diff options
Diffstat (limited to 'src/pkg/reflect/value.go')
-rw-r--r-- | src/pkg/reflect/value.go | 2129 |
1 files changed, 1187 insertions, 942 deletions
diff --git a/src/pkg/reflect/value.go b/src/pkg/reflect/value.go index 0b70b17f8..ddc31100f 100644 --- a/src/pkg/reflect/value.go +++ b/src/pkg/reflect/value.go @@ -41,171 +41,581 @@ func memmove(adst, asrc addr, n uintptr) { } } -// Value is the common interface to reflection values. -// The implementations of Value (e.g., ArrayValue, StructValue) -// have additional type-specific methods. -type Value interface { - // Type returns the value's type. - Type() Type +// Value is the reflection interface to a Go value. +// +// Not all methods apply to all kinds of values. Restrictions, +// if any, are noted in the documentation for each method. +// Use the Kind method to find out the kind of value before +// calling kind-specific methods. Calling a method +// inappropriate to the kind of type causes a run time panic. +// +// The zero Value represents no value. +// Its IsValid method returns false, its Kind method returns Invalid, +// its String method returns "<invalid Value>", and all other methods panic. +// Most functions and methods never return an invalid value. +// If one does, its documentation states the conditions explicitly. +type Value struct { + Internal valueInterface +} - // Interface returns the value as an interface{}. - Interface() interface{} +// TODO(rsc): This implementation of Value is a just a façade +// in front of the old implementation, now called valueInterface. +// A future CL will change it to a real implementation. +// Changing the API is already a big enough step for one CL. - // CanSet returns true if the value can be changed. - // Values obtained by the use of non-exported struct fields - // can be used in Get but not Set. - // If CanSet returns false, calling the type-specific Set will panic. - CanSet() bool +// A ValueError occurs when a Value method is invoked on +// a Value that does not support it. Such cases are documented +// in the description of each method. +type ValueError struct { + Method string + Kind Kind +} - // SetValue assigns v to the value; v must have the same type as the value. - SetValue(v Value) +func (e *ValueError) String() string { + if e.Kind == 0 { + return "reflect: call of " + e.Method + " on zero Value" + } + return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value" +} - // CanAddr returns true if the value's address can be obtained with Addr. - // Such values are called addressable. A value is addressable if it is - // an element of a slice, an element of an addressable array, - // a field of an addressable struct, the result of dereferencing a pointer, - // or the result of a call to NewValue, MakeChan, MakeMap, or MakeZero. - // If CanAddr returns false, calling Addr will panic. - CanAddr() bool +// methodName returns the name of the calling method, +// assumed to be two stack frames above. +func methodName() string { + pc, _, _, _ := runtime.Caller(2) + f := runtime.FuncForPC(pc) + if f == nil { + return "unknown method" + } + return f.Name() +} - // Addr returns the address of the value. - // If the value is not addressable, Addr panics. - // Addr is typically used to obtain a pointer to a struct field or slice element - // in order to call a method that requires a pointer receiver. - Addr() *PtrValue +func (v Value) internal() valueInterface { + vi := v.Internal + if vi == nil { + panic(&ValueError{methodName(), 0}) + } + return vi +} - // UnsafeAddr returns a pointer to the underlying data. - // It is for advanced clients that also import the "unsafe" package. - UnsafeAddr() uintptr +func (v Value) panicIfNot(want Kind) valueInterface { + vi := v.Internal + if vi == nil { + panic(&ValueError{methodName(), 0}) + } + if k := vi.Kind(); k != want { + panic(&ValueError{methodName(), k}) + } + return vi +} - // Method returns a FuncValue corresponding to the value's i'th method. - // The arguments to a Call on the returned FuncValue - // should not include a receiver; the FuncValue will use - // the value as the receiver. - Method(i int) *FuncValue +func (v Value) panicIfNots(wants []Kind) valueInterface { + vi := v.Internal + if vi == nil { + panic(&ValueError{methodName(), 0}) + } + k := vi.Kind() + for _, want := range wants { + if k == want { + return vi + } + } + panic(&ValueError{methodName(), k}) +} - getAddr() addr +// Addr returns a pointer value representing the address of v. +// It panics if CanAddr() returns false. +// Addr is typically used to obtain a pointer to a struct field +// or slice element in order to call a method that requires a +// pointer receiver. +func (v Value) Addr() Value { + return v.internal().Addr() } -// flags for value -const ( - canSet uint32 = 1 << iota // can set value (write to *v.addr) - canAddr // can take address of value - canStore // can store through value (write to **v.addr) -) +// Bool returns v's underlying value. +// It panics if v's kind is not Bool. +func (v Value) Bool() bool { + u := v.panicIfNot(Bool).(*boolValue) + return *(*bool)(u.addr) +} -// value is the common implementation of most values. -// It is embedded in other, public struct types, but always -// with a unique tag like "uint" or "float" so that the client cannot -// convert from, say, *UintValue to *FloatValue. -type value struct { - typ Type - addr addr - flag uint32 +// CanAddr returns true if the value's address can be obtained with Addr. +// Such values are called addressable. A value is addressable if it is +// an element of a slice, an element of an addressable array, +// a field of an addressable struct, the result of dereferencing a pointer, +// or the result of a call to NewValue, MakeChan, MakeMap, or Zero. +// If CanAddr returns false, calling Addr will panic. +func (v Value) CanAddr() bool { + return v.internal().CanAddr() } -func (v *value) Type() Type { return v.typ } +// CanSet returns true if the value of v can be changed. +// Values obtained by the use of unexported struct fields +// can be read but not set. +// If CanSet returns false, calling Set or any type-specific +// setter (e.g., SetBool, SetInt64) will panic. +func (v Value) CanSet() bool { + return v.internal().CanSet() +} -func (v *value) Addr() *PtrValue { - if !v.CanAddr() { - panic("reflect: cannot take address of value") +// Call calls the function v with the input parameters in. +// It panics if v's Kind is not Func. +// It returns the output parameters as Values. +func (v Value) Call(in []Value) []Value { + fv := v.panicIfNot(Func).(*funcValue) + t := fv.Type() + nin := len(in) + if fv.first != nil && !fv.isInterface { + nin++ } - a := v.addr - flag := canSet - if v.CanSet() { - flag |= canStore + if nin != t.NumIn() { + panic("funcValue: wrong argument count") } - // We could safely set canAddr here too - - // the caller would get the address of a - - // but it doesn't match the Go model. - // The language doesn't let you say &&v. - return newValue(PtrTo(v.typ), addr(&a), flag).(*PtrValue) -} + nout := t.NumOut() -func (v *value) UnsafeAddr() uintptr { return uintptr(v.addr) } + // Compute arg size & allocate. + // This computation is 6g/8g-dependent + // and probably wrong for gccgo, but so + // is most of this function. + size := uintptr(0) + if fv.isInterface { + // extra word for interface value + size += ptrSize + } + for i := 0; i < nin; i++ { + tv := t.In(i) + a := uintptr(tv.Align()) + size = (size + a - 1) &^ (a - 1) + size += tv.Size() + } + size = (size + ptrSize - 1) &^ (ptrSize - 1) + for i := 0; i < nout; i++ { + tv := t.Out(i) + a := uintptr(tv.Align()) + size = (size + a - 1) &^ (a - 1) + size += tv.Size() + } -func (v *value) getAddr() addr { return v.addr } + // size must be > 0 in order for &args[0] to be valid. + // the argument copying is going to round it up to + // a multiple of ptrSize anyway, so make it ptrSize to begin with. + if size < ptrSize { + size = ptrSize + } -func (v *value) Interface() interface{} { - if typ, ok := v.typ.(*InterfaceType); ok { - // There are two different representations of interface values, - // one if the interface type has methods and one if it doesn't. - // These two representations require different expressions - // to extract correctly. - if typ.NumMethod() == 0 { - // Extract as interface value without methods. - return *(*interface{})(v.addr) + // round to pointer size + size = (size + ptrSize - 1) &^ (ptrSize - 1) + + // Copy into args. + // + // TODO(rsc): revisit when reference counting happens. + // The values are holding up the in references for us, + // but something must be done for the out references. + // For now make everything look like a pointer by pretending + // to allocate a []*int. + args := make([]*int, size/ptrSize) + ptr := uintptr(unsafe.Pointer(&args[0])) + off := uintptr(0) + delta := 0 + if v := fv.first; v != nil { + // Hard-wired first argument. + if fv.isInterface { + // v is a single uninterpreted word + memmove(addr(ptr), v.getAddr(), ptrSize) + off = ptrSize + } else { + // v is a real value + tv := v.Type() + typesMustMatch(t.In(0), tv) + n := tv.Size() + memmove(addr(ptr), v.getAddr(), n) + off = n + delta = 1 } - // Extract from v.addr as interface value with methods. - return *(*interface { - m() - })(v.addr) } - return unsafe.Unreflect(v.typ, unsafe.Pointer(v.addr)) + for i, v := range in { + tv := v.Type() + typesMustMatch(t.In(i+delta), tv) + a := uintptr(tv.Align()) + off = (off + a - 1) &^ (a - 1) + n := tv.Size() + memmove(addr(ptr+off), v.internal().getAddr(), n) + off += n + } + off = (off + ptrSize - 1) &^ (ptrSize - 1) + + // Call + call(*(**byte)(fv.addr), (*byte)(addr(ptr)), uint32(size)) + + // Copy return values out of args. + // + // TODO(rsc): revisit like above. + ret := make([]Value, nout) + for i := 0; i < nout; i++ { + tv := t.Out(i) + a := uintptr(tv.Align()) + off = (off + a - 1) &^ (a - 1) + v := Zero(tv) + n := tv.Size() + memmove(v.internal().getAddr(), addr(ptr+off), n) + ret[i] = v + off += n + } + + return ret } -func (v *value) CanSet() bool { return v.flag&canSet != 0 } +var capKinds = []Kind{Array, Chan, Slice} -func (v *value) CanAddr() bool { return v.flag&canAddr != 0 } +// Cap returns v's capacity. +// It panics if v's Kind is not Array, Chan, or Slice. +func (v Value) Cap() int { + switch vv := v.panicIfNots(capKinds).(type) { + case *arrayValue: + return vv.typ.Len() + case *chanValue: + ch := *(**byte)(vv.addr) + return int(chancap(ch)) + case *sliceValue: + return int(vv.slice().Cap) + } + panic("not reached") +} +// Close closes the channel v. +// It panics if v's Kind is not Chan. +func (v Value) Close() { + vv := v.panicIfNot(Chan).(*chanValue) -/* - * basic types - */ + ch := *(**byte)(vv.addr) + chanclose(ch) +} -// BoolValue represents a bool value. -type BoolValue struct { - value "bool" +var complexKinds = []Kind{Complex64, Complex128} + +// Complex returns v's underlying value, as a complex128. +// It panics if v's Kind is not Complex64 or Complex128 +func (v Value) Complex() complex128 { + vv := v.panicIfNots(complexKinds).(*complexValue) + + switch vv.typ.Kind() { + case Complex64: + return complex128(*(*complex64)(vv.addr)) + case Complex128: + return *(*complex128)(vv.addr) + } + panic("reflect: invalid complex kind") } -// Get returns the underlying bool value. -func (v *BoolValue) Get() bool { return *(*bool)(v.addr) } +var interfaceOrPtr = []Kind{Interface, Ptr} -// Set sets v to the value x. -func (v *BoolValue) Set(x bool) { - if !v.CanSet() { - panic(cannotSet) +// Elem returns the value that the interface v contains +// or that the pointer v points to. +// It panics if v's Kind is not Interface or Ptr. +// It returns the zero Value if v is nil. +func (v Value) Elem() Value { + switch vv := v.panicIfNots(interfaceOrPtr).(type) { + case *interfaceValue: + return NewValue(vv.Interface()) + case *ptrValue: + if v.IsNil() { + return Value{} + } + flag := canAddr + if vv.flag&canStore != 0 { + flag |= canSet | canStore + } + return newValue(vv.typ.Elem(), *(*addr)(vv.addr), flag) } - *(*bool)(v.addr) = x + panic("not reached") } -// Set sets v to the value x. -func (v *BoolValue) SetValue(x Value) { v.Set(x.(*BoolValue).Get()) } +// Field returns the i'th field of the struct v. +// It panics if v's Kind is not Struct. +func (v Value) Field(i int) Value { + vv := v.panicIfNot(Struct).(*structValue) -// FloatValue represents a float value. -type FloatValue struct { - value "float" + t := vv.typ + if i < 0 || i >= t.NumField() { + panic("reflect: Field index out of range") + } + f := t.Field(i) + flag := vv.flag + if f.PkgPath != "" { + // unexported field + flag &^= canSet | canStore + } + return newValue(f.Type, addr(uintptr(vv.addr)+f.Offset), flag) +} + +// FieldByIndex returns the nested field corresponding to index. +// It panics if v's Kind is not struct. +func (v Value) FieldByIndex(index []int) Value { + v.panicIfNot(Struct) + for i, x := range index { + if i > 0 { + if v.Kind() == Ptr { + v = v.Elem() + } + if v.Kind() != Struct { + return Value{} + } + } + v = v.Field(x) + } + return v } -// Get returns the underlying int value. -func (v *FloatValue) Get() float64 { - switch v.typ.Kind() { +// FieldByName returns the struct field with the given name. +// It returns the zero Value if no field was found. +// It panics if v's Kind is not struct. +func (v Value) FieldByName(name string) Value { + if f, ok := v.Type().FieldByName(name); ok { + return v.FieldByIndex(f.Index) + } + return Value{} +} + +// FieldByNameFunc returns the struct field with a name +// that satisfies the match function. +// It panics if v's Kind is not struct. +// It returns the zero Value if no field was found. +func (v Value) FieldByNameFunc(match func(string) bool) Value { + if f, ok := v.Type().FieldByNameFunc(match); ok { + return v.FieldByIndex(f.Index) + } + return Value{} +} + +var floatKinds = []Kind{Float32, Float64} + +// Float returns v's underlying value, as an float64. +// It panics if v's Kind is not Float32 or Float64 +func (v Value) Float() float64 { + vv := v.panicIfNots(floatKinds).(*floatValue) + + switch vv.typ.Kind() { case Float32: - return float64(*(*float32)(v.addr)) + return float64(*(*float32)(vv.addr)) case Float64: - return *(*float64)(v.addr) + return *(*float64)(vv.addr) } panic("reflect: invalid float kind") + } -// Set sets v to the value x. -func (v *FloatValue) Set(x float64) { - if !v.CanSet() { - panic(cannotSet) +var arrayOrSlice = []Kind{Array, Slice} + +// Index returns v's i'th element. +// It panics if v's Kind is not Array or Slice. +func (v Value) Index(i int) Value { + switch vv := v.panicIfNots(arrayOrSlice).(type) { + case *arrayValue: + typ := vv.typ.Elem() + n := v.Len() + if i < 0 || i >= n { + panic("array index out of bounds") + } + p := addr(uintptr(vv.addr()) + uintptr(i)*typ.Size()) + return newValue(typ, p, vv.flag) + case *sliceValue: + typ := vv.typ.Elem() + n := v.Len() + if i < 0 || i >= n { + panic("reflect: slice index out of range") + } + p := addr(uintptr(vv.addr()) + uintptr(i)*typ.Size()) + flag := canAddr + if vv.flag&canStore != 0 { + flag |= canSet | canStore + } + return newValue(typ, p, flag) } - switch v.typ.Kind() { - default: - panic("reflect: invalid float kind") - case Float32: - *(*float32)(v.addr) = float32(x) - case Float64: - *(*float64)(v.addr) = x + panic("not reached") +} + +var intKinds = []Kind{Int, Int8, Int16, Int32, Int64} + +// Int returns v's underlying value, as an int64. +// It panics if v's Kind is not a sized or unsized Int kind. +func (v Value) Int() int64 { + vv := v.panicIfNots(intKinds).(*intValue) + + switch vv.typ.Kind() { + case Int: + return int64(*(*int)(vv.addr)) + case Int8: + return int64(*(*int8)(vv.addr)) + case Int16: + return int64(*(*int16)(vv.addr)) + case Int32: + return int64(*(*int32)(vv.addr)) + case Int64: + return *(*int64)(vv.addr) + } + panic("reflect: invalid int kind") +} + +// Interface returns v's value as an interface{}. +// If v is a method obtained by invoking Value.Method +// (as opposed to Type.Method), Interface cannot return an +// interface value, so it panics. +func (v Value) Interface() interface{} { + return v.internal().Interface() +} + +// InterfaceData returns the interface v's value as a uintptr pair. +// It panics if v's Kind is not Interface. +func (v Value) InterfaceData() [2]uintptr { + vv := v.panicIfNot(Interface).(*interfaceValue) + + return *(*[2]uintptr)(vv.addr) +} + +var nilKinds = []Kind{Chan, Func, Interface, Map, Ptr, Slice} + +// IsNil returns true if v is a nil value. +// It panics if v's Kind is not Chan, Func, Interface, Map, Ptr, or Slice. +func (v Value) IsNil() bool { + switch vv := v.panicIfNots(nilKinds).(type) { + case *chanValue: + return *(*uintptr)(vv.addr) == 0 + case *funcValue: + return *(*uintptr)(vv.addr) == 0 + case *interfaceValue: + return vv.Interface() == nil + case *mapValue: + return *(*uintptr)(vv.addr) == 0 + case *ptrValue: + return *(*uintptr)(vv.addr) == 0 + case *sliceValue: + return vv.slice().Data == 0 + } + panic("not reached") +} + +// IsValid returns true if v represents a value. +// It returns false if v is the zero Value. +// If IsValid returns false, all other methods except String panic. +// Most functions and methods never return an invalid value. +// If one does, its documentation states the conditions explicitly. +func (v Value) IsValid() bool { + return v.Internal != nil +} + +// Kind returns v's Kind. +// If v is the zero Value (IsValid returns false), Kind returns Invalid. +func (v Value) Kind() Kind { + if v.Internal == nil { + return Invalid + } + return v.internal().Kind() +} + +var lenKinds = []Kind{Array, Chan, Map, Slice} + +// Len returns v's length. +// It panics if v's Kind is not Array, Chan, Map, or Slice. +func (v Value) Len() int { + switch vv := v.panicIfNots(lenKinds).(type) { + case *arrayValue: + return vv.typ.Len() + case *chanValue: + ch := *(**byte)(vv.addr) + return int(chanlen(ch)) + case *mapValue: + m := *(**byte)(vv.addr) + if m == nil { + return 0 + } + return int(maplen(m)) + case *sliceValue: + return int(vv.slice().Len) + } + panic("not reached") +} + +// MapIndex returns the value associated with key in the map v. +// It panics if v's Kind is not Map. +// It returns the zero Value if key is not found in the map. +func (v Value) MapIndex(key Value) Value { + vv := v.panicIfNot(Map).(*mapValue) + t := vv.Type() + typesMustMatch(t.Key(), key.Type()) + m := *(**byte)(vv.addr) + if m == nil { + return Value{} + } + newval := Zero(t.Elem()) + if !mapaccess(m, (*byte)(key.internal().getAddr()), (*byte)(newval.internal().getAddr())) { + return Value{} + } + return newval +} + +// MapKeys returns a slice containing all the keys present in the map, +// in unspecified order. +// It panics if v's Kind is not Map. +func (v Value) MapKeys() []Value { + vv := v.panicIfNot(Map).(*mapValue) + tk := vv.Type().Key() + m := *(**byte)(vv.addr) + mlen := int32(0) + if m != nil { + mlen = maplen(m) + } + it := mapiterinit(m) + a := make([]Value, mlen) + var i int + for i = 0; i < len(a); i++ { + k := Zero(tk) + if !mapiterkey(it, (*byte)(k.internal().getAddr())) { + break + } + a[i] = k + mapiternext(it) + } + return a[0:i] +} + +// Method returns a function value corresponding to v's i'th method. +// The arguments to a Call on the returned function should not include +// a receiver; the returned function will always use v as the receiver. +func (v Value) Method(i int) Value { + return v.internal().Method(i) +} + +// NumField returns the number of fields in the struct v. +// It panics if v's Kind is not Struct. +func (v Value) NumField() int { + return v.panicIfNot(Struct).(*structValue).typ.NumField() +} + +// OverflowComplex returns true if the complex128 x cannot be represented by v's type. +// It panics if v's Kind is not Complex64 or Complex128. +func (v Value) OverflowComplex(x complex128) bool { + vv := v.panicIfNots(complexKinds).(*complexValue) + + if vv.typ.Size() == 16 { + return false + } + r := real(x) + i := imag(x) + if r < 0 { + r = -r + } + if i < 0 { + i = -i } + return math.MaxFloat32 <= r && r <= math.MaxFloat64 || + math.MaxFloat32 <= i && i <= math.MaxFloat64 } -// Overflow returns true if x cannot be represented by the type of v. -func (v *FloatValue) Overflow(x float64) bool { - if v.typ.Size() == 8 { +// OverflowFloat returns true if the float64 x cannot be represented by v's type. +// It panics if v's Kind is not Float32 or Float64. +func (v Value) OverflowFloat(x float64) bool { + vv := v.panicIfNots(floatKinds).(*floatValue) + + if vv.typ.Size() == 8 { return false } if x < 0 { @@ -214,200 +624,612 @@ func (v *FloatValue) Overflow(x float64) bool { return math.MaxFloat32 < x && x <= math.MaxFloat64 } -// Set sets v to the value x. -func (v *FloatValue) SetValue(x Value) { v.Set(x.(*FloatValue).Get()) } +// OverflowInt returns true if the int64 x cannot be represented by v's type. +// It panics if v's Kind is not a sized or unsized Int kind. +func (v Value) OverflowInt(x int64) bool { + vv := v.panicIfNots(intKinds).(*intValue) -// ComplexValue represents a complex value. -type ComplexValue struct { - value "complex" + bitSize := uint(vv.typ.Bits()) + trunc := (x << (64 - bitSize)) >> (64 - bitSize) + return x != trunc } -// Get returns the underlying complex value. -func (v *ComplexValue) Get() complex128 { - switch v.typ.Kind() { - case Complex64: - return complex128(*(*complex64)(v.addr)) - case Complex128: - return *(*complex128)(v.addr) +// OverflowUint returns true if the uint64 x cannot be represented by v's type. +// It panics if v's Kind is not a sized or unsized Uint kind. +func (v Value) OverflowUint(x uint64) bool { + vv := v.panicIfNots(uintKinds).(*uintValue) + + bitSize := uint(vv.typ.Bits()) + trunc := (x << (64 - bitSize)) >> (64 - bitSize) + return x != trunc +} + +var pointerKinds = []Kind{Chan, Func, Map, Ptr, Slice, UnsafePointer} + +// Pointer returns v's value as a uintptr. +// It returns uintptr instead of unsafe.Pointer so that +// code using reflect cannot obtain unsafe.Pointers +// without importing the unsafe package explicitly. +// It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer. +func (v Value) Pointer() uintptr { + switch vv := v.panicIfNots(pointerKinds).(type) { + case *chanValue: + return *(*uintptr)(vv.addr) + case *funcValue: + return *(*uintptr)(vv.addr) + case *mapValue: + return *(*uintptr)(vv.addr) + case *ptrValue: + return *(*uintptr)(vv.addr) + case *sliceValue: + typ := vv.typ + return uintptr(vv.addr()) + uintptr(v.Cap())*typ.Elem().Size() + case *unsafePointerValue: + return uintptr(*(*unsafe.Pointer)(vv.addr)) + } + panic("not reached") +} + +// Recv receives and returns a value from the channel v. +// It panics if v's Kind is not Chan. +// The receive blocks until a value is ready. +// The boolean value ok is true if the value x corresponds to a send +// on the channel, false if it is a zero value received because the channel is closed. +func (v Value) Recv() (x Value, ok bool) { + return v.panicIfNot(Chan).(*chanValue).recv(nil) +} + +// internal recv; non-blocking if selected != nil +func (v *chanValue) recv(selected *bool) (Value, bool) { + t := v.Type() + if t.ChanDir()&RecvDir == 0 { + panic("recv on send-only channel") + } + ch := *(**byte)(v.addr) + x := Zero(t.Elem()) + var ok bool + chanrecv(ch, (*byte)(x.internal().getAddr()), selected, &ok) + return x, ok +} + +// Send sends x on the channel v. +// It panics if v's kind is not Chan or if x's type is not the same type as v's element type. +func (v Value) Send(x Value) { + v.panicIfNot(Chan).(*chanValue).send(x, nil) +} + +// internal send; non-blocking if selected != nil +func (v *chanValue) send(x Value, selected *bool) { + t := v.Type() + if t.ChanDir()&SendDir == 0 { + panic("send on recv-only channel") + } + typesMustMatch(t.Elem(), x.Type()) + ch := *(**byte)(v.addr) + chansend(ch, (*byte)(x.internal().getAddr()), selected) +} + +// Set assigns x to the value v; x must have the same type as v. +// It panics if CanSet() returns false or if x is the zero Value. +func (v Value) Set(x Value) { + x.internal() + switch vv := v.internal().(type) { + case *arrayValue: + xx := x.panicIfNot(Array).(*arrayValue) + if !vv.CanSet() { + panic(cannotSet) + } + typesMustMatch(vv.typ, xx.typ) + Copy(v, x) + + case *boolValue: + v.SetBool(x.Bool()) + + case *chanValue: + x := x.panicIfNot(Chan).(*chanValue) + if !vv.CanSet() { + panic(cannotSet) + } + typesMustMatch(vv.typ, x.typ) + *(*uintptr)(vv.addr) = *(*uintptr)(x.addr) + + case *floatValue: + v.SetFloat(x.Float()) + + case *funcValue: + x := x.panicIfNot(Func).(*funcValue) + if !vv.CanSet() { + panic(cannotSet) + } + typesMustMatch(vv.typ, x.typ) + *(*uintptr)(vv.addr) = *(*uintptr)(x.addr) + + case *intValue: + v.SetInt(x.Int()) + + case *interfaceValue: + i := x.Interface() + if !vv.CanSet() { + panic(cannotSet) + } + // Two different representations; see comment in Get. + // Empty interface is easy. + t := (*interfaceType)(unsafe.Pointer(vv.typ.(*commonType))) + if t.NumMethod() == 0 { + *(*interface{})(vv.addr) = i + return + } + + // Non-empty interface requires a runtime check. + setiface(t, &i, vv.addr) + + case *mapValue: + x := x.panicIfNot(Map).(*mapValue) + if !vv.CanSet() { + panic(cannotSet) + } + if x == nil { + *(**uintptr)(vv.addr) = nil + return + } + typesMustMatch(vv.typ, x.typ) + *(*uintptr)(vv.addr) = *(*uintptr)(x.addr) + + case *ptrValue: + x := x.panicIfNot(Ptr).(*ptrValue) + if x == nil { + *(**uintptr)(vv.addr) = nil + return + } + if !vv.CanSet() { + panic(cannotSet) + } + if x.flag&canStore == 0 { + panic("cannot copy pointer obtained from unexported struct field") + } + typesMustMatch(vv.typ, x.typ) + // TODO: This will have to move into the runtime + // once the new gc goes in + *(*uintptr)(vv.addr) = *(*uintptr)(x.addr) + + case *sliceValue: + x := x.panicIfNot(Slice).(*sliceValue) + if !vv.CanSet() { + panic(cannotSet) + } + typesMustMatch(vv.typ, x.typ) + *vv.slice() = *x.slice() + + case *stringValue: + // Do the kind check explicitly, because x.String() does not. + x.panicIfNot(String) + v.SetString(x.String()) + + case *structValue: + x := x.panicIfNot(Struct).(*structValue) + // TODO: This will have to move into the runtime + // once the gc goes in. + if !vv.CanSet() { + panic(cannotSet) + } + typesMustMatch(vv.typ, x.typ) + memmove(vv.addr, x.addr, vv.typ.Size()) + + case *uintValue: + v.SetUint(x.Uint()) + + case *unsafePointerValue: + // Do the kind check explicitly, because x.UnsafePointer + // applies to more than just the UnsafePointer Kind. + x.panicIfNot(UnsafePointer) + v.SetPointer(unsafe.Pointer(x.Pointer())) } - panic("reflect: invalid complex kind") } -// Set sets v to the value x. -func (v *ComplexValue) Set(x complex128) { - if !v.CanSet() { +// SetBool sets v's underlying value. +// It panics if v's Kind is not Bool or if CanSet() is false. +func (v Value) SetBool(x bool) { + vv := v.panicIfNot(Bool).(*boolValue) + + if !vv.CanSet() { + panic(cannotSet) + } + *(*bool)(vv.addr) = x +} + +// SetComplex sets v's underlying value to x. +// It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false. +func (v Value) SetComplex(x complex128) { + vv := v.panicIfNots(complexKinds).(*complexValue) + + if !vv.CanSet() { panic(cannotSet) } - switch v.typ.Kind() { + switch vv.typ.Kind() { default: panic("reflect: invalid complex kind") case Complex64: - *(*complex64)(v.addr) = complex64(x) + *(*complex64)(vv.addr) = complex64(x) case Complex128: - *(*complex128)(v.addr) = x + *(*complex128)(vv.addr) = x } } -// Set sets v to the value x. -func (v *ComplexValue) SetValue(x Value) { v.Set(x.(*ComplexValue).Get()) } +// SetFloat sets v's underlying value to x. +// It panics if v's Kind is not Float32 or Float64, or if CanSet() is false. +func (v Value) SetFloat(x float64) { + vv := v.panicIfNots(floatKinds).(*floatValue) -// IntValue represents an int value. -type IntValue struct { - value "int" -} - -// Get returns the underlying int value. -func (v *IntValue) Get() int64 { - switch v.typ.Kind() { - case Int: - return int64(*(*int)(v.addr)) - case Int8: - return int64(*(*int8)(v.addr)) - case Int16: - return int64(*(*int16)(v.addr)) - case Int32: - return int64(*(*int32)(v.addr)) - case Int64: - return *(*int64)(v.addr) + if !vv.CanSet() { + panic(cannotSet) + } + switch vv.typ.Kind() { + default: + panic("reflect: invalid float kind") + case Float32: + *(*float32)(vv.addr) = float32(x) + case Float64: + *(*float64)(vv.addr) = x } - panic("reflect: invalid int kind") } -// Set sets v to the value x. -func (v *IntValue) Set(x int64) { - if !v.CanSet() { +// SetInt sets v's underlying value to x. +// It panics if v's Kind is not a sized or unsized Int kind, or if CanSet() is false. +func (v Value) SetInt(x int64) { + vv := v.panicIfNots(intKinds).(*intValue) + + if !vv.CanSet() { panic(cannotSet) } - switch v.typ.Kind() { + switch vv.typ.Kind() { default: panic("reflect: invalid int kind") case Int: - *(*int)(v.addr) = int(x) + *(*int)(vv.addr) = int(x) case Int8: - *(*int8)(v.addr) = int8(x) + *(*int8)(vv.addr) = int8(x) case Int16: - *(*int16)(v.addr) = int16(x) + *(*int16)(vv.addr) = int16(x) case Int32: - *(*int32)(v.addr) = int32(x) + *(*int32)(vv.addr) = int32(x) case Int64: - *(*int64)(v.addr) = x + *(*int64)(vv.addr) = x } } -// Set sets v to the value x. -func (v *IntValue) SetValue(x Value) { v.Set(x.(*IntValue).Get()) } - -// Overflow returns true if x cannot be represented by the type of v. -func (v *IntValue) Overflow(x int64) bool { - bitSize := uint(v.typ.Bits()) - trunc := (x << (64 - bitSize)) >> (64 - bitSize) - return x != trunc -} +// SetLen sets v's length to n. +// It panics if v's Kind is not Slice. +func (v Value) SetLen(n int) { + vv := v.panicIfNot(Slice).(*sliceValue) -// StringHeader is the runtime representation of a string. -type StringHeader struct { - Data uintptr - Len int + s := vv.slice() + if n < 0 || n > int(s.Cap) { + panic("reflect: slice length out of range in SetLen") + } + s.Len = n } -// StringValue represents a string value. -type StringValue struct { - value "string" +// SetMapIndex sets the value associated with key in the map v to val. +// It panics if v's Kind is not Map. +// If val is the zero Value, SetMapIndex deletes the key from the map. +func (v Value) SetMapIndex(key, val Value) { + vv := v.panicIfNot(Map).(*mapValue) + t := vv.Type() + typesMustMatch(t.Key(), key.Type()) + var vaddr *byte + if val.IsValid() { + typesMustMatch(t.Elem(), val.Type()) + vaddr = (*byte)(val.internal().getAddr()) + } + m := *(**byte)(vv.addr) + mapassign(m, (*byte)(key.internal().getAddr()), vaddr) } -// Get returns the underlying string value. -func (v *StringValue) Get() string { return *(*string)(v.addr) } +// SetUint sets v's underlying value to x. +// It panics if v's Kind is not a sized or unsized Uint kind, or if CanSet() is false. +func (v Value) SetUint(x uint64) { + vv := v.panicIfNots(uintKinds).(*uintValue) -// Set sets v to the value x. -func (v *StringValue) Set(x string) { - if !v.CanSet() { + if !vv.CanSet() { panic(cannotSet) } - *(*string)(v.addr) = x -} - -// Set sets v to the value x. -func (v *StringValue) SetValue(x Value) { v.Set(x.(*StringValue).Get()) } - -// UintValue represents a uint value. -type UintValue struct { - value "uint" -} - -// Get returns the underlying uuint value. -func (v *UintValue) Get() uint64 { - switch v.typ.Kind() { + switch vv.typ.Kind() { + default: + panic("reflect: invalid uint kind") case Uint: - return uint64(*(*uint)(v.addr)) + *(*uint)(vv.addr) = uint(x) case Uint8: - return uint64(*(*uint8)(v.addr)) + *(*uint8)(vv.addr) = uint8(x) case Uint16: - return uint64(*(*uint16)(v.addr)) + *(*uint16)(vv.addr) = uint16(x) case Uint32: - return uint64(*(*uint32)(v.addr)) + *(*uint32)(vv.addr) = uint32(x) case Uint64: - return *(*uint64)(v.addr) + *(*uint64)(vv.addr) = x case Uintptr: - return uint64(*(*uintptr)(v.addr)) + *(*uintptr)(vv.addr) = uintptr(x) } - panic("reflect: invalid uint kind") } -// Set sets v to the value x. -func (v *UintValue) Set(x uint64) { - if !v.CanSet() { +// SetPointer sets the unsafe.Pointer value v to x. +// It panics if v's Kind is not UnsafePointer. +func (v Value) SetPointer(x unsafe.Pointer) { + vv := v.panicIfNot(UnsafePointer).(*unsafePointerValue) + + if !vv.CanSet() { panic(cannotSet) } - switch v.typ.Kind() { - default: - panic("reflect: invalid uint kind") + *(*unsafe.Pointer)(vv.addr) = x +} + +// SetString sets v's underlying value to x. +// It panics if v's Kind is not String or if CanSet() is false. +func (v Value) SetString(x string) { + vv := v.panicIfNot(String).(*stringValue) + + if !vv.CanSet() { + panic(cannotSet) + } + *(*string)(vv.addr) = x +} + +// BUG(rsc): Value.Slice should allow slicing arrays. + +// Slice returns a slice of v. +// It panics if v's Kind is not Slice. +func (v Value) Slice(beg, end int) Value { + vv := v.panicIfNot(Slice).(*sliceValue) + + cap := v.Cap() + if beg < 0 || end < beg || end > cap { + panic("slice index out of bounds") + } + typ := vv.typ + s := new(SliceHeader) + s.Data = uintptr(vv.addr()) + uintptr(beg)*typ.Elem().Size() + s.Len = end - beg + s.Cap = cap - beg + + // Like the result of Addr, we treat Slice as an + // unaddressable temporary, so don't set canAddr. + flag := canSet + if vv.flag&canStore != 0 { + flag |= canStore + } + return newValue(typ, addr(s), flag) +} + +// String returns the string v's underlying value, as a string. +// String is a special case because of Go's String method convention. +// Unlike the other getters, it does not panic if v's Kind is not String. +// Instead, it returns a string of the form "<T value>" where T is v's type. +func (v Value) String() string { + vi := v.Internal + if vi == nil { + return "<invalid Value>" + } + if vi.Kind() == String { + vv := vi.(*stringValue) + return *(*string)(vv.addr) + } + return "<" + vi.Type().String() + " Value>" +} + +// TryRecv attempts to receive a value from the channel v but will not block. +// It panics if v's Kind is not Chan. +// If the receive cannot finish without blocking, x is the zero Value. +// The boolean ok is true if the value x corresponds to a send +// on the channel, false if it is a zero value received because the channel is closed. +func (v Value) TryRecv() (x Value, ok bool) { + vv := v.panicIfNot(Chan).(*chanValue) + + var selected bool + x, ok = vv.recv(&selected) + if !selected { + return Value{}, false + } + return x, ok +} + +// TrySend attempts to send x on the channel v but will not block. +// It panics if v's Kind is not Chan. +// It returns true if the value was sent, false otherwise. +func (v Value) TrySend(x Value) bool { + vv := v.panicIfNot(Chan).(*chanValue) + + var selected bool + vv.send(x, &selected) + return selected +} + +// Type returns v's type. +func (v Value) Type() Type { + return v.internal().Type() +} + +var uintKinds = []Kind{Uint, Uint8, Uint16, Uint32, Uint64, Uintptr} + +// Uint returns v's underlying value, as a uint64. +// It panics if v's Kind is not a sized or unsized Uint kind. +func (v Value) Uint() uint64 { + vv := v.panicIfNots(uintKinds).(*uintValue) + + switch vv.typ.Kind() { case Uint: - *(*uint)(v.addr) = uint(x) + return uint64(*(*uint)(vv.addr)) case Uint8: - *(*uint8)(v.addr) = uint8(x) + return uint64(*(*uint8)(vv.addr)) case Uint16: - *(*uint16)(v.addr) = uint16(x) + return uint64(*(*uint16)(vv.addr)) case Uint32: - *(*uint32)(v.addr) = uint32(x) + return uint64(*(*uint32)(vv.addr)) case Uint64: - *(*uint64)(v.addr) = x + return *(*uint64)(vv.addr) case Uintptr: - *(*uintptr)(v.addr) = uintptr(x) + return uint64(*(*uintptr)(vv.addr)) } + panic("reflect: invalid uint kind") } -// Overflow returns true if x cannot be represented by the type of v. -func (v *UintValue) Overflow(x uint64) bool { - bitSize := uint(v.typ.Bits()) - trunc := (x << (64 - bitSize)) >> (64 - bitSize) - return x != trunc +// UnsafeAddr returns a pointer to v's data. +// It is for advanced clients that also import the "unsafe" package. +func (v Value) UnsafeAddr() uintptr { + return v.internal().UnsafeAddr() +} + +// valueInterface is the common interface to reflection values. +// The implementations of Value (e.g., arrayValue, structValue) +// have additional type-specific methods. +type valueInterface interface { + // Type returns the value's type. + Type() Type + + // Interface returns the value as an interface{}. + Interface() interface{} + + // CanSet returns true if the value can be changed. + // Values obtained by the use of non-exported struct fields + // can be used in Get but not Set. + // If CanSet returns false, calling the type-specific Set will panic. + CanSet() bool + + // CanAddr returns true if the value's address can be obtained with Addr. + // Such values are called addressable. A value is addressable if it is + // an element of a slice, an element of an addressable array, + // a field of an addressable struct, the result of dereferencing a pointer, + // or the result of a call to NewValue, MakeChan, MakeMap, or Zero. + // If CanAddr returns false, calling Addr will panic. + CanAddr() bool + + // Addr returns the address of the value. + // If the value is not addressable, Addr panics. + // Addr is typically used to obtain a pointer to a struct field or slice element + // in order to call a method that requires a pointer receiver. + Addr() Value + + // UnsafeAddr returns a pointer to the underlying data. + // It is for advanced clients that also import the "unsafe" package. + UnsafeAddr() uintptr + + // Method returns a funcValue corresponding to the value's i'th method. + // The arguments to a Call on the returned funcValue + // should not include a receiver; the funcValue will use + // the value as the receiver. + Method(i int) Value + + Kind() Kind + + getAddr() addr } -// Set sets v to the value x. -func (v *UintValue) SetValue(x Value) { v.Set(x.(*UintValue).Get()) } +// flags for value +const ( + canSet uint32 = 1 << iota // can set value (write to *v.addr) + canAddr // can take address of value + canStore // can store through value (write to **v.addr) +) -// UnsafePointerValue represents an unsafe.Pointer value. -type UnsafePointerValue struct { - value "unsafe.Pointer" +// value is the common implementation of most values. +// It is embedded in other, public struct types, but always +// with a unique tag like "uint" or "float" so that the client cannot +// convert from, say, *uintValue to *floatValue. +type value struct { + typ Type + addr addr + flag uint32 } -// Get returns the underlying uintptr value. -// Get returns uintptr, not unsafe.Pointer, so that -// programs that do not import "unsafe" cannot -// obtain a value of unsafe.Pointer type from "reflect". -func (v *UnsafePointerValue) Get() uintptr { return uintptr(*(*unsafe.Pointer)(v.addr)) } +func (v *value) Type() Type { return v.typ } -// Set sets v to the value x. -func (v *UnsafePointerValue) Set(x unsafe.Pointer) { - if !v.CanSet() { - panic(cannotSet) +func (v *value) Kind() Kind { return v.typ.Kind() } + +func (v *value) Addr() Value { + if !v.CanAddr() { + panic("reflect: cannot take address of value") } - *(*unsafe.Pointer)(v.addr) = x + a := v.addr + flag := canSet + if v.CanSet() { + flag |= canStore + } + // We could safely set canAddr here too - + // the caller would get the address of a - + // but it doesn't match the Go model. + // The language doesn't let you say &&v. + return newValue(PtrTo(v.typ), addr(&a), flag) } -// Set sets v to the value x. -func (v *UnsafePointerValue) SetValue(x Value) { - v.Set(unsafe.Pointer(x.(*UnsafePointerValue).Get())) +func (v *value) UnsafeAddr() uintptr { return uintptr(v.addr) } + +func (v *value) getAddr() addr { return v.addr } + +func (v *value) Interface() interface{} { + typ := v.typ + if typ.Kind() == Interface { + // There are two different representations of interface values, + // one if the interface type has methods and one if it doesn't. + // These two representations require different expressions + // to extract correctly. + if typ.NumMethod() == 0 { + // Extract as interface value without methods. + return *(*interface{})(v.addr) + } + // Extract from v.addr as interface value with methods. + return *(*interface { + m() + })(v.addr) + } + return unsafe.Unreflect(v.typ, unsafe.Pointer(v.addr)) +} + +func (v *value) CanSet() bool { return v.flag&canSet != 0 } + +func (v *value) CanAddr() bool { return v.flag&canAddr != 0 } + + +/* + * basic types + */ + +// boolValue represents a bool value. +type boolValue struct { + value "bool" +} + +// floatValue represents a float value. +type floatValue struct { + value "float" +} + +// complexValue represents a complex value. +type complexValue struct { + value "complex" +} + +// intValue represents an int value. +type intValue struct { + value "int" +} + +// StringHeader is the runtime representation of a string. +type StringHeader struct { + Data uintptr + Len int +} + +// stringValue represents a string value. +type stringValue struct { + value "string" +} + +// uintValue represents a uint value. +type uintValue struct { + value "uint" +} + +// unsafePointerValue represents an unsafe.Pointer value. +type unsafePointerValue struct { + value "unsafe.Pointer" } func typesMustMatch(t1, t2 Type) { @@ -421,18 +1243,15 @@ func typesMustMatch(t1, t2 Type) { */ // ArrayOrSliceValue is the common interface -// implemented by both ArrayValue and SliceValue. -type ArrayOrSliceValue interface { - Value - Len() int - Cap() int - Elem(i int) Value +// implemented by both arrayValue and sliceValue. +type arrayOrSliceValue interface { + valueInterface addr() addr } // grow grows the slice s so that it can hold extra more values, allocating // more capacity if needed. It also returns the old and new slice lengths. -func grow(s *SliceValue, extra int) (*SliceValue, int, int) { +func grow(s Value, extra int) (Value, int, int) { i0 := s.Len() i1 := i0 + extra if i1 < i0 { @@ -453,24 +1272,25 @@ func grow(s *SliceValue, extra int) (*SliceValue, int, int) { } } } - t := MakeSlice(s.Type().(*SliceType), i1, m) + t := MakeSlice(s.Type(), i1, m) Copy(t, s) return t, i0, i1 } // Append appends the values x to a slice s and returns the resulting slice. // Each x must have the same type as s' element type. -func Append(s *SliceValue, x ...Value) *SliceValue { +func Append(s Value, x ...Value) Value { s, i0, i1 := grow(s, len(x)) + s.panicIfNot(Slice) for i, j := i0, 0; i < i1; i, j = i+1, j+1 { - s.Elem(i).SetValue(x[j]) + s.Index(i).Set(x[j]) } return s } // AppendSlice appends a slice t to a slice s and returns the resulting slice. // The slices s and t must have the same element type. -func AppendSlice(s, t *SliceValue) *SliceValue { +func AppendSlice(s, t Value) Value { s, i0, i1 := grow(s, t.Len()) Copy(s.Slice(i0, i1), t) return s @@ -479,58 +1299,31 @@ func AppendSlice(s, t *SliceValue) *SliceValue { // Copy copies the contents of src into dst until either // dst has been filled or src has been exhausted. // It returns the number of elements copied. -// The arrays dst and src must have the same element type. -func Copy(dst, src ArrayOrSliceValue) int { +// Dst and src each must be a slice or array, and they +// must have the same element type. +func Copy(dst, src Value) int { // TODO: This will have to move into the runtime // once the real gc goes in. - de := dst.Type().(ArrayOrSliceType).Elem() - se := src.Type().(ArrayOrSliceType).Elem() + de := dst.Type().Elem() + se := src.Type().Elem() typesMustMatch(de, se) n := dst.Len() if xn := src.Len(); n > xn { n = xn } - memmove(dst.addr(), src.addr(), uintptr(n)*de.Size()) + memmove(dst.panicIfNots(arrayOrSlice).(arrayOrSliceValue).addr(), + src.panicIfNots(arrayOrSlice).(arrayOrSliceValue).addr(), + uintptr(n)*de.Size()) return n } -// An ArrayValue represents an array. -type ArrayValue struct { +// An arrayValue represents an array. +type arrayValue struct { value "array" } -// Len returns the length of the array. -func (v *ArrayValue) Len() int { return v.typ.(*ArrayType).Len() } - -// Cap returns the capacity of the array (equal to Len()). -func (v *ArrayValue) Cap() int { return v.typ.(*ArrayType).Len() } - // addr returns the base address of the data in the array. -func (v *ArrayValue) addr() addr { return v.value.addr } - -// Set assigns x to v. -// The new value x must have the same type as v. -func (v *ArrayValue) Set(x *ArrayValue) { - if !v.CanSet() { - panic(cannotSet) - } - typesMustMatch(v.typ, x.typ) - Copy(v, x) -} - -// Set sets v to the value x. -func (v *ArrayValue) SetValue(x Value) { v.Set(x.(*ArrayValue)) } - -// Elem returns the i'th element of v. -func (v *ArrayValue) Elem(i int) Value { - typ := v.typ.(*ArrayType).Elem() - n := v.Len() - if i < 0 || i >= n { - panic("array index out of bounds") - } - p := addr(uintptr(v.addr()) + uintptr(i)*typ.Size()) - return newValue(typ, p, v.flag) -} +func (v *arrayValue) addr() addr { return v.value.addr } /* * slice @@ -543,221 +1336,61 @@ type SliceHeader struct { Cap int } -// A SliceValue represents a slice. -type SliceValue struct { +// A sliceValue represents a slice. +type sliceValue struct { value "slice" } -func (v *SliceValue) slice() *SliceHeader { return (*SliceHeader)(v.value.addr) } - -// IsNil returns whether v is a nil slice. -func (v *SliceValue) IsNil() bool { return v.slice().Data == 0 } - -// Len returns the length of the slice. -func (v *SliceValue) Len() int { return int(v.slice().Len) } - -// Cap returns the capacity of the slice. -func (v *SliceValue) Cap() int { return int(v.slice().Cap) } +func (v *sliceValue) slice() *SliceHeader { return (*SliceHeader)(v.value.addr) } // addr returns the base address of the data in the slice. -func (v *SliceValue) addr() addr { return addr(v.slice().Data) } - -// SetLen changes the length of v. -// The new length n must be between 0 and the capacity, inclusive. -func (v *SliceValue) SetLen(n int) { - s := v.slice() - if n < 0 || n > int(s.Cap) { - panic("reflect: slice length out of range in SetLen") - } - s.Len = n -} - -// Set assigns x to v. -// The new value x must have the same type as v. -func (v *SliceValue) Set(x *SliceValue) { - if !v.CanSet() { - panic(cannotSet) - } - typesMustMatch(v.typ, x.typ) - *v.slice() = *x.slice() -} - -// Set sets v to the value x. -func (v *SliceValue) SetValue(x Value) { v.Set(x.(*SliceValue)) } - -// Get returns the uintptr address of the v.Cap()'th element. This gives -// the same result for all slices of the same array. -// It is mainly useful for printing. -func (v *SliceValue) Get() uintptr { - typ := v.typ.(*SliceType) - return uintptr(v.addr()) + uintptr(v.Cap())*typ.Elem().Size() -} - -// Slice returns a sub-slice of the slice v. -func (v *SliceValue) Slice(beg, end int) *SliceValue { - cap := v.Cap() - if beg < 0 || end < beg || end > cap { - panic("slice index out of bounds") - } - typ := v.typ.(*SliceType) - s := new(SliceHeader) - s.Data = uintptr(v.addr()) + uintptr(beg)*typ.Elem().Size() - s.Len = end - beg - s.Cap = cap - beg - - // Like the result of Addr, we treat Slice as an - // unaddressable temporary, so don't set canAddr. - flag := canSet - if v.flag&canStore != 0 { - flag |= canStore - } - return newValue(typ, addr(s), flag).(*SliceValue) -} - -// Elem returns the i'th element of v. -func (v *SliceValue) Elem(i int) Value { - typ := v.typ.(*SliceType).Elem() - n := v.Len() - if i < 0 || i >= n { - panic("reflect: slice index out of range") - } - p := addr(uintptr(v.addr()) + uintptr(i)*typ.Size()) - flag := canAddr - if v.flag&canStore != 0 { - flag |= canSet | canStore - } - return newValue(typ, p, flag) -} +func (v *sliceValue) addr() addr { return addr(v.slice().Data) } // MakeSlice creates a new zero-initialized slice value // for the specified slice type, length, and capacity. -func MakeSlice(typ *SliceType, len, cap int) *SliceValue { +func MakeSlice(typ Type, len, cap int) Value { + if typ.Kind() != Slice { + panic("reflect: MakeSlice of non-slice type") + } s := &SliceHeader{ Data: uintptr(unsafe.NewArray(typ.Elem(), cap)), Len: len, Cap: cap, } - return newValue(typ, addr(s), canAddr|canSet|canStore).(*SliceValue) + return newValue(typ, addr(s), canAddr|canSet|canStore) } /* * chan */ -// A ChanValue represents a chan. -type ChanValue struct { +// A chanValue represents a chan. +type chanValue struct { value "chan" } -// IsNil returns whether v is a nil channel. -func (v *ChanValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 } - -// Set assigns x to v. -// The new value x must have the same type as v. -func (v *ChanValue) Set(x *ChanValue) { - if !v.CanSet() { - panic(cannotSet) - } - typesMustMatch(v.typ, x.typ) - *(*uintptr)(v.addr) = *(*uintptr)(x.addr) -} - -// Set sets v to the value x. -func (v *ChanValue) SetValue(x Value) { v.Set(x.(*ChanValue)) } - -// Get returns the uintptr value of v. -// It is mainly useful for printing. -func (v *ChanValue) Get() uintptr { return *(*uintptr)(v.addr) } - // implemented in ../pkg/runtime/reflect.cgo func makechan(typ *runtime.ChanType, size uint32) (ch *byte) -func chansend(ch, val *byte, pres *bool) -func chanrecv(ch, val *byte, pres *bool) -func chanclosed(ch *byte) bool +func chansend(ch, val *byte, selected *bool) +func chanrecv(ch, val *byte, selected *bool, ok *bool) func chanclose(ch *byte) func chanlen(ch *byte) int32 func chancap(ch *byte) int32 -// Closed returns the result of closed(c) on the underlying channel. -func (v *ChanValue) Closed() bool { - ch := *(**byte)(v.addr) - return chanclosed(ch) -} - -// Close closes the channel. -func (v *ChanValue) Close() { - ch := *(**byte)(v.addr) - chanclose(ch) -} - -func (v *ChanValue) Len() int { - ch := *(**byte)(v.addr) - return int(chanlen(ch)) -} - -func (v *ChanValue) Cap() int { - ch := *(**byte)(v.addr) - return int(chancap(ch)) -} - -// internal send; non-blocking if b != nil -func (v *ChanValue) send(x Value, b *bool) { - t := v.Type().(*ChanType) - if t.Dir()&SendDir == 0 { - panic("send on recv-only channel") - } - typesMustMatch(t.Elem(), x.Type()) - ch := *(**byte)(v.addr) - chansend(ch, (*byte)(x.getAddr()), b) -} - -// internal recv; non-blocking if b != nil -func (v *ChanValue) recv(b *bool) Value { - t := v.Type().(*ChanType) - if t.Dir()&RecvDir == 0 { - panic("recv on send-only channel") - } - ch := *(**byte)(v.addr) - x := MakeZero(t.Elem()) - chanrecv(ch, (*byte)(x.getAddr()), b) - return x -} - -// Send sends x on the channel v. -func (v *ChanValue) Send(x Value) { v.send(x, nil) } - -// Recv receives and returns a value from the channel v. -func (v *ChanValue) Recv() Value { return v.recv(nil) } - -// TrySend attempts to sends x on the channel v but will not block. -// It returns true if the value was sent, false otherwise. -func (v *ChanValue) TrySend(x Value) bool { - var ok bool - v.send(x, &ok) - return ok -} - -// TryRecv attempts to receive a value from the channel v but will not block. -// It returns the value if one is received, nil otherwise. -func (v *ChanValue) TryRecv() Value { - var ok bool - x := v.recv(&ok) - if !ok { - return nil - } - return x -} - // MakeChan creates a new channel with the specified type and buffer size. -func MakeChan(typ *ChanType, buffer int) *ChanValue { +func MakeChan(typ Type, buffer int) Value { + if typ.Kind() != Chan { + panic("reflect: MakeChan of non-chan type") + } if buffer < 0 { panic("MakeChan: negative buffer size") } - if typ.Dir() != BothDir { + if typ.ChanDir() != BothDir { panic("MakeChan: unidirectional channel type") } - v := MakeZero(typ).(*ChanValue) - *(**byte)(v.addr) = makechan((*runtime.ChanType)(unsafe.Pointer(typ)), uint32(buffer)) + v := Zero(typ) + ch := v.panicIfNot(Chan).(*chanValue) + *(**byte)(ch.addr) = makechan((*runtime.ChanType)(unsafe.Pointer(typ.(*commonType))), uint32(buffer)) return v } @@ -765,229 +1398,62 @@ func MakeChan(typ *ChanType, buffer int) *ChanValue { * func */ -// A FuncValue represents a function value. -type FuncValue struct { +// A funcValue represents a function value. +type funcValue struct { value "func" first *value isInterface bool } -// IsNil returns whether v is a nil function. -func (v *FuncValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 } - -// Get returns the uintptr value of v. -// It is mainly useful for printing. -func (v *FuncValue) Get() uintptr { return *(*uintptr)(v.addr) } - -// Set assigns x to v. -// The new value x must have the same type as v. -func (v *FuncValue) Set(x *FuncValue) { - if !v.CanSet() { - panic(cannotSet) - } - typesMustMatch(v.typ, x.typ) - *(*uintptr)(v.addr) = *(*uintptr)(x.addr) -} - -// Set sets v to the value x. -func (v *FuncValue) SetValue(x Value) { v.Set(x.(*FuncValue)) } - -// Method returns a FuncValue corresponding to v's i'th method. -// The arguments to a Call on the returned FuncValue -// should not include a receiver; the FuncValue will use v +// Method returns a funcValue corresponding to v's i'th method. +// The arguments to a Call on the returned funcValue +// should not include a receiver; the funcValue will use v // as the receiver. -func (v *value) Method(i int) *FuncValue { +func (v *value) Method(i int) Value { t := v.Type().uncommon() if t == nil || i < 0 || i >= len(t.methods) { - return nil + panic("reflect: Method index out of range") } p := &t.methods[i] fn := p.tfn - fv := &FuncValue{value: value{toType(*p.typ), addr(&fn), 0}, first: v, isInterface: false} - return fv + fv := &funcValue{value: value{toType(p.typ), addr(&fn), 0}, first: v, isInterface: false} + return Value{fv} } // implemented in ../pkg/runtime/*/asm.s func call(fn, arg *byte, n uint32) -type tiny struct { - b byte -} - // Interface returns the fv as an interface value. // If fv is a method obtained by invoking Value.Method // (as opposed to Type.Method), Interface cannot return an // interface value, so it panics. -func (fv *FuncValue) Interface() interface{} { +func (fv *funcValue) Interface() interface{} { if fv.first != nil { - panic("FuncValue: cannot create interface value for method with bound receiver") + panic("funcValue: cannot create interface value for method with bound receiver") } return fv.value.Interface() } -// Call calls the function fv with input parameters in. -// It returns the function's output parameters as Values. -func (fv *FuncValue) Call(in []Value) []Value { - t := fv.Type().(*FuncType) - nin := len(in) - if fv.first != nil && !fv.isInterface { - nin++ - } - if nin != t.NumIn() { - panic("FuncValue: wrong argument count") - } - nout := t.NumOut() - - // Compute arg size & allocate. - // This computation is 6g/8g-dependent - // and probably wrong for gccgo, but so - // is most of this function. - size := uintptr(0) - if fv.isInterface { - // extra word for interface value - size += ptrSize - } - for i := 0; i < nin; i++ { - tv := t.In(i) - a := uintptr(tv.Align()) - size = (size + a - 1) &^ (a - 1) - size += tv.Size() - } - size = (size + ptrSize - 1) &^ (ptrSize - 1) - for i := 0; i < nout; i++ { - tv := t.Out(i) - a := uintptr(tv.Align()) - size = (size + a - 1) &^ (a - 1) - size += tv.Size() - } - - // size must be > 0 in order for &args[0] to be valid. - // the argument copying is going to round it up to - // a multiple of ptrSize anyway, so make it ptrSize to begin with. - if size < ptrSize { - size = ptrSize - } - - // round to pointer size - size = (size + ptrSize - 1) &^ (ptrSize - 1) - - // Copy into args. - // - // TODO(rsc): revisit when reference counting happens. - // The values are holding up the in references for us, - // but something must be done for the out references. - // For now make everything look like a pointer by pretending - // to allocate a []*int. - args := make([]*int, size/ptrSize) - ptr := uintptr(unsafe.Pointer(&args[0])) - off := uintptr(0) - delta := 0 - if v := fv.first; v != nil { - // Hard-wired first argument. - if fv.isInterface { - // v is a single uninterpreted word - memmove(addr(ptr), v.getAddr(), ptrSize) - off = ptrSize - } else { - // v is a real value - tv := v.Type() - typesMustMatch(t.In(0), tv) - n := tv.Size() - memmove(addr(ptr), v.getAddr(), n) - off = n - delta = 1 - } - } - for i, v := range in { - tv := v.Type() - typesMustMatch(t.In(i+delta), tv) - a := uintptr(tv.Align()) - off = (off + a - 1) &^ (a - 1) - n := tv.Size() - memmove(addr(ptr+off), v.getAddr(), n) - off += n - } - off = (off + ptrSize - 1) &^ (ptrSize - 1) - - // Call - call(*(**byte)(fv.addr), (*byte)(addr(ptr)), uint32(size)) - - // Copy return values out of args. - // - // TODO(rsc): revisit like above. - ret := make([]Value, nout) - for i := 0; i < nout; i++ { - tv := t.Out(i) - a := uintptr(tv.Align()) - off = (off + a - 1) &^ (a - 1) - v := MakeZero(tv) - n := tv.Size() - memmove(v.getAddr(), addr(ptr+off), n) - ret[i] = v - off += n - } - - return ret -} - /* * interface */ -// An InterfaceValue represents an interface value. -type InterfaceValue struct { +// An interfaceValue represents an interface value. +type interfaceValue struct { value "interface" } -// IsNil returns whether v is a nil interface value. -func (v *InterfaceValue) IsNil() bool { return v.Interface() == nil } - -// No single uinptr Get because v.Interface() is available. - -// Get returns the two words that represent an interface in the runtime. -// Those words are useful only when playing unsafe games. -func (v *InterfaceValue) Get() [2]uintptr { - return *(*[2]uintptr)(v.addr) -} - -// Elem returns the concrete value stored in the interface value v. -func (v *InterfaceValue) Elem() Value { return NewValue(v.Interface()) } - // ../runtime/reflect.cgo -func setiface(typ *InterfaceType, x *interface{}, addr addr) - -// Set assigns x to v. -func (v *InterfaceValue) Set(x Value) { - var i interface{} - if x != nil { - i = x.Interface() - } - if !v.CanSet() { - panic(cannotSet) - } - // Two different representations; see comment in Get. - // Empty interface is easy. - t := v.typ.(*InterfaceType) - if t.NumMethod() == 0 { - *(*interface{})(v.addr) = i - return - } +func setiface(typ *interfaceType, x *interface{}, addr addr) - // Non-empty interface requires a runtime check. - setiface(t, &i, v.addr) -} - -// Set sets v to the value x. -func (v *InterfaceValue) SetValue(x Value) { v.Set(x) } - -// Method returns a FuncValue corresponding to v's i'th method. -// The arguments to a Call on the returned FuncValue -// should not include a receiver; the FuncValue will use v +// Method returns a funcValue corresponding to v's i'th method. +// The arguments to a Call on the returned funcValue +// should not include a receiver; the funcValue will use v // as the receiver. -func (v *InterfaceValue) Method(i int) *FuncValue { - t := v.Type().(*InterfaceType) +func (v *interfaceValue) Method(i int) Value { + t := (*interfaceType)(unsafe.Pointer(v.Type().(*commonType))) if t == nil || i < 0 || i >= len(t.methods) { - return nil + panic("reflect: Method index out of range") } p := &t.methods[i] @@ -997,49 +1463,19 @@ func (v *InterfaceValue) Method(i int) *FuncValue { // Function pointer is at p.perm in the table. fn := tab.Fn[i] - fv := &FuncValue{value: value{toType(*p.typ), addr(&fn), 0}, first: data, isInterface: true} - return fv + fv := &funcValue{value: value{toType(p.typ), addr(&fn), 0}, first: data, isInterface: true} + return Value{fv} } /* * map */ -// A MapValue represents a map value. -type MapValue struct { +// A mapValue represents a map value. +type mapValue struct { value "map" } -// IsNil returns whether v is a nil map value. -func (v *MapValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 } - -// Set assigns x to v. -// The new value x must have the same type as v. -func (v *MapValue) Set(x *MapValue) { - if !v.CanSet() { - panic(cannotSet) - } - if x == nil { - *(**uintptr)(v.addr) = nil - return - } - typesMustMatch(v.typ, x.typ) - *(*uintptr)(v.addr) = *(*uintptr)(x.addr) -} - -// Set sets v to the value x. -func (v *MapValue) SetValue(x Value) { - if x == nil { - v.Set(nil) - return - } - v.Set(x.(*MapValue)) -} - -// Get returns the uintptr value of v. -// It is mainly useful for printing. -func (v *MapValue) Get() uintptr { return *(*uintptr)(v.addr) } - // implemented in ../pkg/runtime/reflect.cgo func mapaccess(m, key, val *byte) bool func mapassign(m, key, val *byte) @@ -1049,72 +1485,14 @@ func mapiternext(it *byte) func mapiterkey(it *byte, key *byte) bool func makemap(t *runtime.MapType) *byte -// Elem returns the value associated with key in the map v. -// It returns nil if key is not found in the map. -func (v *MapValue) Elem(key Value) Value { - t := v.Type().(*MapType) - typesMustMatch(t.Key(), key.Type()) - m := *(**byte)(v.addr) - if m == nil { - return nil - } - newval := MakeZero(t.Elem()) - if !mapaccess(m, (*byte)(key.getAddr()), (*byte)(newval.getAddr())) { - return nil - } - return newval -} - -// SetElem sets the value associated with key in the map v to val. -// If val is nil, Put deletes the key from map. -func (v *MapValue) SetElem(key, val Value) { - t := v.Type().(*MapType) - typesMustMatch(t.Key(), key.Type()) - var vaddr *byte - if val != nil { - typesMustMatch(t.Elem(), val.Type()) - vaddr = (*byte)(val.getAddr()) - } - m := *(**byte)(v.addr) - mapassign(m, (*byte)(key.getAddr()), vaddr) -} - -// Len returns the number of keys in the map v. -func (v *MapValue) Len() int { - m := *(**byte)(v.addr) - if m == nil { - return 0 - } - return int(maplen(m)) -} - -// Keys returns a slice containing all the keys present in the map, -// in unspecified order. -func (v *MapValue) Keys() []Value { - tk := v.Type().(*MapType).Key() - m := *(**byte)(v.addr) - mlen := int32(0) - if m != nil { - mlen = maplen(m) - } - it := mapiterinit(m) - a := make([]Value, mlen) - var i int - for i = 0; i < len(a); i++ { - k := MakeZero(tk) - if !mapiterkey(it, (*byte)(k.getAddr())) { - break - } - a[i] = k - mapiternext(it) - } - return a[0:i] -} - // MakeMap creates a new map of the specified type. -func MakeMap(typ *MapType) *MapValue { - v := MakeZero(typ).(*MapValue) - *(**byte)(v.addr) = makemap((*runtime.MapType)(unsafe.Pointer(typ))) +func MakeMap(typ Type) Value { + if typ.Kind() != Map { + panic("reflect: MakeMap of non-map type") + } + v := Zero(typ) + m := v.panicIfNot(Map).(*mapValue) + *(**byte)(m.addr) = makemap((*runtime.MapType)(unsafe.Pointer(typ.(*commonType)))) return v } @@ -1122,221 +1500,88 @@ func MakeMap(typ *MapType) *MapValue { * ptr */ -// A PtrValue represents a pointer. -type PtrValue struct { +// A ptrValue represents a pointer. +type ptrValue struct { value "ptr" } -// IsNil returns whether v is a nil pointer. -func (v *PtrValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 } - -// Get returns the uintptr value of v. -// It is mainly useful for printing. -func (v *PtrValue) Get() uintptr { return *(*uintptr)(v.addr) } - -// Set assigns x to v. -// The new value x must have the same type as v, and x.Elem().CanSet() must be true. -func (v *PtrValue) Set(x *PtrValue) { - if x == nil { - *(**uintptr)(v.addr) = nil - return - } - if !v.CanSet() { - panic(cannotSet) - } - if x.flag&canStore == 0 { - panic("cannot copy pointer obtained from unexported struct field") - } - typesMustMatch(v.typ, x.typ) - // TODO: This will have to move into the runtime - // once the new gc goes in - *(*uintptr)(v.addr) = *(*uintptr)(x.addr) -} - -// Set sets v to the value x. -func (v *PtrValue) SetValue(x Value) { - if x == nil { - v.Set(nil) - return - } - v.Set(x.(*PtrValue)) -} - -// PointTo changes v to point to x. -// If x is a nil Value, PointTo sets v to nil. -func (v *PtrValue) PointTo(x Value) { - if x == nil { - *(**uintptr)(v.addr) = nil - return - } - if !x.CanSet() { - panic("cannot set x; cannot point to x") - } - typesMustMatch(v.typ.(*PtrType).Elem(), x.Type()) - // TODO: This will have to move into the runtime - // once the new gc goes in. - *(*uintptr)(v.addr) = x.UnsafeAddr() -} - -// Elem returns the value that v points to. -// If v is a nil pointer, Elem returns a nil Value. -func (v *PtrValue) Elem() Value { - if v.IsNil() { - return nil - } - flag := canAddr - if v.flag&canStore != 0 { - flag |= canSet | canStore - } - return newValue(v.typ.(*PtrType).Elem(), *(*addr)(v.addr), flag) -} - // Indirect returns the value that v points to. // If v is a nil pointer, Indirect returns a nil Value. // If v is not a pointer, Indirect returns v. func Indirect(v Value) Value { - if pv, ok := v.(*PtrValue); ok { - return pv.Elem() + if v.Kind() != Ptr { + return v } - return v + return v.Elem() } /* * struct */ -// A StructValue represents a struct value. -type StructValue struct { +// A structValue represents a struct value. +type structValue struct { value "struct" } -// Set assigns x to v. -// The new value x must have the same type as v. -func (v *StructValue) Set(x *StructValue) { - // TODO: This will have to move into the runtime - // once the gc goes in. - if !v.CanSet() { - panic(cannotSet) - } - typesMustMatch(v.typ, x.typ) - memmove(v.addr, x.addr, v.typ.Size()) -} - -// Set sets v to the value x. -func (v *StructValue) SetValue(x Value) { v.Set(x.(*StructValue)) } - -// Field returns the i'th field of the struct. -func (v *StructValue) Field(i int) Value { - t := v.typ.(*StructType) - if i < 0 || i >= t.NumField() { - return nil - } - f := t.Field(i) - flag := v.flag - if f.PkgPath != "" { - // unexported field - flag &^= canSet | canStore - } - return newValue(f.Type, addr(uintptr(v.addr)+f.Offset), flag) -} - -// FieldByIndex returns the nested field corresponding to index. -func (t *StructValue) FieldByIndex(index []int) (v Value) { - v = t - for i, x := range index { - if i > 0 { - if p, ok := v.(*PtrValue); ok { - v = p.Elem() - } - if s, ok := v.(*StructValue); ok { - t = s - } else { - v = nil - return - } - } - v = t.Field(x) - } - return -} - -// FieldByName returns the struct field with the given name. -// The result is nil if no field was found. -func (t *StructValue) FieldByName(name string) Value { - if f, ok := t.Type().(*StructType).FieldByName(name); ok { - return t.FieldByIndex(f.Index) - } - return nil -} - -// FieldByNameFunc returns the struct field with a name that satisfies the -// match function. -// The result is nil if no field was found. -func (t *StructValue) FieldByNameFunc(match func(string) bool) Value { - if f, ok := t.Type().(*StructType).FieldByNameFunc(match); ok { - return t.FieldByIndex(f.Index) - } - return nil -} - -// NumField returns the number of fields in the struct. -func (v *StructValue) NumField() int { return v.typ.(*StructType).NumField() } - /* * constructors */ // NewValue returns a new Value initialized to the concrete value -// stored in the interface i. NewValue(nil) returns nil. +// stored in the interface i. NewValue(nil) returns the zero Value. func NewValue(i interface{}) Value { if i == nil { - return nil + return Value{} } - t, a := unsafe.Reflect(i) - return newValue(toType(t), addr(a), canSet|canAddr|canStore) + _, a := unsafe.Reflect(i) + return newValue(Typeof(i), addr(a), canSet|canAddr|canStore) } func newValue(typ Type, addr addr, flag uint32) Value { v := value{typ, addr, flag} - switch typ.(type) { - case *ArrayType: - return &ArrayValue{v} - case *BoolType: - return &BoolValue{v} - case *ChanType: - return &ChanValue{v} - case *FloatType: - return &FloatValue{v} - case *FuncType: - return &FuncValue{value: v} - case *ComplexType: - return &ComplexValue{v} - case *IntType: - return &IntValue{v} - case *InterfaceType: - return &InterfaceValue{v} - case *MapType: - return &MapValue{v} - case *PtrType: - return &PtrValue{v} - case *SliceType: - return &SliceValue{v} - case *StringType: - return &StringValue{v} - case *StructType: - return &StructValue{v} - case *UintType: - return &UintValue{v} - case *UnsafePointerType: - return &UnsafePointerValue{v} + switch typ.Kind() { + case Array: + return Value{&arrayValue{v}} + case Bool: + return Value{&boolValue{v}} + case Chan: + return Value{&chanValue{v}} + case Float32, Float64: + return Value{&floatValue{v}} + case Func: + return Value{&funcValue{value: v}} + case Complex64, Complex128: + return Value{&complexValue{v}} + case Int, Int8, Int16, Int32, Int64: + return Value{&intValue{v}} + case Interface: + return Value{&interfaceValue{v}} + case Map: + return Value{&mapValue{v}} + case Ptr: + return Value{&ptrValue{v}} + case Slice: + return Value{&sliceValue{v}} + case String: + return Value{&stringValue{v}} + case Struct: + return Value{&structValue{v}} + case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr: + return Value{&uintValue{v}} + case UnsafePointer: + return Value{&unsafePointerValue{v}} } panic("newValue" + typ.String()) } -// MakeZero returns a zero Value for the specified Type. -func MakeZero(typ Type) Value { +// Zero returns a Value representing a zero value for the specified type. +// The result is different from the zero value of the Value struct, +// which represents no value at all. +// For example, Zero(Typeof(42)) returns a Value with Kind Int and value 0. +func Zero(typ Type) Value { if typ == nil { - return nil + panic("reflect: Zero(nil)") } return newValue(typ, addr(unsafe.New(typ)), canSet|canAddr|canStore) } |