summaryrefslogtreecommitdiff
path: root/src/pkg/regexp/onepass.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/regexp/onepass.go')
-rw-r--r--src/pkg/regexp/onepass.go582
1 files changed, 0 insertions, 582 deletions
diff --git a/src/pkg/regexp/onepass.go b/src/pkg/regexp/onepass.go
deleted file mode 100644
index 501fb28af..000000000
--- a/src/pkg/regexp/onepass.go
+++ /dev/null
@@ -1,582 +0,0 @@
-// Copyright 2014 The Go Authors. All rights reserved.
-
-package regexp
-
-import (
- "bytes"
- "regexp/syntax"
- "sort"
- "unicode"
-)
-
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// "One-pass" regexp execution.
-// Some regexps can be analyzed to determine that they never need
-// backtracking: they are guaranteed to run in one pass over the string
-// without bothering to save all the usual NFA state.
-// Detect those and execute them more quickly.
-
-// A onePassProg is a compiled one-pass regular expression program.
-// It is the same as syntax.Prog except for the use of onePassInst.
-type onePassProg struct {
- Inst []onePassInst
- Start int // index of start instruction
- NumCap int // number of InstCapture insts in re
-}
-
-// A onePassInst is a single instruction in a one-pass regular expression program.
-// It is the same as syntax.Inst except for the new 'Next' field.
-type onePassInst struct {
- syntax.Inst
- Next []uint32
-}
-
-// OnePassPrefix returns a literal string that all matches for the
-// regexp must start with. Complete is true if the prefix
-// is the entire match. Pc is the index of the last rune instruction
-// in the string. The OnePassPrefix skips over the mandatory
-// EmptyBeginText
-func onePassPrefix(p *syntax.Prog) (prefix string, complete bool, pc uint32) {
- i := &p.Inst[p.Start]
- if i.Op != syntax.InstEmptyWidth || (syntax.EmptyOp(i.Arg))&syntax.EmptyBeginText == 0 {
- return "", i.Op == syntax.InstMatch, uint32(p.Start)
- }
- pc = i.Out
- i = &p.Inst[pc]
- for i.Op == syntax.InstNop {
- pc = i.Out
- i = &p.Inst[pc]
- }
- // Avoid allocation of buffer if prefix is empty.
- if iop(i) != syntax.InstRune || len(i.Rune) != 1 {
- return "", i.Op == syntax.InstMatch, uint32(p.Start)
- }
-
- // Have prefix; gather characters.
- var buf bytes.Buffer
- for iop(i) == syntax.InstRune && len(i.Rune) == 1 && syntax.Flags(i.Arg)&syntax.FoldCase == 0 {
- buf.WriteRune(i.Rune[0])
- pc, i = i.Out, &p.Inst[i.Out]
- }
- return buf.String(), i.Op == syntax.InstEmptyWidth && (syntax.EmptyOp(i.Arg))&syntax.EmptyBeginText != 0, pc
-}
-
-// OnePassNext selects the next actionable state of the prog, based on the input character.
-// It should only be called when i.Op == InstAlt or InstAltMatch, and from the one-pass machine.
-// One of the alternates may ultimately lead without input to end of line. If the instruction
-// is InstAltMatch the path to the InstMatch is in i.Out, the normal node in i.Next.
-func onePassNext(i *onePassInst, r rune) uint32 {
- next := i.MatchRunePos(r)
- if next >= 0 {
- return i.Next[next]
- }
- if i.Op == syntax.InstAltMatch {
- return i.Out
- }
- return 0
-}
-
-func iop(i *syntax.Inst) syntax.InstOp {
- op := i.Op
- switch op {
- case syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
- op = syntax.InstRune
- }
- return op
-}
-
-// Sparse Array implementation is used as a queueOnePass.
-type queueOnePass struct {
- sparse []uint32
- dense []uint32
- size, nextIndex uint32
-}
-
-func (q *queueOnePass) empty() bool {
- return q.nextIndex >= q.size
-}
-
-func (q *queueOnePass) next() (n uint32) {
- n = q.dense[q.nextIndex]
- q.nextIndex++
- return
-}
-
-func (q *queueOnePass) clear() {
- q.size = 0
- q.nextIndex = 0
-}
-
-func (q *queueOnePass) reset() {
- q.nextIndex = 0
-}
-
-func (q *queueOnePass) contains(u uint32) bool {
- if u >= uint32(len(q.sparse)) {
- return false
- }
- return q.sparse[u] < q.size && q.dense[q.sparse[u]] == u
-}
-
-func (q *queueOnePass) insert(u uint32) {
- if !q.contains(u) {
- q.insertNew(u)
- }
-}
-
-func (q *queueOnePass) insertNew(u uint32) {
- if u >= uint32(len(q.sparse)) {
- return
- }
- q.sparse[u] = q.size
- q.dense[q.size] = u
- q.size++
-}
-
-func newQueue(size int) (q *queueOnePass) {
- return &queueOnePass{
- sparse: make([]uint32, size),
- dense: make([]uint32, size),
- }
-}
-
-// mergeRuneSets merges two non-intersecting runesets, and returns the merged result,
-// and a NextIp array. The idea is that if a rune matches the OnePassRunes at index
-// i, NextIp[i/2] is the target. If the input sets intersect, an empty runeset and a
-// NextIp array with the single element mergeFailed is returned.
-// The code assumes that both inputs contain ordered and non-intersecting rune pairs.
-const mergeFailed = uint32(0xffffffff)
-
-var (
- noRune = []rune{}
- noNext = []uint32{mergeFailed}
-)
-
-func mergeRuneSets(leftRunes, rightRunes *[]rune, leftPC, rightPC uint32) ([]rune, []uint32) {
- leftLen := len(*leftRunes)
- rightLen := len(*rightRunes)
- if leftLen&0x1 != 0 || rightLen&0x1 != 0 {
- panic("mergeRuneSets odd length []rune")
- }
- var (
- lx, rx int
- )
- merged := make([]rune, 0)
- next := make([]uint32, 0)
- ok := true
- defer func() {
- if !ok {
- merged = nil
- next = nil
- }
- }()
-
- ix := -1
- extend := func(newLow *int, newArray *[]rune, pc uint32) bool {
- if ix > 0 && (*newArray)[*newLow] <= merged[ix] {
- return false
- }
- merged = append(merged, (*newArray)[*newLow], (*newArray)[*newLow+1])
- *newLow += 2
- ix += 2
- next = append(next, pc)
- return true
- }
-
- for lx < leftLen || rx < rightLen {
- switch {
- case rx >= rightLen:
- ok = extend(&lx, leftRunes, leftPC)
- case lx >= leftLen:
- ok = extend(&rx, rightRunes, rightPC)
- case (*rightRunes)[rx] < (*leftRunes)[lx]:
- ok = extend(&rx, rightRunes, rightPC)
- default:
- ok = extend(&lx, leftRunes, leftPC)
- }
- if !ok {
- return noRune, noNext
- }
- }
- return merged, next
-}
-
-// cleanupOnePass drops working memory, and restores certain shortcut instructions.
-func cleanupOnePass(prog *onePassProg, original *syntax.Prog) {
- for ix, instOriginal := range original.Inst {
- switch instOriginal.Op {
- case syntax.InstAlt, syntax.InstAltMatch, syntax.InstRune:
- case syntax.InstCapture, syntax.InstEmptyWidth, syntax.InstNop, syntax.InstMatch, syntax.InstFail:
- prog.Inst[ix].Next = nil
- case syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
- prog.Inst[ix].Next = nil
- prog.Inst[ix] = onePassInst{Inst: instOriginal}
- }
- }
-}
-
-// onePassCopy creates a copy of the original Prog, as we'll be modifying it
-func onePassCopy(prog *syntax.Prog) *onePassProg {
- p := &onePassProg{
- Start: prog.Start,
- NumCap: prog.NumCap,
- }
- for _, inst := range prog.Inst {
- p.Inst = append(p.Inst, onePassInst{Inst: inst})
- }
-
- // rewrites one or more common Prog constructs that enable some otherwise
- // non-onepass Progs to be onepass. A:BD (for example) means an InstAlt at
- // ip A, that points to ips B & C.
- // A:BC + B:DA => A:BC + B:CD
- // A:BC + B:DC => A:DC + B:DC
- for pc := range p.Inst {
- switch p.Inst[pc].Op {
- default:
- continue
- case syntax.InstAlt, syntax.InstAltMatch:
- // A:Bx + B:Ay
- p_A_Other := &p.Inst[pc].Out
- p_A_Alt := &p.Inst[pc].Arg
- // make sure a target is another Alt
- instAlt := p.Inst[*p_A_Alt]
- if !(instAlt.Op == syntax.InstAlt || instAlt.Op == syntax.InstAltMatch) {
- p_A_Alt, p_A_Other = p_A_Other, p_A_Alt
- instAlt = p.Inst[*p_A_Alt]
- if !(instAlt.Op == syntax.InstAlt || instAlt.Op == syntax.InstAltMatch) {
- continue
- }
- }
- instOther := p.Inst[*p_A_Other]
- // Analyzing both legs pointing to Alts is for another day
- if instOther.Op == syntax.InstAlt || instOther.Op == syntax.InstAltMatch {
- // too complicated
- continue
- }
- // simple empty transition loop
- // A:BC + B:DA => A:BC + B:DC
- p_B_Alt := &p.Inst[*p_A_Alt].Out
- p_B_Other := &p.Inst[*p_A_Alt].Arg
- patch := false
- if instAlt.Out == uint32(pc) {
- patch = true
- } else if instAlt.Arg == uint32(pc) {
- patch = true
- p_B_Alt, p_B_Other = p_B_Other, p_B_Alt
- }
- if patch {
- *p_B_Alt = *p_A_Other
- }
-
- // empty transition to common target
- // A:BC + B:DC => A:DC + B:DC
- if *p_A_Other == *p_B_Alt {
- *p_A_Alt = *p_B_Other
- }
- }
- }
- return p
-}
-
-// runeSlice exists to permit sorting the case-folded rune sets.
-type runeSlice []rune
-
-func (p runeSlice) Len() int { return len(p) }
-func (p runeSlice) Less(i, j int) bool { return p[i] < p[j] }
-func (p runeSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
-
-// Sort is a convenience method.
-func (p runeSlice) Sort() {
- sort.Sort(p)
-}
-
-var anyRuneNotNL = []rune{0, '\n' - 1, '\n' + 1, unicode.MaxRune}
-var anyRune = []rune{0, unicode.MaxRune}
-
-// makeOnePass creates a onepass Prog, if possible. It is possible if at any alt,
-// the match engine can always tell which branch to take. The routine may modify
-// p if it is turned into a onepass Prog. If it isn't possible for this to be a
-// onepass Prog, the Prog notOnePass is returned. makeOnePass is recursive
-// to the size of the Prog.
-func makeOnePass(p *onePassProg) *onePassProg {
- // If the machine is very long, it's not worth the time to check if we can use one pass.
- if len(p.Inst) >= 1000 {
- return notOnePass
- }
-
- var (
- instQueue = newQueue(len(p.Inst))
- visitQueue = newQueue(len(p.Inst))
- build func(uint32, *queueOnePass)
- check func(uint32, map[uint32]bool) bool
- onePassRunes = make([][]rune, len(p.Inst))
- )
- build = func(pc uint32, q *queueOnePass) {
- if q.contains(pc) {
- return
- }
- inst := p.Inst[pc]
- switch inst.Op {
- case syntax.InstAlt, syntax.InstAltMatch:
- q.insert(inst.Out)
- build(inst.Out, q)
- q.insert(inst.Arg)
- case syntax.InstMatch, syntax.InstFail:
- default:
- q.insert(inst.Out)
- }
- }
-
- // check that paths from Alt instructions are unambiguous, and rebuild the new
- // program as a onepass program
- check = func(pc uint32, m map[uint32]bool) (ok bool) {
- ok = true
- inst := &p.Inst[pc]
- if visitQueue.contains(pc) {
- return
- }
- visitQueue.insert(pc)
- switch inst.Op {
- case syntax.InstAlt, syntax.InstAltMatch:
- ok = check(inst.Out, m) && check(inst.Arg, m)
- // check no-input paths to InstMatch
- matchOut := m[inst.Out]
- matchArg := m[inst.Arg]
- if matchOut && matchArg {
- ok = false
- break
- }
- // Match on empty goes in inst.Out
- if matchArg {
- inst.Out, inst.Arg = inst.Arg, inst.Out
- matchOut, matchArg = matchArg, matchOut
- }
- if matchOut {
- m[pc] = true
- inst.Op = syntax.InstAltMatch
- }
-
- // build a dispatch operator from the two legs of the alt.
- onePassRunes[pc], inst.Next = mergeRuneSets(
- &onePassRunes[inst.Out], &onePassRunes[inst.Arg], inst.Out, inst.Arg)
- if len(inst.Next) > 0 && inst.Next[0] == mergeFailed {
- ok = false
- break
- }
- case syntax.InstCapture, syntax.InstNop:
- ok = check(inst.Out, m)
- m[pc] = m[inst.Out]
- // pass matching runes back through these no-ops.
- onePassRunes[pc] = append([]rune{}, onePassRunes[inst.Out]...)
- inst.Next = []uint32{}
- for i := len(onePassRunes[pc]) / 2; i >= 0; i-- {
- inst.Next = append(inst.Next, inst.Out)
- }
- case syntax.InstEmptyWidth:
- ok = check(inst.Out, m)
- m[pc] = m[inst.Out]
- onePassRunes[pc] = append([]rune{}, onePassRunes[inst.Out]...)
- inst.Next = []uint32{}
- for i := len(onePassRunes[pc]) / 2; i >= 0; i-- {
- inst.Next = append(inst.Next, inst.Out)
- }
- case syntax.InstMatch, syntax.InstFail:
- m[pc] = inst.Op == syntax.InstMatch
- break
- case syntax.InstRune:
- ok = check(inst.Out, m)
- m[pc] = false
- if len(inst.Next) > 0 {
- break
- }
- if len(inst.Rune) == 0 {
- onePassRunes[pc] = []rune{}
- inst.Next = []uint32{inst.Out}
- break
- }
- runes := make([]rune, 0)
- if len(inst.Rune) == 1 && syntax.Flags(inst.Arg)&syntax.FoldCase != 0 {
- r0 := inst.Rune[0]
- runes = append(runes, r0, r0)
- for r1 := unicode.SimpleFold(r0); r1 != r0; r1 = unicode.SimpleFold(r1) {
- runes = append(runes, r1, r1)
- }
- sort.Sort(runeSlice(runes))
- } else {
- runes = append(runes, inst.Rune...)
- }
- onePassRunes[pc] = runes
- inst.Next = []uint32{}
- for i := len(onePassRunes[pc]) / 2; i >= 0; i-- {
- inst.Next = append(inst.Next, inst.Out)
- }
- inst.Op = syntax.InstRune
- case syntax.InstRune1:
- ok = check(inst.Out, m)
- m[pc] = false
- if len(inst.Next) > 0 {
- break
- }
- runes := []rune{}
- // expand case-folded runes
- if syntax.Flags(inst.Arg)&syntax.FoldCase != 0 {
- r0 := inst.Rune[0]
- runes = append(runes, r0, r0)
- for r1 := unicode.SimpleFold(r0); r1 != r0; r1 = unicode.SimpleFold(r1) {
- runes = append(runes, r1, r1)
- }
- sort.Sort(runeSlice(runes))
- } else {
- runes = append(runes, inst.Rune[0], inst.Rune[0])
- }
- onePassRunes[pc] = runes
- inst.Next = []uint32{}
- for i := len(onePassRunes[pc]) / 2; i >= 0; i-- {
- inst.Next = append(inst.Next, inst.Out)
- }
- inst.Op = syntax.InstRune
- case syntax.InstRuneAny:
- ok = check(inst.Out, m)
- m[pc] = false
- if len(inst.Next) > 0 {
- break
- }
- onePassRunes[pc] = append([]rune{}, anyRune...)
- inst.Next = []uint32{inst.Out}
- case syntax.InstRuneAnyNotNL:
- ok = check(inst.Out, m)
- m[pc] = false
- if len(inst.Next) > 0 {
- break
- }
- onePassRunes[pc] = append([]rune{}, anyRuneNotNL...)
- inst.Next = []uint32{}
- for i := len(onePassRunes[pc]) / 2; i >= 0; i-- {
- inst.Next = append(inst.Next, inst.Out)
- }
- }
- return
- }
-
- instQueue.clear()
- instQueue.insert(uint32(p.Start))
- m := make(map[uint32]bool, len(p.Inst))
- for !instQueue.empty() {
- pc := instQueue.next()
- inst := p.Inst[pc]
- visitQueue.clear()
- if !check(uint32(pc), m) {
- p = notOnePass
- break
- }
- switch inst.Op {
- case syntax.InstAlt, syntax.InstAltMatch:
- instQueue.insert(inst.Out)
- instQueue.insert(inst.Arg)
- case syntax.InstCapture, syntax.InstEmptyWidth, syntax.InstNop:
- instQueue.insert(inst.Out)
- case syntax.InstMatch:
- case syntax.InstFail:
- case syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
- default:
- }
- }
- if p != notOnePass {
- for i, _ := range p.Inst {
- p.Inst[i].Rune = onePassRunes[i]
- }
- }
- return p
-}
-
-// walk visits each Inst in the prog once, and applies the argument
-// function(ip, next), in pre-order.
-func walk(prog *syntax.Prog, funcs ...func(ip, next uint32)) {
- var walk1 func(uint32)
- progQueue := newQueue(len(prog.Inst))
- walk1 = func(ip uint32) {
- if progQueue.contains(ip) {
- return
- }
- progQueue.insert(ip)
- inst := prog.Inst[ip]
- switch inst.Op {
- case syntax.InstAlt, syntax.InstAltMatch:
- for _, f := range funcs {
- f(ip, inst.Out)
- f(ip, inst.Arg)
- }
- walk1(inst.Out)
- walk1(inst.Arg)
- default:
- for _, f := range funcs {
- f(ip, inst.Out)
- }
- walk1(inst.Out)
- }
- }
- walk1(uint32(prog.Start))
-}
-
-// find returns the Insts that match the argument predicate function
-func find(prog *syntax.Prog, f func(*syntax.Prog, int) bool) (matches []uint32) {
- matches = []uint32{}
-
- for ip := range prog.Inst {
- if f(prog, ip) {
- matches = append(matches, uint32(ip))
- }
- }
- return
-}
-
-var notOnePass *onePassProg = nil
-
-// compileOnePass returns a new *syntax.Prog suitable for onePass execution if the original Prog
-// can be recharacterized as a one-pass regexp program, or syntax.notOnePass if the
-// Prog cannot be converted. For a one pass prog, the fundamental condition that must
-// be true is: at any InstAlt, there must be no ambiguity about what branch to take.
-func compileOnePass(prog *syntax.Prog) (p *onePassProg) {
- if prog.Start == 0 {
- return notOnePass
- }
- // onepass regexp is anchored
- if prog.Inst[prog.Start].Op != syntax.InstEmptyWidth ||
- syntax.EmptyOp(prog.Inst[prog.Start].Arg)&syntax.EmptyBeginText != syntax.EmptyBeginText {
- return notOnePass
- }
- // every instruction leading to InstMatch must be EmptyEndText
- for _, inst := range prog.Inst {
- opOut := prog.Inst[inst.Out].Op
- switch inst.Op {
- default:
- if opOut == syntax.InstMatch {
- return notOnePass
- }
- case syntax.InstAlt, syntax.InstAltMatch:
- if opOut == syntax.InstMatch || prog.Inst[inst.Arg].Op == syntax.InstMatch {
- return notOnePass
- }
- case syntax.InstEmptyWidth:
- if opOut == syntax.InstMatch {
- if syntax.EmptyOp(inst.Arg)&syntax.EmptyEndText == syntax.EmptyEndText {
- continue
- }
- return notOnePass
- }
- }
- }
- // Creates a slightly optimized copy of the original Prog
- // that cleans up some Prog idioms that block valid onepass programs
- p = onePassCopy(prog)
-
- // checkAmbiguity on InstAlts, build onepass Prog if possible
- p = makeOnePass(p)
-
- if p != notOnePass {
- cleanupOnePass(p, prog)
- }
- return p
-}