0, SendDir, or RecvDir
- typ *rtype // channel type
- ch unsafe.Pointer // channel
- val unsafe.Pointer // ptr to data (SendDir) or ptr to receive buffer (RecvDir)
-}
-
-// rselect runs a select. It returns the index of the chosen case.
-// If the case was a receive, val is filled in with the received value.
-// The conventional OK bool indicates whether the receive corresponds
-// to a sent value.
-//go:noescape
-func rselect([]runtimeSelect) (chosen int, recvOK bool)
-
-// A SelectDir describes the communication direction of a select case.
-type SelectDir int
-
-// NOTE: These values must match ../runtime/chan.c:/SelectDir.
-
-const (
- _ SelectDir = iota
- SelectSend // case Chan <- Send
- SelectRecv // case <-Chan:
- SelectDefault // default
-)
-
-// A SelectCase describes a single case in a select operation.
-// The kind of case depends on Dir, the communication direction.
-//
-// If Dir is SelectDefault, the case represents a default case.
-// Chan and Send must be zero Values.
-//
-// If Dir is SelectSend, the case represents a send operation.
-// Normally Chan's underlying value must be a channel, and Send's underlying value must be
-// assignable to the channel's element type. As a special case, if Chan is a zero Value,
-// then the case is ignored, and the field Send will also be ignored and may be either zero
-// or non-zero.
-//
-// If Dir is SelectRecv, the case represents a receive operation.
-// Normally Chan's underlying value must be a channel and Send must be a zero Value.
-// If Chan is a zero Value, then the case is ignored, but Send must still be a zero Value.
-// When a receive operation is selected, the received Value is returned by Select.
-//
-type SelectCase struct {
- Dir SelectDir // direction of case
- Chan Value // channel to use (for send or receive)
- Send Value // value to send (for send)
-}
-
-// Select executes a select operation described by the list of cases.
-// Like the Go select statement, it blocks until at least one of the cases
-// can proceed, makes a uniform pseudo-random choice,
-// and then executes that case. It returns the index of the chosen case
-// and, if that case was a receive operation, the value received and a
-// boolean indicating whether the value corresponds to a send on the channel
-// (as opposed to a zero value received because the channel is closed).
-func Select(cases []SelectCase) (chosen int, recv Value, recvOK bool) {
- // NOTE: Do not trust that caller is not modifying cases data underfoot.
- // The range is safe because the caller cannot modify our copy of the len
- // and each iteration makes its own copy of the value c.
- runcases := make([]runtimeSelect, len(cases))
- haveDefault := false
- for i, c := range cases {
- rc := &runcases[i]
- rc.dir = uintptr(c.Dir)
- switch c.Dir {
- default:
- panic("reflect.Select: invalid Dir")
-
- case SelectDefault: // default
- if haveDefault {
- panic("reflect.Select: multiple default cases")
- }
- haveDefault = true
- if c.Chan.IsValid() {
- panic("reflect.Select: default case has Chan value")
- }
- if c.Send.IsValid() {
- panic("reflect.Select: default case has Send value")
- }
-
- case SelectSend:
- ch := c.Chan
- if !ch.IsValid() {
- break
- }
- ch.mustBe(Chan)
- ch.mustBeExported()
- tt := (*chanType)(unsafe.Pointer(ch.typ))
- if ChanDir(tt.dir)&SendDir == 0 {
- panic("reflect.Select: SendDir case using recv-only channel")
- }
- rc.ch = ch.pointer()
- rc.typ = &tt.rtype
- v := c.Send
- if !v.IsValid() {
- panic("reflect.Select: SendDir case missing Send value")
- }
- v.mustBeExported()
- v = v.assignTo("reflect.Select", tt.elem, nil)
- if v.flag&flagIndir != 0 {
- rc.val = v.ptr
- } else if v.typ.pointers() {
- rc.val = unsafe.Pointer(&v.ptr)
- } else {
- rc.val = unsafe.Pointer(&v.scalar)
- }
-
- case SelectRecv:
- if c.Send.IsValid() {
- panic("reflect.Select: RecvDir case has Send value")
- }
- ch := c.Chan
- if !ch.IsValid() {
- break
- }
- ch.mustBe(Chan)
- ch.mustBeExported()
- tt := (*chanType)(unsafe.Pointer(ch.typ))
- if ChanDir(tt.dir)&RecvDir == 0 {
- panic("reflect.Select: RecvDir case using send-only channel")
- }
- rc.ch = ch.pointer()
- rc.typ = &tt.rtype
- rc.val = unsafe_New(tt.elem)
- }
- }
-
- chosen, recvOK = rselect(runcases)
- if runcases[chosen].dir == uintptr(SelectRecv) {
- tt := (*chanType)(unsafe.Pointer(runcases[chosen].typ))
- t := tt.elem
- p := runcases[chosen].val
- fl := flag(t.Kind()) << flagKindShift
- if t.size > ptrSize {
- recv = Value{t, p, 0, fl | flagIndir}
- } else if t.pointers() {
- recv = Value{t, *(*unsafe.Pointer)(p), 0, fl}
- } else {
- recv = Value{t, nil, loadScalar(p, t.size), fl}
- }
- }
- return chosen, recv, recvOK
-}
-
-/*
- * constructors
- */
-
-// implemented in package runtime
-func unsafe_New(*rtype) unsafe.Pointer
-func unsafe_NewArray(*rtype, int) unsafe.Pointer
-
-// MakeSlice creates a new zero-initialized slice value
-// for the specified slice type, length, and capacity.
-func MakeSlice(typ Type, len, cap int) Value {
- if typ.Kind() != Slice {
- panic("reflect.MakeSlice of non-slice type")
- }
- if len < 0 {
- panic("reflect.MakeSlice: negative len")
- }
- if cap < 0 {
- panic("reflect.MakeSlice: negative cap")
- }
- if len > cap {
- panic("reflect.MakeSlice: len > cap")
- }
-
- s := sliceHeader{unsafe_NewArray(typ.Elem().(*rtype), cap), len, cap}
- return Value{typ.common(), unsafe.Pointer(&s), 0, flagIndir | flag(Slice)<<flagKindShift}
-}
-
-// MakeChan creates a new channel with the specified type and buffer size.
-func MakeChan(typ Type, buffer int) Value {
- if typ.Kind() != Chan {
- panic("reflect.MakeChan of non-chan type")
- }
- if buffer < 0 {
- panic("reflect.MakeChan: negative buffer size")
- }
- if typ.ChanDir() != BothDir {
- panic("reflect.MakeChan: unidirectional channel type")
- }
- ch := makechan(typ.(*rtype), uint64(buffer))
- return Value{typ.common(), ch, 0, flag(Chan) << flagKindShift}
-}
-
-// MakeMap creates a new map of the specified type.
-func MakeMap(typ Type) Value {
- if typ.Kind() != Map {
- panic("reflect.MakeMap of non-map type")
- }
- m := makemap(typ.(*rtype))
- return Value{typ.common(), m, 0, flag(Map) << flagKindShift}
-}
-
-// Indirect returns the value that v points to.
-// If v is a nil pointer, Indirect returns a zero Value.
-// If v is not a pointer, Indirect returns v.
-func Indirect(v Value) Value {
- if v.Kind() != Ptr {
- return v
- }
- return v.Elem()
-}
-
-// ValueOf returns a new Value initialized to the concrete value
-// stored in the interface i. ValueOf(nil) returns the zero Value.
-func ValueOf(i interface{}) Value {
- if i == nil {
- return Value{}
- }
-
- // TODO(rsc): Eliminate this terrible hack.
- // In the call to unpackEface, i.typ doesn't escape,
- // and i.word is an integer. So it looks like
- // i doesn't escape. But really it does,
- // because i.word is actually a pointer.
- escapes(i)
-
- return unpackEface(i)
-}
-
-// Zero returns a Value representing the zero value for the specified type.
-// The result is different from the zero value of the Value struct,
-// which represents no value at all.
-// For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0.
-// The returned value is neither addressable nor settable.
-func Zero(typ Type) Value {
- if typ == nil {
- panic("reflect: Zero(nil)")
- }
- t := typ.common()
- fl := flag(t.Kind()) << flagKindShift
- if t.size <= ptrSize {
- return Value{t, nil, 0, fl}
- }
- return Value{t, unsafe_New(typ.(*rtype)), 0, fl | flagIndir}
-}
-
-// New returns a Value representing a pointer to a new zero value
-// for the specified type. That is, the returned Value's Type is PtrTo(typ).
-func New(typ Type) Value {
- if typ == nil {
- panic("reflect: New(nil)")
- }
- ptr := unsafe_New(typ.(*rtype))
- fl := flag(Ptr) << flagKindShift
- return Value{typ.common().ptrTo(), ptr, 0, fl}
-}
-
-// NewAt returns a Value representing a pointer to a value of the
-// specified type, using p as that pointer.
-func NewAt(typ Type, p unsafe.Pointer) Value {
- fl := flag(Ptr) << flagKindShift
- return Value{typ.common().ptrTo(), p, 0, fl}
-}
-
-// assignTo returns a value v that can be assigned directly to typ.
-// It panics if v is not assignable to typ.
-// For a conversion to an interface type, target is a suggested scratch space to use.
-func (v Value) assignTo(context string, dst *rtype, target *interface{}) Value {
- if v.flag&flagMethod != 0 {
- v = makeMethodValue(context, v)
- }
-
- switch {
- case directlyAssignable(dst, v.typ):
- // Overwrite type so that they match.
- // Same memory layout, so no harm done.
- v.typ = dst
- fl := v.flag & (flagRO | flagAddr | flagIndir)
- fl |= flag(dst.Kind()) << flagKindShift
- return Value{dst, v.ptr, v.scalar, fl}
-
- case implements(dst, v.typ):
- if target == nil {
- target = new(interface{})
- }
- x := valueInterface(v, false)
- if dst.NumMethod() == 0 {
- *target = x
- } else {
- ifaceE2I(dst, x, unsafe.Pointer(target))
- }
- return Value{dst, unsafe.Pointer(target), 0, flagIndir | flag(Interface)<<flagKindShift}
- }
-
- // Failed.
- panic(context + ": value of type " + v.typ.String() + " is not assignable to type " + dst.String())
-}
-
-// Convert returns the value v converted to type t.
-// If the usual Go conversion rules do not allow conversion
-// of the value v to type t, Convert panics.
-func (v Value) Convert(t Type) Value {
- if v.flag&flagMethod != 0 {
- v = makeMethodValue("Convert", v)
- }
- op := convertOp(t.common(), v.typ)
- if op == nil {
- panic("reflect.Value.Convert: value of type " + v.typ.String() + " cannot be converted to type " + t.String())
- }
- return op(v, t)
-}
-
-// convertOp returns the function to convert a value of type src
-// to a value of type dst. If the conversion is illegal, convertOp returns nil.
-func convertOp(dst, src *rtype) func(Value, Type) Value {
- switch src.Kind() {
- case Int, Int8, Int16, Int32, Int64:
- switch dst.Kind() {
- case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
- return cvtInt
- case Float32, Float64:
- return cvtIntFloat
- case String:
- return cvtIntString
- }
-
- case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
- switch dst.Kind() {
- case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
- return cvtUint
- case Float32, Float64:
- return cvtUintFloat
- case String:
- return cvtUintString
- }
-
- case Float32, Float64:
- switch dst.Kind() {
- case Int, Int8, Int16, Int32, Int64:
- return cvtFloatInt
- case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
- return cvtFloatUint
- case Float32, Float64:
- return cvtFloat
- }
-
- case Complex64, Complex128:
- switch dst.Kind() {
- case Complex64, Complex128:
- return cvtComplex
- }
-
- case String:
- if dst.Kind() == Slice && dst.Elem().PkgPath() == "" {
- switch dst.Elem().Kind() {
- case Uint8:
- return cvtStringBytes
- case Int32:
- return cvtStringRunes
- }
- }
-
- case Slice:
- if dst.Kind() == String && src.Elem().PkgPath() == "" {
- switch src.Elem().Kind() {
- case Uint8:
- return cvtBytesString
- case Int32:
- return cvtRunesString
- }
- }
- }
-
- // dst and src have same underlying type.
- if haveIdenticalUnderlyingType(dst, src) {
- return cvtDirect
- }
-
- // dst and src are unnamed pointer types with same underlying base type.
- if dst.Kind() == Ptr && dst.Name() == "" &&
- src.Kind() == Ptr && src.Name() == "" &&
- haveIdenticalUnderlyingType(dst.Elem().common(), src.Elem().common()) {
- return cvtDirect
- }
-
- if implements(dst, src) {
- if src.Kind() == Interface {
- return cvtI2I
- }
- return cvtT2I
- }
-
- return nil
-}
-
-// makeInt returns a Value of type t equal to bits (possibly truncated),
-// where t is a signed or unsigned int type.
-func makeInt(f flag, bits uint64, t Type) Value {
- typ := t.common()
- if typ.size > ptrSize {
- // Assume ptrSize >= 4, so this must be uint64.
- ptr := unsafe_New(typ)
- *(*uint64)(unsafe.Pointer(ptr)) = bits
- return Value{typ, ptr, 0, f | flagIndir | flag(typ.Kind())<<flagKindShift}
- }
- var s uintptr
- switch typ.size {
- case 1:
- *(*uint8)(unsafe.Pointer(&s)) = uint8(bits)
- case 2:
- *(*uint16)(unsafe.Pointer(&s)) = uint16(bits)
- case 4:
- *(*uint32)(unsafe.Pointer(&s)) = uint32(bits)
- case 8:
- *(*uint64)(unsafe.Pointer(&s)) = uint64(bits)
- }
- return Value{typ, nil, s, f | flag(typ.Kind())<<flagKindShift}
-}
-
-// makeFloat returns a Value of type t equal to v (possibly truncated to float32),
-// where t is a float32 or float64 type.
-func makeFloat(f flag, v float64, t Type) Value {
- typ := t.common()
- if typ.size > ptrSize {
- // Assume ptrSize >= 4, so this must be float64.
- ptr := unsafe_New(typ)
- *(*float64)(unsafe.Pointer(ptr)) = v
- return Value{typ, ptr, 0, f | flagIndir | flag(typ.Kind())<<flagKindShift}
- }
-
- var s uintptr
- switch typ.size {
- case 4:
- *(*float32)(unsafe.Pointer(&s)) = float32(v)
- case 8:
- *(*float64)(unsafe.Pointer(&s)) = v
- }
- return Value{typ, nil, s, f | flag(typ.Kind())<<flagKindShift}
-}
-
-// makeComplex returns a Value of type t equal to v (possibly truncated to complex64),
-// where t is a complex64 or complex128 type.
-func makeComplex(f flag, v complex128, t Type) Value {
- typ := t.common()
- if typ.size > ptrSize {
- ptr := unsafe_New(typ)
- switch typ.size {
- case 8:
- *(*complex64)(unsafe.Pointer(ptr)) = complex64(v)
- case 16:
- *(*complex128)(unsafe.Pointer(ptr)) = v
- }
- return Value{typ, ptr, 0, f | flagIndir | flag(typ.Kind())<<flagKindShift}
- }
-
- // Assume ptrSize <= 8 so this must be complex64.
- var s uintptr
- *(*complex64)(unsafe.Pointer(&s)) = complex64(v)
- return Value{typ, nil, s, f | flag(typ.Kind())<<flagKindShift}
-}
-
-func makeString(f flag, v string, t Type) Value {
- ret := New(t).Elem()
- ret.SetString(v)
- ret.flag = ret.flag&^flagAddr | f
- return ret
-}
-
-func makeBytes(f flag, v []byte, t Type) Value {
- ret := New(t).Elem()
- ret.SetBytes(v)
- ret.flag = ret.flag&^flagAddr | f
- return ret
-}
-
-func makeRunes(f flag, v []rune, t Type) Value {
- ret := New(t).Elem()
- ret.setRunes(v)
- ret.flag = ret.flag&^flagAddr | f
- return ret
-}
-
-// These conversion functions are returned by convertOp
-// for classes of conversions. For example, the first function, cvtInt,
-// takes any value v of signed int type and returns the value converted
-// to type t, where t is any signed or unsigned int type.
-
-// convertOp: intXX -> [u]intXX
-func cvtInt(v Value, t Type) Value {
- return makeInt(v.flag&flagRO, uint64(v.Int()), t)
-}
-
-// convertOp: uintXX -> [u]intXX
-func cvtUint(v Value, t Type) Value {
- return makeInt(v.flag&flagRO, v.Uint(), t)
-}
-
-// convertOp: floatXX -> intXX
-func cvtFloatInt(v Value, t Type) Value {
- return makeInt(v.flag&flagRO, uint64(int64(v.Float())), t)
-}
-
-// convertOp: floatXX -> uintXX
-func cvtFloatUint(v Value, t Type) Value {
- return makeInt(v.flag&flagRO, uint64(v.Float()), t)
-}
-
-// convertOp: intXX -> floatXX
-func cvtIntFloat(v Value, t Type) Value {
- return makeFloat(v.flag&flagRO, float64(v.Int()), t)
-}
-
-// convertOp: uintXX -> floatXX
-func cvtUintFloat(v Value, t Type) Value {
- return makeFloat(v.flag&flagRO, float64(v.Uint()), t)
-}
-
-// convertOp: floatXX -> floatXX
-func cvtFloat(v Value, t Type) Value {
- return makeFloat(v.flag&flagRO, v.Float(), t)
-}
-
-// convertOp: complexXX -> complexXX
-func cvtComplex(v Value, t Type) Value {
- return makeComplex(v.flag&flagRO, v.Complex(), t)
-}
-
-// convertOp: intXX -> string
-func cvtIntString(v Value, t Type) Value {
- return makeString(v.flag&flagRO, string(v.Int()), t)
-}
-
-// convertOp: uintXX -> string
-func cvtUintString(v Value, t Type) Value {
- return makeString(v.flag&flagRO, string(v.Uint()), t)
-}
-
-// convertOp: []byte -> string
-func cvtBytesString(v Value, t Type) Value {
- return makeString(v.flag&flagRO, string(v.Bytes()), t)
-}
-
-// convertOp: string -> []byte
-func cvtStringBytes(v Value, t Type) Value {
- return makeBytes(v.flag&flagRO, []byte(v.String()), t)
-}
-
-// convertOp: []rune -> string
-func cvtRunesString(v Value, t Type) Value {
- return makeString(v.flag&flagRO, string(v.runes()), t)
-}
-
-// convertOp: string -> []rune
-func cvtStringRunes(v Value, t Type) Value {
- return makeRunes(v.flag&flagRO, []rune(v.String()), t)
-}
-
-// convertOp: direct copy
-func cvtDirect(v Value, typ Type) Value {
- f := v.flag
- t := typ.common()
- ptr := v.ptr
- if f&flagAddr != 0 {
- // indirect, mutable word - make a copy
- c := unsafe_New(t)
- memmove(c, ptr, t.size)
- ptr = c
- f &^= flagAddr
- }
- return Value{t, ptr, v.scalar, v.flag&flagRO | f} // v.flag&flagRO|f == f?
-}
-
-// convertOp: concrete -> interface
-func cvtT2I(v Value, typ Type) Value {
- target := new(interface{})
- x := valueInterface(v, false)
- if typ.NumMethod() == 0 {
- *target = x
- } else {
- ifaceE2I(typ.(*rtype), x, unsafe.Pointer(target))
- }
- return Value{typ.common(), unsafe.Pointer(target), 0, v.flag&flagRO | flagIndir | flag(Interface)<<flagKindShift}
-}
-
-// convertOp: interface -> interface
-func cvtI2I(v Value, typ Type) Value {
- if v.IsNil() {
- ret := Zero(typ)
- ret.flag |= v.flag & flagRO
- return ret
- }
- return cvtT2I(v.Elem(), typ)
-}
-
-// implemented in ../pkg/runtime
-func chancap(ch unsafe.Pointer) int
-func chanclose(ch unsafe.Pointer)
-func chanlen(ch unsafe.Pointer) int
-
-//go:noescape
-func chanrecv(t *rtype, ch unsafe.Pointer, nb bool, val unsafe.Pointer) (selected, received bool)
-
-//go:noescape
-func chansend(t *rtype, ch unsafe.Pointer, val unsafe.Pointer, nb bool) bool
-
-func makechan(typ *rtype, size uint64) (ch unsafe.Pointer)
-func makemap(t *rtype) (m unsafe.Pointer)
-func mapaccess(t *rtype, m unsafe.Pointer, key unsafe.Pointer) (val unsafe.Pointer)
-func mapassign(t *rtype, m unsafe.Pointer, key, val unsafe.Pointer)
-func mapdelete(t *rtype, m unsafe.Pointer, key unsafe.Pointer)
-func mapiterinit(t *rtype, m unsafe.Pointer) unsafe.Pointer
-func mapiterkey(it unsafe.Pointer) (key unsafe.Pointer)
-func mapiternext(it unsafe.Pointer)
-func maplen(m unsafe.Pointer) int
-
-func call(fn, arg unsafe.Pointer, n uint32, retoffset uint32)
-func ifaceE2I(t *rtype, src interface{}, dst unsafe.Pointer)
-
-// Dummy annotation marking that the value x escapes,
-// for use in cases where the reflect code is so clever that
-// the compiler cannot follow.
-func escapes(x interface{}) {
- if dummy.b {
- dummy.x = x
- }
-}
-
-var dummy struct {
- b bool
- x interface{}
-}