summaryrefslogtreecommitdiff
path: root/src/pkg/reflect/value.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/reflect/value.go')
-rw-r--r--src/pkg/reflect/value.go1736
1 files changed, 1736 insertions, 0 deletions
diff --git a/src/pkg/reflect/value.go b/src/pkg/reflect/value.go
new file mode 100644
index 000000000..d3c510ac2
--- /dev/null
+++ b/src/pkg/reflect/value.go
@@ -0,0 +1,1736 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package reflect
+
+import (
+ "math"
+ "runtime"
+ "strconv"
+ "unsafe"
+)
+
+const ptrSize = unsafe.Sizeof((*byte)(nil))
+const cannotSet = "cannot set value obtained from unexported struct field"
+
+// TODO: This will have to go away when
+// the new gc goes in.
+func memmove(adst, asrc unsafe.Pointer, n uintptr) {
+ dst := uintptr(adst)
+ src := uintptr(asrc)
+ switch {
+ case src < dst && src+n > dst:
+ // byte copy backward
+ // careful: i is unsigned
+ for i := n; i > 0; {
+ i--
+ *(*byte)(unsafe.Pointer(dst + i)) = *(*byte)(unsafe.Pointer(src + i))
+ }
+ case (n|src|dst)&(ptrSize-1) != 0:
+ // byte copy forward
+ for i := uintptr(0); i < n; i++ {
+ *(*byte)(unsafe.Pointer(dst + i)) = *(*byte)(unsafe.Pointer(src + i))
+ }
+ default:
+ // word copy forward
+ for i := uintptr(0); i < n; i += ptrSize {
+ *(*uintptr)(unsafe.Pointer(dst + i)) = *(*uintptr)(unsafe.Pointer(src + i))
+ }
+ }
+}
+
+// Value is the reflection interface to a Go value.
+//
+// Not all methods apply to all kinds of values. Restrictions,
+// if any, are noted in the documentation for each method.
+// Use the Kind method to find out the kind of value before
+// calling kind-specific methods. Calling a method
+// inappropriate to the kind of type causes a run time panic.
+//
+// The zero Value represents no value.
+// Its IsValid method returns false, its Kind method returns Invalid,
+// its String method returns "<invalid Value>", and all other methods panic.
+// Most functions and methods never return an invalid value.
+// If one does, its documentation states the conditions explicitly.
+//
+// The fields of Value are exported so that clients can copy and
+// pass Values around, but they should not be edited or inspected
+// directly. A future language change may make it possible not to
+// export these fields while still keeping Values usable as values.
+type Value struct {
+ Internal interface{}
+ InternalMethod int
+}
+
+// A ValueError occurs when a Value method is invoked on
+// a Value that does not support it. Such cases are documented
+// in the description of each method.
+type ValueError struct {
+ Method string
+ Kind Kind
+}
+
+func (e *ValueError) String() string {
+ if e.Kind == 0 {
+ return "reflect: call of " + e.Method + " on zero Value"
+ }
+ return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"
+}
+
+// methodName returns the name of the calling method,
+// assumed to be two stack frames above.
+func methodName() string {
+ pc, _, _, _ := runtime.Caller(2)
+ f := runtime.FuncForPC(pc)
+ if f == nil {
+ return "unknown method"
+ }
+ return f.Name()
+}
+
+// An iword is the word that would be stored in an
+// interface to represent a given value v. Specifically, if v is
+// bigger than a pointer, its word is a pointer to v's data.
+// Otherwise, its word is a zero uintptr with the data stored
+// in the leading bytes.
+type iword uintptr
+
+func loadIword(p unsafe.Pointer, size uintptr) iword {
+ // Run the copy ourselves instead of calling memmove
+ // to avoid moving v to the heap.
+ w := iword(0)
+ switch size {
+ default:
+ panic("reflect: internal error: loadIword of " + strconv.Itoa(int(size)) + "-byte value")
+ case 0:
+ case 1:
+ *(*uint8)(unsafe.Pointer(&w)) = *(*uint8)(p)
+ case 2:
+ *(*uint16)(unsafe.Pointer(&w)) = *(*uint16)(p)
+ case 3:
+ *(*[3]byte)(unsafe.Pointer(&w)) = *(*[3]byte)(p)
+ case 4:
+ *(*uint32)(unsafe.Pointer(&w)) = *(*uint32)(p)
+ case 5:
+ *(*[5]byte)(unsafe.Pointer(&w)) = *(*[5]byte)(p)
+ case 6:
+ *(*[6]byte)(unsafe.Pointer(&w)) = *(*[6]byte)(p)
+ case 7:
+ *(*[7]byte)(unsafe.Pointer(&w)) = *(*[7]byte)(p)
+ case 8:
+ *(*uint64)(unsafe.Pointer(&w)) = *(*uint64)(p)
+ }
+ return w
+}
+
+func storeIword(p unsafe.Pointer, w iword, size uintptr) {
+ // Run the copy ourselves instead of calling memmove
+ // to avoid moving v to the heap.
+ switch size {
+ default:
+ panic("reflect: internal error: storeIword of " + strconv.Itoa(int(size)) + "-byte value")
+ case 0:
+ case 1:
+ *(*uint8)(p) = *(*uint8)(unsafe.Pointer(&w))
+ case 2:
+ *(*uint16)(p) = *(*uint16)(unsafe.Pointer(&w))
+ case 3:
+ *(*[3]byte)(p) = *(*[3]byte)(unsafe.Pointer(&w))
+ case 4:
+ *(*uint32)(p) = *(*uint32)(unsafe.Pointer(&w))
+ case 5:
+ *(*[5]byte)(p) = *(*[5]byte)(unsafe.Pointer(&w))
+ case 6:
+ *(*[6]byte)(p) = *(*[6]byte)(unsafe.Pointer(&w))
+ case 7:
+ *(*[7]byte)(p) = *(*[7]byte)(unsafe.Pointer(&w))
+ case 8:
+ *(*uint64)(p) = *(*uint64)(unsafe.Pointer(&w))
+ }
+}
+
+// emptyInterface is the header for an interface{} value.
+type emptyInterface struct {
+ typ *runtime.Type
+ word iword
+}
+
+// nonEmptyInterface is the header for a interface value with methods.
+type nonEmptyInterface struct {
+ // see ../runtime/iface.c:/Itab
+ itab *struct {
+ ityp *runtime.Type // static interface type
+ typ *runtime.Type // dynamic concrete type
+ link unsafe.Pointer
+ bad int32
+ unused int32
+ fun [100000]unsafe.Pointer // method table
+ }
+ word iword
+}
+
+// Regarding the implementation of Value:
+//
+// The Internal interface is a true interface value in the Go sense,
+// but it also serves as a (type, address) pair in which one cannot
+// be changed separately from the other. That is, it serves as a way
+// to prevent unsafe mutations of the Internal state even though
+// we cannot (yet?) hide the field while preserving the ability for
+// clients to make copies of Values.
+//
+// The internal method converts a Value into the expanded internalValue struct.
+// If we could avoid exporting fields we'd probably make internalValue the
+// definition of Value.
+//
+// If a Value is addressable (CanAddr returns true), then the Internal
+// interface value holds a pointer to the actual field data, and Set stores
+// through that pointer. If a Value is not addressable (CanAddr returns false),
+// then the Internal interface value holds the actual value.
+//
+// In addition to whether a value is addressable, we track whether it was
+// obtained by using an unexported struct field. Such values are allowed
+// to be read, mainly to make fmt.Print more useful, but they are not
+// allowed to be written. We call such values read-only.
+//
+// A Value can be set (via the Set, SetUint, etc. methods) only if it is both
+// addressable and not read-only.
+//
+// The two permission bits - addressable and read-only - are stored in
+// the bottom two bits of the type pointer in the interface value.
+//
+// ordinary value: Internal = value
+// addressable value: Internal = value, Internal.typ |= flagAddr
+// read-only value: Internal = value, Internal.typ |= flagRO
+// addressable, read-only value: Internal = value, Internal.typ |= flagAddr | flagRO
+//
+// It is important that the read-only values have the extra bit set
+// (as opposed to using the bit to mean writable), because client code
+// can grab the interface field and try to use it. Having the extra bit
+// set makes the type pointer compare not equal to any real type,
+// so that a client cannot, say, write through v.Internal.(*int).
+// The runtime routines that access interface types reject types with
+// low bits set.
+//
+// If a Value fv = v.Method(i), then fv = v with the InternalMethod
+// field set to i+1. Methods are never addressable.
+//
+// All in all, this is a lot of effort just to avoid making this new API
+// depend on a language change we'll probably do anyway, but
+// it's helpful to keep the two separate, and much of the logic is
+// necessary to implement the Interface method anyway.
+
+const (
+ flagAddr uint32 = 1 << iota // holds address of value
+ flagRO // read-only
+
+ reflectFlags = 3
+)
+
+// An internalValue is the unpacked form of a Value.
+// The zero Value unpacks to a zero internalValue
+type internalValue struct {
+ typ *commonType // type of value
+ kind Kind // kind of value
+ flag uint32
+ word iword
+ addr unsafe.Pointer
+ rcvr iword
+ method bool
+ nilmethod bool
+}
+
+func (v Value) internal() internalValue {
+ var iv internalValue
+ eface := *(*emptyInterface)(unsafe.Pointer(&v.Internal))
+ p := uintptr(unsafe.Pointer(eface.typ))
+ iv.typ = toCommonType((*runtime.Type)(unsafe.Pointer(p &^ reflectFlags)))
+ if iv.typ == nil {
+ return iv
+ }
+ iv.flag = uint32(p & reflectFlags)
+ iv.word = eface.word
+ if iv.flag&flagAddr != 0 {
+ iv.addr = unsafe.Pointer(iv.word)
+ iv.typ = iv.typ.Elem().common()
+ if iv.typ.size <= ptrSize {
+ iv.word = loadIword(iv.addr, iv.typ.size)
+ }
+ } else {
+ if iv.typ.size > ptrSize {
+ iv.addr = unsafe.Pointer(iv.word)
+ }
+ }
+ iv.kind = iv.typ.Kind()
+
+ // Is this a method? If so, iv describes the receiver.
+ // Rewrite to describe the method function.
+ if v.InternalMethod != 0 {
+ // If this Value is a method value (x.Method(i) for some Value x)
+ // then we will invoke it using the interface form of the method,
+ // which always passes the receiver as a single word.
+ // Record that information.
+ i := v.InternalMethod - 1
+ if iv.kind == Interface {
+ it := (*interfaceType)(unsafe.Pointer(iv.typ))
+ if i < 0 || i >= len(it.methods) {
+ panic("reflect: broken Value")
+ }
+ m := &it.methods[i]
+ if m.pkgPath != nil {
+ iv.flag |= flagRO
+ }
+ iv.typ = toCommonType(m.typ)
+ iface := (*nonEmptyInterface)(iv.addr)
+ if iface.itab == nil {
+ iv.word = 0
+ iv.nilmethod = true
+ } else {
+ iv.word = iword(iface.itab.fun[i])
+ }
+ iv.rcvr = iface.word
+ } else {
+ ut := iv.typ.uncommon()
+ if ut == nil || i < 0 || i >= len(ut.methods) {
+ panic("reflect: broken Value")
+ }
+ m := &ut.methods[i]
+ if m.pkgPath != nil {
+ iv.flag |= flagRO
+ }
+ iv.typ = toCommonType(m.mtyp)
+ iv.rcvr = iv.word
+ iv.word = iword(m.ifn)
+ }
+ iv.kind = Func
+ iv.method = true
+ iv.flag &^= flagAddr
+ iv.addr = nil
+ }
+
+ return iv
+}
+
+// packValue returns a Value with the given flag bits, type, and interface word.
+func packValue(flag uint32, typ *runtime.Type, word iword) Value {
+ if typ == nil {
+ panic("packValue")
+ }
+ t := uintptr(unsafe.Pointer(typ))
+ t |= uintptr(flag)
+ eface := emptyInterface{(*runtime.Type)(unsafe.Pointer(t)), word}
+ return Value{Internal: *(*interface{})(unsafe.Pointer(&eface))}
+}
+
+// valueFromAddr returns a Value using the given type and address.
+func valueFromAddr(flag uint32, typ Type, addr unsafe.Pointer) Value {
+ if flag&flagAddr != 0 {
+ // Addressable, so the internal value is
+ // an interface containing a pointer to the real value.
+ return packValue(flag, PtrTo(typ).runtimeType(), iword(addr))
+ }
+
+ var w iword
+ if n := typ.Size(); n <= ptrSize {
+ // In line, so the interface word is the actual value.
+ w = loadIword(addr, n)
+ } else {
+ // Not in line: the interface word is the address.
+ w = iword(addr)
+ }
+ return packValue(flag, typ.runtimeType(), w)
+}
+
+// valueFromIword returns a Value using the given type and interface word.
+func valueFromIword(flag uint32, typ Type, w iword) Value {
+ if flag&flagAddr != 0 {
+ panic("reflect: internal error: valueFromIword addressable")
+ }
+ return packValue(flag, typ.runtimeType(), w)
+}
+
+func (iv internalValue) mustBe(want Kind) {
+ if iv.kind != want {
+ panic(&ValueError{methodName(), iv.kind})
+ }
+}
+
+func (iv internalValue) mustBeExported() {
+ if iv.kind == 0 {
+ panic(&ValueError{methodName(), iv.kind})
+ }
+ if iv.flag&flagRO != 0 {
+ panic(methodName() + " using value obtained using unexported field")
+ }
+}
+
+func (iv internalValue) mustBeAssignable() {
+ if iv.kind == 0 {
+ panic(&ValueError{methodName(), iv.kind})
+ }
+ // Assignable if addressable and not read-only.
+ if iv.flag&flagRO != 0 {
+ panic(methodName() + " using value obtained using unexported field")
+ }
+ if iv.flag&flagAddr == 0 {
+ panic(methodName() + " using unaddressable value")
+ }
+}
+
+// Addr returns a pointer value representing the address of v.
+// It panics if CanAddr() returns false.
+// Addr is typically used to obtain a pointer to a struct field
+// or slice element in order to call a method that requires a
+// pointer receiver.
+func (v Value) Addr() Value {
+ iv := v.internal()
+ if iv.flag&flagAddr == 0 {
+ panic("reflect.Value.Addr of unaddressable value")
+ }
+ return valueFromIword(iv.flag&flagRO, PtrTo(iv.typ.toType()), iword(iv.addr))
+}
+
+// Bool returns v's underlying value.
+// It panics if v's kind is not Bool.
+func (v Value) Bool() bool {
+ iv := v.internal()
+ iv.mustBe(Bool)
+ return *(*bool)(unsafe.Pointer(&iv.word))
+}
+
+// CanAddr returns true if the value's address can be obtained with Addr.
+// Such values are called addressable. A value is addressable if it is
+// an element of a slice, an element of an addressable array,
+// a field of an addressable struct, or the result of dereferencing a pointer.
+// If CanAddr returns false, calling Addr will panic.
+func (v Value) CanAddr() bool {
+ iv := v.internal()
+ return iv.flag&flagAddr != 0
+}
+
+// CanSet returns true if the value of v can be changed.
+// A Value can be changed only if it is addressable and was not
+// obtained by the use of unexported struct fields.
+// If CanSet returns false, calling Set or any type-specific
+// setter (e.g., SetBool, SetInt64) will panic.
+func (v Value) CanSet() bool {
+ iv := v.internal()
+ return iv.flag&(flagAddr|flagRO) == flagAddr
+}
+
+// Call calls the function v with the input arguments in.
+// For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]).
+// Call panics if v's Kind is not Func.
+// It returns the output results as Values.
+// As in Go, each input argument must be assignable to the
+// type of the function's corresponding input parameter.
+// If v is a variadic function, Call creates the variadic slice parameter
+// itself, copying in the corresponding values.
+func (v Value) Call(in []Value) []Value {
+ iv := v.internal()
+ iv.mustBe(Func)
+ iv.mustBeExported()
+ return iv.call("Call", in)
+}
+
+// CallSlice calls the variadic function v with the input arguments in,
+// assigning the slice in[len(in)-1] to v's final variadic argument.
+// For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]...).
+// Call panics if v's Kind is not Func or if v is not variadic.
+// It returns the output results as Values.
+// As in Go, each input argument must be assignable to the
+// type of the function's corresponding input parameter.
+func (v Value) CallSlice(in []Value) []Value {
+ iv := v.internal()
+ iv.mustBe(Func)
+ iv.mustBeExported()
+ return iv.call("CallSlice", in)
+}
+
+func (iv internalValue) call(method string, in []Value) []Value {
+ if iv.word == 0 {
+ if iv.nilmethod {
+ panic("reflect.Value.Call: call of method on nil interface value")
+ }
+ panic("reflect.Value.Call: call of nil function")
+ }
+
+ isSlice := method == "CallSlice"
+ t := iv.typ
+ n := t.NumIn()
+ if isSlice {
+ if !t.IsVariadic() {
+ panic("reflect: CallSlice of non-variadic function")
+ }
+ if len(in) < n {
+ panic("reflect: CallSlice with too few input arguments")
+ }
+ if len(in) > n {
+ panic("reflect: CallSlice with too many input arguments")
+ }
+ } else {
+ if t.IsVariadic() {
+ n--
+ }
+ if len(in) < n {
+ panic("reflect: Call with too few input arguments")
+ }
+ if !t.IsVariadic() && len(in) > n {
+ panic("reflect: Call with too many input arguments")
+ }
+ }
+ for _, x := range in {
+ if x.Kind() == Invalid {
+ panic("reflect: " + method + " using zero Value argument")
+ }
+ }
+ for i := 0; i < n; i++ {
+ if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(targ) {
+ panic("reflect: " + method + " using " + xt.String() + " as type " + targ.String())
+ }
+ }
+ if !isSlice && t.IsVariadic() {
+ // prepare slice for remaining values
+ m := len(in) - n
+ slice := MakeSlice(t.In(n), m, m)
+ elem := t.In(n).Elem()
+ for i := 0; i < m; i++ {
+ x := in[n+i]
+ if xt := x.Type(); !xt.AssignableTo(elem) {
+ panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + method)
+ }
+ slice.Index(i).Set(x)
+ }
+ origIn := in
+ in = make([]Value, n+1)
+ copy(in[:n], origIn)
+ in[n] = slice
+ }
+
+ nin := len(in)
+ if nin != t.NumIn() {
+ panic("reflect.Value.Call: wrong argument count")
+ }
+ nout := t.NumOut()
+
+ // Compute arg size & allocate.
+ // This computation is 5g/6g/8g-dependent
+ // and probably wrong for gccgo, but so
+ // is most of this function.
+ size := uintptr(0)
+ if iv.method {
+ // extra word for interface value
+ size += ptrSize
+ }
+ for i := 0; i < nin; i++ {
+ tv := t.In(i)
+ a := uintptr(tv.Align())
+ size = (size + a - 1) &^ (a - 1)
+ size += tv.Size()
+ }
+ size = (size + ptrSize - 1) &^ (ptrSize - 1)
+ for i := 0; i < nout; i++ {
+ tv := t.Out(i)
+ a := uintptr(tv.Align())
+ size = (size + a - 1) &^ (a - 1)
+ size += tv.Size()
+ }
+
+ // size must be > 0 in order for &args[0] to be valid.
+ // the argument copying is going to round it up to
+ // a multiple of ptrSize anyway, so make it ptrSize to begin with.
+ if size < ptrSize {
+ size = ptrSize
+ }
+
+ // round to pointer size
+ size = (size + ptrSize - 1) &^ (ptrSize - 1)
+
+ // Copy into args.
+ //
+ // TODO(rsc): revisit when reference counting happens.
+ // The values are holding up the in references for us,
+ // but something must be done for the out references.
+ // For now make everything look like a pointer by pretending
+ // to allocate a []*int.
+ args := make([]*int, size/ptrSize)
+ ptr := uintptr(unsafe.Pointer(&args[0]))
+ off := uintptr(0)
+ if iv.method {
+ // Hard-wired first argument.
+ *(*iword)(unsafe.Pointer(ptr)) = iv.rcvr
+ off = ptrSize
+ }
+ for i, v := range in {
+ iv := v.internal()
+ iv.mustBeExported()
+ targ := t.In(i).(*commonType)
+ a := uintptr(targ.align)
+ off = (off + a - 1) &^ (a - 1)
+ n := targ.size
+ addr := unsafe.Pointer(ptr + off)
+ iv = convertForAssignment("reflect.Value.Call", addr, targ, iv)
+ if iv.addr == nil {
+ storeIword(addr, iv.word, n)
+ } else {
+ memmove(addr, iv.addr, n)
+ }
+ off += n
+ }
+ off = (off + ptrSize - 1) &^ (ptrSize - 1)
+
+ // Call.
+ call(unsafe.Pointer(iv.word), unsafe.Pointer(ptr), uint32(size))
+
+ // Copy return values out of args.
+ //
+ // TODO(rsc): revisit like above.
+ ret := make([]Value, nout)
+ for i := 0; i < nout; i++ {
+ tv := t.Out(i)
+ a := uintptr(tv.Align())
+ off = (off + a - 1) &^ (a - 1)
+ ret[i] = valueFromAddr(0, tv, unsafe.Pointer(ptr+off))
+ off += tv.Size()
+ }
+
+ return ret
+}
+
+// Cap returns v's capacity.
+// It panics if v's Kind is not Array, Chan, or Slice.
+func (v Value) Cap() int {
+ iv := v.internal()
+ switch iv.kind {
+ case Array:
+ return iv.typ.Len()
+ case Chan:
+ return int(chancap(iv.word))
+ case Slice:
+ return (*SliceHeader)(iv.addr).Cap
+ }
+ panic(&ValueError{"reflect.Value.Cap", iv.kind})
+}
+
+// Close closes the channel v.
+// It panics if v's Kind is not Chan.
+func (v Value) Close() {
+ iv := v.internal()
+ iv.mustBe(Chan)
+ iv.mustBeExported()
+ ch := iv.word
+ chanclose(ch)
+}
+
+// Complex returns v's underlying value, as a complex128.
+// It panics if v's Kind is not Complex64 or Complex128
+func (v Value) Complex() complex128 {
+ iv := v.internal()
+ switch iv.kind {
+ case Complex64:
+ if iv.addr == nil {
+ return complex128(*(*complex64)(unsafe.Pointer(&iv.word)))
+ }
+ return complex128(*(*complex64)(iv.addr))
+ case Complex128:
+ return *(*complex128)(iv.addr)
+ }
+ panic(&ValueError{"reflect.Value.Complex", iv.kind})
+}
+
+// Elem returns the value that the interface v contains
+// or that the pointer v points to.
+// It panics if v's Kind is not Interface or Ptr.
+// It returns the zero Value if v is nil.
+func (v Value) Elem() Value {
+ iv := v.internal()
+ return iv.Elem()
+}
+
+func (iv internalValue) Elem() Value {
+ switch iv.kind {
+ case Interface:
+ // Empty interface and non-empty interface have different layouts.
+ // Convert to empty interface.
+ var eface emptyInterface
+ if iv.typ.NumMethod() == 0 {
+ eface = *(*emptyInterface)(iv.addr)
+ } else {
+ iface := (*nonEmptyInterface)(iv.addr)
+ if iface.itab != nil {
+ eface.typ = iface.itab.typ
+ }
+ eface.word = iface.word
+ }
+ if eface.typ == nil {
+ return Value{}
+ }
+ return valueFromIword(iv.flag&flagRO, toType(eface.typ), eface.word)
+
+ case Ptr:
+ // The returned value's address is v's value.
+ if iv.word == 0 {
+ return Value{}
+ }
+ return valueFromAddr(iv.flag&flagRO|flagAddr, iv.typ.Elem(), unsafe.Pointer(iv.word))
+ }
+ panic(&ValueError{"reflect.Value.Elem", iv.kind})
+}
+
+// Field returns the i'th field of the struct v.
+// It panics if v's Kind is not Struct or i is out of range.
+func (v Value) Field(i int) Value {
+ iv := v.internal()
+ iv.mustBe(Struct)
+ t := iv.typ.toType()
+ if i < 0 || i >= t.NumField() {
+ panic("reflect: Field index out of range")
+ }
+ f := t.Field(i)
+
+ // Inherit permission bits from v.
+ flag := iv.flag
+ // Using an unexported field forces flagRO.
+ if f.PkgPath != "" {
+ flag |= flagRO
+ }
+ return valueFromValueOffset(flag, f.Type, iv, f.Offset)
+}
+
+// valueFromValueOffset returns a sub-value of outer
+// (outer is an array or a struct) with the given flag and type
+// starting at the given byte offset into outer.
+func valueFromValueOffset(flag uint32, typ Type, outer internalValue, offset uintptr) Value {
+ if outer.addr != nil {
+ return valueFromAddr(flag, typ, unsafe.Pointer(uintptr(outer.addr)+offset))
+ }
+
+ // outer is so tiny it is in line.
+ // We have to use outer.word and derive
+ // the new word (it cannot possibly be bigger).
+ // In line, so not addressable.
+ if flag&flagAddr != 0 {
+ panic("reflect: internal error: misuse of valueFromValueOffset")
+ }
+ b := *(*[ptrSize]byte)(unsafe.Pointer(&outer.word))
+ for i := uintptr(0); i < typ.Size(); i++ {
+ b[i] = b[offset+i]
+ }
+ for i := typ.Size(); i < ptrSize; i++ {
+ b[i] = 0
+ }
+ w := *(*iword)(unsafe.Pointer(&b))
+ return valueFromIword(flag, typ, w)
+}
+
+// FieldByIndex returns the nested field corresponding to index.
+// It panics if v's Kind is not struct.
+func (v Value) FieldByIndex(index []int) Value {
+ v.internal().mustBe(Struct)
+ for i, x := range index {
+ if i > 0 {
+ if v.Kind() == Ptr && v.Elem().Kind() == Struct {
+ v = v.Elem()
+ }
+ }
+ v = v.Field(x)
+ }
+ return v
+}
+
+// FieldByName returns the struct field with the given name.
+// It returns the zero Value if no field was found.
+// It panics if v's Kind is not struct.
+func (v Value) FieldByName(name string) Value {
+ iv := v.internal()
+ iv.mustBe(Struct)
+ if f, ok := iv.typ.FieldByName(name); ok {
+ return v.FieldByIndex(f.Index)
+ }
+ return Value{}
+}
+
+// FieldByNameFunc returns the struct field with a name
+// that satisfies the match function.
+// It panics if v's Kind is not struct.
+// It returns the zero Value if no field was found.
+func (v Value) FieldByNameFunc(match func(string) bool) Value {
+ v.internal().mustBe(Struct)
+ if f, ok := v.Type().FieldByNameFunc(match); ok {
+ return v.FieldByIndex(f.Index)
+ }
+ return Value{}
+}
+
+// Float returns v's underlying value, as an float64.
+// It panics if v's Kind is not Float32 or Float64
+func (v Value) Float() float64 {
+ iv := v.internal()
+ switch iv.kind {
+ case Float32:
+ return float64(*(*float32)(unsafe.Pointer(&iv.word)))
+ case Float64:
+ // If the pointer width can fit an entire float64,
+ // the value is in line when stored in an interface.
+ if iv.addr == nil {
+ return *(*float64)(unsafe.Pointer(&iv.word))
+ }
+ // Otherwise we have a pointer.
+ return *(*float64)(iv.addr)
+ }
+ panic(&ValueError{"reflect.Value.Float", iv.kind})
+}
+
+// Index returns v's i'th element.
+// It panics if v's Kind is not Array or Slice or i is out of range.
+func (v Value) Index(i int) Value {
+ iv := v.internal()
+ switch iv.kind {
+ default:
+ panic(&ValueError{"reflect.Value.Index", iv.kind})
+ case Array:
+ flag := iv.flag // element flag same as overall array
+ t := iv.typ.toType()
+ if i < 0 || i > t.Len() {
+ panic("reflect: array index out of range")
+ }
+ typ := t.Elem()
+ return valueFromValueOffset(flag, typ, iv, uintptr(i)*typ.Size())
+
+ case Slice:
+ // Element flag same as Elem of Ptr.
+ // Addressable, possibly read-only.
+ flag := iv.flag&flagRO | flagAddr
+ s := (*SliceHeader)(iv.addr)
+ if i < 0 || i >= s.Len {
+ panic("reflect: slice index out of range")
+ }
+ typ := iv.typ.Elem()
+ addr := unsafe.Pointer(s.Data + uintptr(i)*typ.Size())
+ return valueFromAddr(flag, typ, addr)
+ }
+
+ panic("not reached")
+}
+
+// Int returns v's underlying value, as an int64.
+// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
+func (v Value) Int() int64 {
+ iv := v.internal()
+ switch iv.kind {
+ case Int:
+ return int64(*(*int)(unsafe.Pointer(&iv.word)))
+ case Int8:
+ return int64(*(*int8)(unsafe.Pointer(&iv.word)))
+ case Int16:
+ return int64(*(*int16)(unsafe.Pointer(&iv.word)))
+ case Int32:
+ return int64(*(*int32)(unsafe.Pointer(&iv.word)))
+ case Int64:
+ if iv.addr == nil {
+ return *(*int64)(unsafe.Pointer(&iv.word))
+ }
+ return *(*int64)(iv.addr)
+ }
+ panic(&ValueError{"reflect.Value.Int", iv.kind})
+}
+
+// CanInterface returns true if Interface can be used without panicking.
+func (v Value) CanInterface() bool {
+ iv := v.internal()
+ if iv.kind == Invalid {
+ panic(&ValueError{"reflect.Value.CanInterface", iv.kind})
+ }
+ // TODO(rsc): Check flagRO too. Decide what to do about asking for
+ // interface for a value obtained via an unexported field.
+ // If the field were of a known type, say chan int or *sync.Mutex,
+ // the caller could interfere with the data after getting the
+ // interface. But fmt.Print depends on being able to look.
+ // Now that reflect is more efficient the special cases in fmt
+ // might be less important.
+ return v.InternalMethod == 0
+}
+
+// Interface returns v's value as an interface{}.
+// If v is a method obtained by invoking Value.Method
+// (as opposed to Type.Method), Interface cannot return an
+// interface value, so it panics.
+func (v Value) Interface() interface{} {
+ return v.internal().Interface()
+}
+
+func (iv internalValue) Interface() interface{} {
+ if iv.kind == 0 {
+ panic(&ValueError{"reflect.Value.Interface", iv.kind})
+ }
+ if iv.method {
+ panic("reflect.Value.Interface: cannot create interface value for method with bound receiver")
+ }
+ /*
+ if v.flag()&noExport != 0 {
+ panic("reflect.Value.Interface: cannot return value obtained from unexported struct field")
+ }
+ */
+
+ if iv.kind == Interface {
+ // Special case: return the element inside the interface.
+ // Won't recurse further because an interface cannot contain an interface.
+ if iv.IsNil() {
+ return nil
+ }
+ return iv.Elem().Interface()
+ }
+
+ // Non-interface value.
+ var eface emptyInterface
+ eface.typ = iv.typ.runtimeType()
+ eface.word = iv.word
+ return *(*interface{})(unsafe.Pointer(&eface))
+}
+
+// InterfaceData returns the interface v's value as a uintptr pair.
+// It panics if v's Kind is not Interface.
+func (v Value) InterfaceData() [2]uintptr {
+ iv := v.internal()
+ iv.mustBe(Interface)
+ // We treat this as a read operation, so we allow
+ // it even for unexported data, because the caller
+ // has to import "unsafe" to turn it into something
+ // that can be abused.
+ return *(*[2]uintptr)(iv.addr)
+}
+
+// IsNil returns true if v is a nil value.
+// It panics if v's Kind is not Chan, Func, Interface, Map, Ptr, or Slice.
+func (v Value) IsNil() bool {
+ return v.internal().IsNil()
+}
+
+func (iv internalValue) IsNil() bool {
+ switch iv.kind {
+ case Chan, Func, Map, Ptr:
+ if iv.method {
+ panic("reflect: IsNil of method Value")
+ }
+ return iv.word == 0
+ case Interface, Slice:
+ // Both interface and slice are nil if first word is 0.
+ return *(*uintptr)(iv.addr) == 0
+ }
+ panic(&ValueError{"reflect.Value.IsNil", iv.kind})
+}
+
+// IsValid returns true if v represents a value.
+// It returns false if v is the zero Value.
+// If IsValid returns false, all other methods except String panic.
+// Most functions and methods never return an invalid value.
+// If one does, its documentation states the conditions explicitly.
+func (v Value) IsValid() bool {
+ return v.Internal != nil
+}
+
+// Kind returns v's Kind.
+// If v is the zero Value (IsValid returns false), Kind returns Invalid.
+func (v Value) Kind() Kind {
+ return v.internal().kind
+}
+
+// Len returns v's length.
+// It panics if v's Kind is not Array, Chan, Map, Slice, or String.
+func (v Value) Len() int {
+ iv := v.internal()
+ switch iv.kind {
+ case Array:
+ return iv.typ.Len()
+ case Chan:
+ return int(chanlen(iv.word))
+ case Map:
+ return int(maplen(iv.word))
+ case Slice:
+ return (*SliceHeader)(iv.addr).Len
+ case String:
+ return (*StringHeader)(iv.addr).Len
+ }
+ panic(&ValueError{"reflect.Value.Len", iv.kind})
+}
+
+// MapIndex returns the value associated with key in the map v.
+// It panics if v's Kind is not Map.
+// It returns the zero Value if key is not found in the map or if v represents a nil map.
+// As in Go, the key's value must be assignable to the map's key type.
+func (v Value) MapIndex(key Value) Value {
+ iv := v.internal()
+ iv.mustBe(Map)
+ typ := iv.typ.toType()
+
+ // Do not require ikey to be exported, so that DeepEqual
+ // and other programs can use all the keys returned by
+ // MapKeys as arguments to MapIndex. If either the map
+ // or the key is unexported, though, the result will be
+ // considered unexported.
+
+ ikey := key.internal()
+ ikey = convertForAssignment("reflect.Value.MapIndex", nil, typ.Key(), ikey)
+ if iv.word == 0 {
+ return Value{}
+ }
+
+ flag := (iv.flag | ikey.flag) & flagRO
+ elemType := typ.Elem()
+ elemWord, ok := mapaccess(typ.runtimeType(), iv.word, ikey.word)
+ if !ok {
+ return Value{}
+ }
+ return valueFromIword(flag, elemType, elemWord)
+}
+
+// MapKeys returns a slice containing all the keys present in the map,
+// in unspecified order.
+// It panics if v's Kind is not Map.
+// It returns an empty slice if v represents a nil map.
+func (v Value) MapKeys() []Value {
+ iv := v.internal()
+ iv.mustBe(Map)
+ keyType := iv.typ.Key()
+
+ flag := iv.flag & flagRO
+ m := iv.word
+ mlen := int32(0)
+ if m != 0 {
+ mlen = maplen(m)
+ }
+ it := mapiterinit(iv.typ.runtimeType(), m)
+ a := make([]Value, mlen)
+ var i int
+ for i = 0; i < len(a); i++ {
+ keyWord, ok := mapiterkey(it)
+ if !ok {
+ break
+ }
+ a[i] = valueFromIword(flag, keyType, keyWord)
+ mapiternext(it)
+ }
+ return a[:i]
+}
+
+// Method returns a function value corresponding to v's i'th method.
+// The arguments to a Call on the returned function should not include
+// a receiver; the returned function will always use v as the receiver.
+// Method panics if i is out of range.
+func (v Value) Method(i int) Value {
+ iv := v.internal()
+ if iv.kind == Invalid {
+ panic(&ValueError{"reflect.Value.Method", Invalid})
+ }
+ if i < 0 || i >= iv.typ.NumMethod() {
+ panic("reflect: Method index out of range")
+ }
+ return Value{v.Internal, i + 1}
+}
+
+// NumMethod returns the number of methods in the value's method set.
+func (v Value) NumMethod() int {
+ iv := v.internal()
+ if iv.kind == Invalid {
+ panic(&ValueError{"reflect.Value.NumMethod", Invalid})
+ }
+ return iv.typ.NumMethod()
+}
+
+// MethodByName returns a function value corresponding to the method
+// of v with the given name.
+// The arguments to a Call on the returned function should not include
+// a receiver; the returned function will always use v as the receiver.
+// It returns the zero Value if no method was found.
+func (v Value) MethodByName(name string) Value {
+ iv := v.internal()
+ if iv.kind == Invalid {
+ panic(&ValueError{"reflect.Value.MethodByName", Invalid})
+ }
+ m, ok := iv.typ.MethodByName(name)
+ if ok {
+ return Value{v.Internal, m.Index + 1}
+ }
+ return Value{}
+}
+
+// NumField returns the number of fields in the struct v.
+// It panics if v's Kind is not Struct.
+func (v Value) NumField() int {
+ iv := v.internal()
+ iv.mustBe(Struct)
+ return iv.typ.NumField()
+}
+
+// OverflowComplex returns true if the complex128 x cannot be represented by v's type.
+// It panics if v's Kind is not Complex64 or Complex128.
+func (v Value) OverflowComplex(x complex128) bool {
+ iv := v.internal()
+ switch iv.kind {
+ case Complex64:
+ return overflowFloat32(real(x)) || overflowFloat32(imag(x))
+ case Complex128:
+ return false
+ }
+ panic(&ValueError{"reflect.Value.OverflowComplex", iv.kind})
+}
+
+// OverflowFloat returns true if the float64 x cannot be represented by v's type.
+// It panics if v's Kind is not Float32 or Float64.
+func (v Value) OverflowFloat(x float64) bool {
+ iv := v.internal()
+ switch iv.kind {
+ case Float32:
+ return overflowFloat32(x)
+ case Float64:
+ return false
+ }
+ panic(&ValueError{"reflect.Value.OverflowFloat", iv.kind})
+}
+
+func overflowFloat32(x float64) bool {
+ if x < 0 {
+ x = -x
+ }
+ return math.MaxFloat32 <= x && x <= math.MaxFloat64
+}
+
+// OverflowInt returns true if the int64 x cannot be represented by v's type.
+// It panics if v's Kind is not Int, Int8, int16, Int32, or Int64.
+func (v Value) OverflowInt(x int64) bool {
+ iv := v.internal()
+ switch iv.kind {
+ case Int, Int8, Int16, Int32, Int64:
+ bitSize := iv.typ.size * 8
+ trunc := (x << (64 - bitSize)) >> (64 - bitSize)
+ return x != trunc
+ }
+ panic(&ValueError{"reflect.Value.OverflowInt", iv.kind})
+}
+
+// OverflowUint returns true if the uint64 x cannot be represented by v's type.
+// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
+func (v Value) OverflowUint(x uint64) bool {
+ iv := v.internal()
+ switch iv.kind {
+ case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64:
+ bitSize := iv.typ.size * 8
+ trunc := (x << (64 - bitSize)) >> (64 - bitSize)
+ return x != trunc
+ }
+ panic(&ValueError{"reflect.Value.OverflowUint", iv.kind})
+}
+
+// Pointer returns v's value as a uintptr.
+// It returns uintptr instead of unsafe.Pointer so that
+// code using reflect cannot obtain unsafe.Pointers
+// without importing the unsafe package explicitly.
+// It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer.
+func (v Value) Pointer() uintptr {
+ iv := v.internal()
+ switch iv.kind {
+ case Chan, Func, Map, Ptr, UnsafePointer:
+ if iv.kind == Func && v.InternalMethod != 0 {
+ panic("reflect.Value.Pointer of method Value")
+ }
+ return uintptr(iv.word)
+ case Slice:
+ return (*SliceHeader)(iv.addr).Data
+ }
+ panic(&ValueError{"reflect.Value.Pointer", iv.kind})
+}
+
+// Recv receives and returns a value from the channel v.
+// It panics if v's Kind is not Chan.
+// The receive blocks until a value is ready.
+// The boolean value ok is true if the value x corresponds to a send
+// on the channel, false if it is a zero value received because the channel is closed.
+func (v Value) Recv() (x Value, ok bool) {
+ iv := v.internal()
+ iv.mustBe(Chan)
+ iv.mustBeExported()
+ return iv.recv(false)
+}
+
+// internal recv, possibly non-blocking (nb)
+func (iv internalValue) recv(nb bool) (val Value, ok bool) {
+ t := iv.typ.toType()
+ if t.ChanDir()&RecvDir == 0 {
+ panic("recv on send-only channel")
+ }
+ ch := iv.word
+ if ch == 0 {
+ panic("recv on nil channel")
+ }
+ valWord, selected, ok := chanrecv(iv.typ.runtimeType(), ch, nb)
+ if selected {
+ val = valueFromIword(0, t.Elem(), valWord)
+ }
+ return
+}
+
+// Send sends x on the channel v.
+// It panics if v's kind is not Chan or if x's type is not the same type as v's element type.
+// As in Go, x's value must be assignable to the channel's element type.
+func (v Value) Send(x Value) {
+ iv := v.internal()
+ iv.mustBe(Chan)
+ iv.mustBeExported()
+ iv.send(x, false)
+}
+
+// internal send, possibly non-blocking
+func (iv internalValue) send(x Value, nb bool) (selected bool) {
+ t := iv.typ.toType()
+ if t.ChanDir()&SendDir == 0 {
+ panic("send on recv-only channel")
+ }
+ ix := x.internal()
+ ix.mustBeExported() // do not let unexported x leak
+ ix = convertForAssignment("reflect.Value.Send", nil, t.Elem(), ix)
+ ch := iv.word
+ if ch == 0 {
+ panic("send on nil channel")
+ }
+ return chansend(iv.typ.runtimeType(), ch, ix.word, nb)
+}
+
+// Set assigns x to the value v.
+// It panics if CanSet returns false.
+// As in Go, x's value must be assignable to v's type.
+func (v Value) Set(x Value) {
+ iv := v.internal()
+ ix := x.internal()
+
+ iv.mustBeAssignable()
+ ix.mustBeExported() // do not let unexported x leak
+
+ ix = convertForAssignment("reflect.Set", iv.addr, iv.typ, ix)
+
+ n := ix.typ.size
+ if n <= ptrSize {
+ storeIword(iv.addr, ix.word, n)
+ } else {
+ memmove(iv.addr, ix.addr, n)
+ }
+}
+
+// SetBool sets v's underlying value.
+// It panics if v's Kind is not Bool or if CanSet() is false.
+func (v Value) SetBool(x bool) {
+ iv := v.internal()
+ iv.mustBeAssignable()
+ iv.mustBe(Bool)
+ *(*bool)(iv.addr) = x
+}
+
+// SetComplex sets v's underlying value to x.
+// It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false.
+func (v Value) SetComplex(x complex128) {
+ iv := v.internal()
+ iv.mustBeAssignable()
+ switch iv.kind {
+ default:
+ panic(&ValueError{"reflect.Value.SetComplex", iv.kind})
+ case Complex64:
+ *(*complex64)(iv.addr) = complex64(x)
+ case Complex128:
+ *(*complex128)(iv.addr) = x
+ }
+}
+
+// SetFloat sets v's underlying value to x.
+// It panics if v's Kind is not Float32 or Float64, or if CanSet() is false.
+func (v Value) SetFloat(x float64) {
+ iv := v.internal()
+ iv.mustBeAssignable()
+ switch iv.kind {
+ default:
+ panic(&ValueError{"reflect.Value.SetFloat", iv.kind})
+ case Float32:
+ *(*float32)(iv.addr) = float32(x)
+ case Float64:
+ *(*float64)(iv.addr) = x
+ }
+}
+
+// SetInt sets v's underlying value to x.
+// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false.
+func (v Value) SetInt(x int64) {
+ iv := v.internal()
+ iv.mustBeAssignable()
+ switch iv.kind {
+ default:
+ panic(&ValueError{"reflect.Value.SetInt", iv.kind})
+ case Int:
+ *(*int)(iv.addr) = int(x)
+ case Int8:
+ *(*int8)(iv.addr) = int8(x)
+ case Int16:
+ *(*int16)(iv.addr) = int16(x)
+ case Int32:
+ *(*int32)(iv.addr) = int32(x)
+ case Int64:
+ *(*int64)(iv.addr) = x
+ }
+}
+
+// SetLen sets v's length to n.
+// It panics if v's Kind is not Slice.
+func (v Value) SetLen(n int) {
+ iv := v.internal()
+ iv.mustBeAssignable()
+ iv.mustBe(Slice)
+ s := (*SliceHeader)(iv.addr)
+ if n < 0 || n > int(s.Cap) {
+ panic("reflect: slice length out of range in SetLen")
+ }
+ s.Len = n
+}
+
+// SetMapIndex sets the value associated with key in the map v to val.
+// It panics if v's Kind is not Map.
+// If val is the zero Value, SetMapIndex deletes the key from the map.
+// As in Go, key's value must be assignable to the map's key type,
+// and val's value must be assignable to the map's value type.
+func (v Value) SetMapIndex(key, val Value) {
+ iv := v.internal()
+ ikey := key.internal()
+ ival := val.internal()
+
+ iv.mustBe(Map)
+ iv.mustBeExported()
+
+ ikey.mustBeExported()
+ ikey = convertForAssignment("reflect.Value.SetMapIndex", nil, iv.typ.Key(), ikey)
+
+ if ival.kind != Invalid {
+ ival.mustBeExported()
+ ival = convertForAssignment("reflect.Value.SetMapIndex", nil, iv.typ.Elem(), ival)
+ }
+
+ mapassign(iv.typ.runtimeType(), iv.word, ikey.word, ival.word, ival.kind != Invalid)
+}
+
+// SetUint sets v's underlying value to x.
+// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false.
+func (v Value) SetUint(x uint64) {
+ iv := v.internal()
+ iv.mustBeAssignable()
+ switch iv.kind {
+ default:
+ panic(&ValueError{"reflect.Value.SetUint", iv.kind})
+ case Uint:
+ *(*uint)(iv.addr) = uint(x)
+ case Uint8:
+ *(*uint8)(iv.addr) = uint8(x)
+ case Uint16:
+ *(*uint16)(iv.addr) = uint16(x)
+ case Uint32:
+ *(*uint32)(iv.addr) = uint32(x)
+ case Uint64:
+ *(*uint64)(iv.addr) = x
+ case Uintptr:
+ *(*uintptr)(iv.addr) = uintptr(x)
+ }
+}
+
+// SetPointer sets the unsafe.Pointer value v to x.
+// It panics if v's Kind is not UnsafePointer.
+func (v Value) SetPointer(x unsafe.Pointer) {
+ iv := v.internal()
+ iv.mustBeAssignable()
+ iv.mustBe(UnsafePointer)
+ *(*unsafe.Pointer)(iv.addr) = x
+}
+
+// SetString sets v's underlying value to x.
+// It panics if v's Kind is not String or if CanSet() is false.
+func (v Value) SetString(x string) {
+ iv := v.internal()
+ iv.mustBeAssignable()
+ iv.mustBe(String)
+ *(*string)(iv.addr) = x
+}
+
+// Slice returns a slice of v.
+// It panics if v's Kind is not Array or Slice.
+func (v Value) Slice(beg, end int) Value {
+ iv := v.internal()
+ if iv.kind != Array && iv.kind != Slice {
+ panic(&ValueError{"reflect.Value.Slice", iv.kind})
+ }
+ cap := v.Cap()
+ if beg < 0 || end < beg || end > cap {
+ panic("reflect.Value.Slice: slice index out of bounds")
+ }
+ var typ Type
+ var base uintptr
+ switch iv.kind {
+ case Array:
+ if iv.flag&flagAddr == 0 {
+ panic("reflect.Value.Slice: slice of unaddressable array")
+ }
+ typ = toType((*arrayType)(unsafe.Pointer(iv.typ)).slice)
+ base = uintptr(iv.addr)
+ case Slice:
+ typ = iv.typ.toType()
+ base = (*SliceHeader)(iv.addr).Data
+ }
+ s := new(SliceHeader)
+ s.Data = base + uintptr(beg)*typ.Elem().Size()
+ s.Len = end - beg
+ s.Cap = cap - beg
+ return valueFromAddr(iv.flag&flagRO, typ, unsafe.Pointer(s))
+}
+
+// String returns the string v's underlying value, as a string.
+// String is a special case because of Go's String method convention.
+// Unlike the other getters, it does not panic if v's Kind is not String.
+// Instead, it returns a string of the form "<T value>" where T is v's type.
+func (v Value) String() string {
+ iv := v.internal()
+ switch iv.kind {
+ case Invalid:
+ return "<invalid Value>"
+ case String:
+ return *(*string)(iv.addr)
+ }
+ return "<" + iv.typ.String() + " Value>"
+}
+
+// TryRecv attempts to receive a value from the channel v but will not block.
+// It panics if v's Kind is not Chan.
+// If the receive cannot finish without blocking, x is the zero Value.
+// The boolean ok is true if the value x corresponds to a send
+// on the channel, false if it is a zero value received because the channel is closed.
+func (v Value) TryRecv() (x Value, ok bool) {
+ iv := v.internal()
+ iv.mustBe(Chan)
+ iv.mustBeExported()
+ return iv.recv(true)
+}
+
+// TrySend attempts to send x on the channel v but will not block.
+// It panics if v's Kind is not Chan.
+// It returns true if the value was sent, false otherwise.
+// As in Go, x's value must be assignable to the channel's element type.
+func (v Value) TrySend(x Value) bool {
+ iv := v.internal()
+ iv.mustBe(Chan)
+ iv.mustBeExported()
+ return iv.send(x, true)
+}
+
+// Type returns v's type.
+func (v Value) Type() Type {
+ t := v.internal().typ
+ if t == nil {
+ panic(&ValueError{"reflect.Value.Type", Invalid})
+ }
+ return t.toType()
+}
+
+// Uint returns v's underlying value, as a uint64.
+// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
+func (v Value) Uint() uint64 {
+ iv := v.internal()
+ switch iv.kind {
+ case Uint:
+ return uint64(*(*uint)(unsafe.Pointer(&iv.word)))
+ case Uint8:
+ return uint64(*(*uint8)(unsafe.Pointer(&iv.word)))
+ case Uint16:
+ return uint64(*(*uint16)(unsafe.Pointer(&iv.word)))
+ case Uint32:
+ return uint64(*(*uint32)(unsafe.Pointer(&iv.word)))
+ case Uintptr:
+ return uint64(*(*uintptr)(unsafe.Pointer(&iv.word)))
+ case Uint64:
+ if iv.addr == nil {
+ return *(*uint64)(unsafe.Pointer(&iv.word))
+ }
+ return *(*uint64)(iv.addr)
+ }
+ panic(&ValueError{"reflect.Value.Uint", iv.kind})
+}
+
+// UnsafeAddr returns a pointer to v's data.
+// It is for advanced clients that also import the "unsafe" package.
+// It panics if v is not addressable.
+func (v Value) UnsafeAddr() uintptr {
+ iv := v.internal()
+ if iv.kind == Invalid {
+ panic(&ValueError{"reflect.Value.UnsafeAddr", iv.kind})
+ }
+ if iv.flag&flagAddr == 0 {
+ panic("reflect.Value.UnsafeAddr of unaddressable value")
+ }
+ return uintptr(iv.addr)
+}
+
+// StringHeader is the runtime representation of a string.
+// It cannot be used safely or portably.
+type StringHeader struct {
+ Data uintptr
+ Len int
+}
+
+// SliceHeader is the runtime representation of a slice.
+// It cannot be used safely or portably.
+type SliceHeader struct {
+ Data uintptr
+ Len int
+ Cap int
+}
+
+func typesMustMatch(what string, t1, t2 Type) {
+ if t1 != t2 {
+ panic("reflect: " + what + ": " + t1.String() + " != " + t2.String())
+ }
+}
+
+// grow grows the slice s so that it can hold extra more values, allocating
+// more capacity if needed. It also returns the old and new slice lengths.
+func grow(s Value, extra int) (Value, int, int) {
+ i0 := s.Len()
+ i1 := i0 + extra
+ if i1 < i0 {
+ panic("reflect.Append: slice overflow")
+ }
+ m := s.Cap()
+ if i1 <= m {
+ return s.Slice(0, i1), i0, i1
+ }
+ if m == 0 {
+ m = extra
+ } else {
+ for m < i1 {
+ if i0 < 1024 {
+ m += m
+ } else {
+ m += m / 4
+ }
+ }
+ }
+ t := MakeSlice(s.Type(), i1, m)
+ Copy(t, s)
+ return t, i0, i1
+}
+
+// Append appends the values x to a slice s and returns the resulting slice.
+// As in Go, each x's value must be assignable to the slice's element type.
+func Append(s Value, x ...Value) Value {
+ s.internal().mustBe(Slice)
+ s, i0, i1 := grow(s, len(x))
+ for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
+ s.Index(i).Set(x[j])
+ }
+ return s
+}
+
+// AppendSlice appends a slice t to a slice s and returns the resulting slice.
+// The slices s and t must have the same element type.
+func AppendSlice(s, t Value) Value {
+ s.internal().mustBe(Slice)
+ t.internal().mustBe(Slice)
+ typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem())
+ s, i0, i1 := grow(s, t.Len())
+ Copy(s.Slice(i0, i1), t)
+ return s
+}
+
+// Copy copies the contents of src into dst until either
+// dst has been filled or src has been exhausted.
+// It returns the number of elements copied.
+// Dst and src each must have kind Slice or Array, and
+// dst and src must have the same element type.
+func Copy(dst, src Value) int {
+ idst := dst.internal()
+ isrc := src.internal()
+
+ if idst.kind != Array && idst.kind != Slice {
+ panic(&ValueError{"reflect.Copy", idst.kind})
+ }
+ if idst.kind == Array {
+ idst.mustBeAssignable()
+ }
+ idst.mustBeExported()
+ if isrc.kind != Array && isrc.kind != Slice {
+ panic(&ValueError{"reflect.Copy", isrc.kind})
+ }
+ isrc.mustBeExported()
+
+ de := idst.typ.Elem()
+ se := isrc.typ.Elem()
+ typesMustMatch("reflect.Copy", de, se)
+
+ n := dst.Len()
+ if sn := src.Len(); n > sn {
+ n = sn
+ }
+
+ // If sk is an in-line array, cannot take its address.
+ // Instead, copy element by element.
+ if isrc.addr == nil {
+ for i := 0; i < n; i++ {
+ dst.Index(i).Set(src.Index(i))
+ }
+ return n
+ }
+
+ // Copy via memmove.
+ var da, sa unsafe.Pointer
+ if idst.kind == Array {
+ da = idst.addr
+ } else {
+ da = unsafe.Pointer((*SliceHeader)(idst.addr).Data)
+ }
+ if isrc.kind == Array {
+ sa = isrc.addr
+ } else {
+ sa = unsafe.Pointer((*SliceHeader)(isrc.addr).Data)
+ }
+ memmove(da, sa, uintptr(n)*de.Size())
+ return n
+}
+
+/*
+ * constructors
+ */
+
+// MakeSlice creates a new zero-initialized slice value
+// for the specified slice type, length, and capacity.
+func MakeSlice(typ Type, len, cap int) Value {
+ if typ.Kind() != Slice {
+ panic("reflect: MakeSlice of non-slice type")
+ }
+ s := &SliceHeader{
+ Data: uintptr(unsafe.NewArray(typ.Elem(), cap)),
+ Len: len,
+ Cap: cap,
+ }
+ return valueFromAddr(0, typ, unsafe.Pointer(s))
+}
+
+// MakeChan creates a new channel with the specified type and buffer size.
+func MakeChan(typ Type, buffer int) Value {
+ if typ.Kind() != Chan {
+ panic("reflect: MakeChan of non-chan type")
+ }
+ if buffer < 0 {
+ panic("MakeChan: negative buffer size")
+ }
+ if typ.ChanDir() != BothDir {
+ panic("MakeChan: unidirectional channel type")
+ }
+ ch := makechan(typ.runtimeType(), uint32(buffer))
+ return valueFromIword(0, typ, ch)
+}
+
+// MakeMap creates a new map of the specified type.
+func MakeMap(typ Type) Value {
+ if typ.Kind() != Map {
+ panic("reflect: MakeMap of non-map type")
+ }
+ m := makemap(typ.runtimeType())
+ return valueFromIword(0, typ, m)
+}
+
+// Indirect returns the value that v points to.
+// If v is a nil pointer, Indirect returns a nil Value.
+// If v is not a pointer, Indirect returns v.
+func Indirect(v Value) Value {
+ if v.Kind() != Ptr {
+ return v
+ }
+ return v.Elem()
+}
+
+// ValueOf returns a new Value initialized to the concrete value
+// stored in the interface i. ValueOf(nil) returns the zero Value.
+func ValueOf(i interface{}) Value {
+ if i == nil {
+ return Value{}
+ }
+ // For an interface value with the noAddr bit set,
+ // the representation is identical to an empty interface.
+ eface := *(*emptyInterface)(unsafe.Pointer(&i))
+ return packValue(0, eface.typ, eface.word)
+}
+
+// Zero returns a Value representing a zero value for the specified type.
+// The result is different from the zero value of the Value struct,
+// which represents no value at all.
+// For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0.
+func Zero(typ Type) Value {
+ if typ == nil {
+ panic("reflect: Zero(nil)")
+ }
+ if typ.Size() <= ptrSize {
+ return valueFromIword(0, typ, 0)
+ }
+ return valueFromAddr(0, typ, unsafe.New(typ))
+}
+
+// New returns a Value representing a pointer to a new zero value
+// for the specified type. That is, the returned Value's Type is PtrTo(t).
+func New(typ Type) Value {
+ if typ == nil {
+ panic("reflect: New(nil)")
+ }
+ ptr := unsafe.New(typ)
+ return valueFromIword(0, PtrTo(typ), iword(ptr))
+}
+
+// convertForAssignment
+func convertForAssignment(what string, addr unsafe.Pointer, dst Type, iv internalValue) internalValue {
+ if iv.method {
+ panic(what + ": cannot assign method value to type " + dst.String())
+ }
+
+ dst1 := dst.(*commonType)
+ if directlyAssignable(dst1, iv.typ) {
+ // Overwrite type so that they match.
+ // Same memory layout, so no harm done.
+ iv.typ = dst1
+ return iv
+ }
+ if implements(dst1, iv.typ) {
+ if addr == nil {
+ addr = unsafe.Pointer(new(interface{}))
+ }
+ x := iv.Interface()
+ if dst.NumMethod() == 0 {
+ *(*interface{})(addr) = x
+ } else {
+ ifaceE2I(dst1.runtimeType(), x, addr)
+ }
+ iv.addr = addr
+ iv.word = iword(addr)
+ iv.typ = dst1
+ return iv
+ }
+
+ // Failed.
+ panic(what + ": value of type " + iv.typ.String() + " is not assignable to type " + dst.String())
+}
+
+// implemented in ../pkg/runtime
+func chancap(ch iword) int32
+func chanclose(ch iword)
+func chanlen(ch iword) int32
+func chanrecv(t *runtime.Type, ch iword, nb bool) (val iword, selected, received bool)
+func chansend(t *runtime.Type, ch iword, val iword, nb bool) bool
+
+func makechan(typ *runtime.Type, size uint32) (ch iword)
+func makemap(t *runtime.Type) iword
+func mapaccess(t *runtime.Type, m iword, key iword) (val iword, ok bool)
+func mapassign(t *runtime.Type, m iword, key, val iword, ok bool)
+func mapiterinit(t *runtime.Type, m iword) *byte
+func mapiterkey(it *byte) (key iword, ok bool)
+func mapiternext(it *byte)
+func maplen(m iword) int32
+
+func call(fn, arg unsafe.Pointer, n uint32)
+func ifaceE2I(t *runtime.Type, src interface{}, dst unsafe.Pointer)