diff options
Diffstat (limited to 'src/pkg/regexp/exec.go')
-rw-r--r-- | src/pkg/regexp/exec.go | 452 |
1 files changed, 0 insertions, 452 deletions
diff --git a/src/pkg/regexp/exec.go b/src/pkg/regexp/exec.go deleted file mode 100644 index c4cb201f6..000000000 --- a/src/pkg/regexp/exec.go +++ /dev/null @@ -1,452 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package regexp - -import ( - "io" - "regexp/syntax" -) - -// A queue is a 'sparse array' holding pending threads of execution. -// See http://research.swtch.com/2008/03/using-uninitialized-memory-for-fun-and.html -type queue struct { - sparse []uint32 - dense []entry -} - -// A entry is an entry on a queue. -// It holds both the instruction pc and the actual thread. -// Some queue entries are just place holders so that the machine -// knows it has considered that pc. Such entries have t == nil. -type entry struct { - pc uint32 - t *thread -} - -// A thread is the state of a single path through the machine: -// an instruction and a corresponding capture array. -// See http://swtch.com/~rsc/regexp/regexp2.html -type thread struct { - inst *syntax.Inst - cap []int -} - -// A machine holds all the state during an NFA simulation for p. -type machine struct { - re *Regexp // corresponding Regexp - p *syntax.Prog // compiled program - op *onePassProg // compiled onepass program, or notOnePass - q0, q1 queue // two queues for runq, nextq - pool []*thread // pool of available threads - matched bool // whether a match was found - matchcap []int // capture information for the match - - // cached inputs, to avoid allocation - inputBytes inputBytes - inputString inputString - inputReader inputReader -} - -func (m *machine) newInputBytes(b []byte) input { - m.inputBytes.str = b - return &m.inputBytes -} - -func (m *machine) newInputString(s string) input { - m.inputString.str = s - return &m.inputString -} - -func (m *machine) newInputReader(r io.RuneReader) input { - m.inputReader.r = r - m.inputReader.atEOT = false - m.inputReader.pos = 0 - return &m.inputReader -} - -// progMachine returns a new machine running the prog p. -func progMachine(p *syntax.Prog, op *onePassProg) *machine { - m := &machine{p: p, op: op} - n := len(m.p.Inst) - m.q0 = queue{make([]uint32, n), make([]entry, 0, n)} - m.q1 = queue{make([]uint32, n), make([]entry, 0, n)} - ncap := p.NumCap - if ncap < 2 { - ncap = 2 - } - m.matchcap = make([]int, ncap) - return m -} - -func (m *machine) init(ncap int) { - for _, t := range m.pool { - t.cap = t.cap[:ncap] - } - m.matchcap = m.matchcap[:ncap] -} - -// alloc allocates a new thread with the given instruction. -// It uses the free pool if possible. -func (m *machine) alloc(i *syntax.Inst) *thread { - var t *thread - if n := len(m.pool); n > 0 { - t = m.pool[n-1] - m.pool = m.pool[:n-1] - } else { - t = new(thread) - t.cap = make([]int, len(m.matchcap), cap(m.matchcap)) - } - t.inst = i - return t -} - -// free returns t to the free pool. -func (m *machine) free(t *thread) { - m.inputBytes.str = nil - m.inputString.str = "" - m.inputReader.r = nil - m.pool = append(m.pool, t) -} - -// match runs the machine over the input starting at pos. -// It reports whether a match was found. -// If so, m.matchcap holds the submatch information. -func (m *machine) match(i input, pos int) bool { - startCond := m.re.cond - if startCond == ^syntax.EmptyOp(0) { // impossible - return false - } - m.matched = false - for i := range m.matchcap { - m.matchcap[i] = -1 - } - runq, nextq := &m.q0, &m.q1 - r, r1 := endOfText, endOfText - width, width1 := 0, 0 - r, width = i.step(pos) - if r != endOfText { - r1, width1 = i.step(pos + width) - } - var flag syntax.EmptyOp - if pos == 0 { - flag = syntax.EmptyOpContext(-1, r) - } else { - flag = i.context(pos) - } - for { - if len(runq.dense) == 0 { - if startCond&syntax.EmptyBeginText != 0 && pos != 0 { - // Anchored match, past beginning of text. - break - } - if m.matched { - // Have match; finished exploring alternatives. - break - } - if len(m.re.prefix) > 0 && r1 != m.re.prefixRune && i.canCheckPrefix() { - // Match requires literal prefix; fast search for it. - advance := i.index(m.re, pos) - if advance < 0 { - break - } - pos += advance - r, width = i.step(pos) - r1, width1 = i.step(pos + width) - } - } - if !m.matched { - if len(m.matchcap) > 0 { - m.matchcap[0] = pos - } - m.add(runq, uint32(m.p.Start), pos, m.matchcap, flag, nil) - } - flag = syntax.EmptyOpContext(r, r1) - m.step(runq, nextq, pos, pos+width, r, flag) - if width == 0 { - break - } - if len(m.matchcap) == 0 && m.matched { - // Found a match and not paying attention - // to where it is, so any match will do. - break - } - pos += width - r, width = r1, width1 - if r != endOfText { - r1, width1 = i.step(pos + width) - } - runq, nextq = nextq, runq - } - m.clear(nextq) - return m.matched -} - -// clear frees all threads on the thread queue. -func (m *machine) clear(q *queue) { - for _, d := range q.dense { - if d.t != nil { - // m.free(d.t) - m.pool = append(m.pool, d.t) - } - } - q.dense = q.dense[:0] -} - -// step executes one step of the machine, running each of the threads -// on runq and appending new threads to nextq. -// The step processes the rune c (which may be endOfText), -// which starts at position pos and ends at nextPos. -// nextCond gives the setting for the empty-width flags after c. -func (m *machine) step(runq, nextq *queue, pos, nextPos int, c rune, nextCond syntax.EmptyOp) { - longest := m.re.longest - for j := 0; j < len(runq.dense); j++ { - d := &runq.dense[j] - t := d.t - if t == nil { - continue - } - if longest && m.matched && len(t.cap) > 0 && m.matchcap[0] < t.cap[0] { - // m.free(t) - m.pool = append(m.pool, t) - continue - } - i := t.inst - add := false - switch i.Op { - default: - panic("bad inst") - - case syntax.InstMatch: - if len(t.cap) > 0 && (!longest || !m.matched || m.matchcap[1] < pos) { - t.cap[1] = pos - copy(m.matchcap, t.cap) - } - if !longest { - // First-match mode: cut off all lower-priority threads. - for _, d := range runq.dense[j+1:] { - if d.t != nil { - // m.free(d.t) - m.pool = append(m.pool, d.t) - } - } - runq.dense = runq.dense[:0] - } - m.matched = true - - case syntax.InstRune: - add = i.MatchRune(c) - case syntax.InstRune1: - add = c == i.Rune[0] - case syntax.InstRuneAny: - add = true - case syntax.InstRuneAnyNotNL: - add = c != '\n' - } - if add { - t = m.add(nextq, i.Out, nextPos, t.cap, nextCond, t) - } - if t != nil { - // m.free(t) - m.pool = append(m.pool, t) - } - } - runq.dense = runq.dense[:0] -} - -// add adds an entry to q for pc, unless the q already has such an entry. -// It also recursively adds an entry for all instructions reachable from pc by following -// empty-width conditions satisfied by cond. pos gives the current position -// in the input. -func (m *machine) add(q *queue, pc uint32, pos int, cap []int, cond syntax.EmptyOp, t *thread) *thread { - if pc == 0 { - return t - } - if j := q.sparse[pc]; j < uint32(len(q.dense)) && q.dense[j].pc == pc { - return t - } - - j := len(q.dense) - q.dense = q.dense[:j+1] - d := &q.dense[j] - d.t = nil - d.pc = pc - q.sparse[pc] = uint32(j) - - i := &m.p.Inst[pc] - switch i.Op { - default: - panic("unhandled") - case syntax.InstFail: - // nothing - case syntax.InstAlt, syntax.InstAltMatch: - t = m.add(q, i.Out, pos, cap, cond, t) - t = m.add(q, i.Arg, pos, cap, cond, t) - case syntax.InstEmptyWidth: - if syntax.EmptyOp(i.Arg)&^cond == 0 { - t = m.add(q, i.Out, pos, cap, cond, t) - } - case syntax.InstNop: - t = m.add(q, i.Out, pos, cap, cond, t) - case syntax.InstCapture: - if int(i.Arg) < len(cap) { - opos := cap[i.Arg] - cap[i.Arg] = pos - m.add(q, i.Out, pos, cap, cond, nil) - cap[i.Arg] = opos - } else { - t = m.add(q, i.Out, pos, cap, cond, t) - } - case syntax.InstMatch, syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL: - if t == nil { - t = m.alloc(i) - } else { - t.inst = i - } - if len(cap) > 0 && &t.cap[0] != &cap[0] { - copy(t.cap, cap) - } - d.t = t - t = nil - } - return t -} - -// onepass runs the machine over the input starting at pos. -// It reports whether a match was found. -// If so, m.matchcap holds the submatch information. -func (m *machine) onepass(i input, pos int) bool { - startCond := m.re.cond - if startCond == ^syntax.EmptyOp(0) { // impossible - return false - } - m.matched = false - for i := range m.matchcap { - m.matchcap[i] = -1 - } - r, r1 := endOfText, endOfText - width, width1 := 0, 0 - r, width = i.step(pos) - if r != endOfText { - r1, width1 = i.step(pos + width) - } - var flag syntax.EmptyOp - if pos == 0 { - flag = syntax.EmptyOpContext(-1, r) - } else { - flag = i.context(pos) - } - pc := m.op.Start - inst := m.op.Inst[pc] - // If there is a simple literal prefix, skip over it. - if pos == 0 && syntax.EmptyOp(inst.Arg)&^flag == 0 && - len(m.re.prefix) > 0 && i.canCheckPrefix() { - // Match requires literal prefix; fast search for it. - if i.hasPrefix(m.re) { - pos += len(m.re.prefix) - r, width = i.step(pos) - r1, width1 = i.step(pos + width) - flag = i.context(pos) - pc = int(m.re.prefixEnd) - } else { - return m.matched - } - } - for { - inst = m.op.Inst[pc] - pc = int(inst.Out) - switch inst.Op { - default: - panic("bad inst") - case syntax.InstMatch: - m.matched = true - if len(m.matchcap) > 0 { - m.matchcap[0] = 0 - m.matchcap[1] = pos - } - return m.matched - case syntax.InstRune: - if !inst.MatchRune(r) { - return m.matched - } - case syntax.InstRune1: - if r != inst.Rune[0] { - return m.matched - } - case syntax.InstRuneAny: - // Nothing - case syntax.InstRuneAnyNotNL: - if r == '\n' { - return m.matched - } - // peek at the input rune to see which branch of the Alt to take - case syntax.InstAlt, syntax.InstAltMatch: - pc = int(onePassNext(&inst, r)) - continue - case syntax.InstFail: - return m.matched - case syntax.InstNop: - continue - case syntax.InstEmptyWidth: - if syntax.EmptyOp(inst.Arg)&^flag != 0 { - return m.matched - } - continue - case syntax.InstCapture: - if int(inst.Arg) < len(m.matchcap) { - m.matchcap[inst.Arg] = pos - } - continue - } - if width == 0 { - break - } - flag = syntax.EmptyOpContext(r, r1) - pos += width - r, width = r1, width1 - if r != endOfText { - r1, width1 = i.step(pos + width) - } - } - return m.matched -} - -// empty is a non-nil 0-element slice, -// so doExecute can avoid an allocation -// when 0 captures are requested from a successful match. -var empty = make([]int, 0) - -// doExecute finds the leftmost match in the input and returns -// the position of its subexpressions. -func (re *Regexp) doExecute(r io.RuneReader, b []byte, s string, pos int, ncap int) []int { - m := re.get() - var i input - if r != nil { - i = m.newInputReader(r) - } else if b != nil { - i = m.newInputBytes(b) - } else { - i = m.newInputString(s) - } - if m.op != notOnePass { - if !m.onepass(i, pos) { - re.put(m) - return nil - } - } else { - m.init(ncap) - if !m.match(i, pos) { - re.put(m) - return nil - } - } - if ncap == 0 { - re.put(m) - return empty // empty but not nil - } - cap := make([]int, len(m.matchcap)) - copy(cap, m.matchcap) - re.put(m) - return cap -} |