summaryrefslogtreecommitdiff
path: root/src/pkg/runtime/hash_test.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/runtime/hash_test.go')
-rw-r--r--src/pkg/runtime/hash_test.go512
1 files changed, 0 insertions, 512 deletions
diff --git a/src/pkg/runtime/hash_test.go b/src/pkg/runtime/hash_test.go
deleted file mode 100644
index 1c11e0538..000000000
--- a/src/pkg/runtime/hash_test.go
+++ /dev/null
@@ -1,512 +0,0 @@
-// Copyright 2013 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package runtime_test
-
-import (
- "fmt"
- "math"
- "math/rand"
- . "runtime"
- "strings"
- "testing"
-)
-
-// Smhasher is a torture test for hash functions.
-// https://code.google.com/p/smhasher/
-// This code is a port of some of the Smhasher tests to Go.
-//
-// The current AES hash function passes Smhasher. Our fallback
-// hash functions don't, so we only enable the difficult tests when
-// we know the AES implementation is available.
-
-// Sanity checks.
-// hash should not depend on values outside key.
-// hash should not depend on alignment.
-func TestSmhasherSanity(t *testing.T) {
- r := rand.New(rand.NewSource(1234))
- const REP = 10
- const KEYMAX = 128
- const PAD = 16
- const OFFMAX = 16
- for k := 0; k < REP; k++ {
- for n := 0; n < KEYMAX; n++ {
- for i := 0; i < OFFMAX; i++ {
- var b [KEYMAX + OFFMAX + 2*PAD]byte
- var c [KEYMAX + OFFMAX + 2*PAD]byte
- randBytes(r, b[:])
- randBytes(r, c[:])
- copy(c[PAD+i:PAD+i+n], b[PAD:PAD+n])
- if BytesHash(b[PAD:PAD+n], 0) != BytesHash(c[PAD+i:PAD+i+n], 0) {
- t.Errorf("hash depends on bytes outside key")
- }
- }
- }
- }
-}
-
-type HashSet struct {
- m map[uintptr]struct{} // set of hashes added
- n int // number of hashes added
-}
-
-func newHashSet() *HashSet {
- return &HashSet{make(map[uintptr]struct{}), 0}
-}
-func (s *HashSet) add(h uintptr) {
- s.m[h] = struct{}{}
- s.n++
-}
-func (s *HashSet) addS(x string) {
- s.add(StringHash(x, 0))
-}
-func (s *HashSet) addB(x []byte) {
- s.add(BytesHash(x, 0))
-}
-func (s *HashSet) addS_seed(x string, seed uintptr) {
- s.add(StringHash(x, seed))
-}
-func (s *HashSet) check(t *testing.T) {
- const SLOP = 10.0
- collisions := s.n - len(s.m)
- //fmt.Printf("%d/%d\n", len(s.m), s.n)
- pairs := int64(s.n) * int64(s.n-1) / 2
- expected := float64(pairs) / math.Pow(2.0, float64(hashSize))
- stddev := math.Sqrt(expected)
- if float64(collisions) > expected+SLOP*3*stddev {
- t.Errorf("unexpected number of collisions: got=%d mean=%f stddev=%f", collisions, expected, stddev)
- }
-}
-
-// a string plus adding zeros must make distinct hashes
-func TestSmhasherAppendedZeros(t *testing.T) {
- s := "hello" + strings.Repeat("\x00", 256)
- h := newHashSet()
- for i := 0; i <= len(s); i++ {
- h.addS(s[:i])
- }
- h.check(t)
-}
-
-// All 0-3 byte strings have distinct hashes.
-func TestSmhasherSmallKeys(t *testing.T) {
- h := newHashSet()
- var b [3]byte
- for i := 0; i < 256; i++ {
- b[0] = byte(i)
- h.addB(b[:1])
- for j := 0; j < 256; j++ {
- b[1] = byte(j)
- h.addB(b[:2])
- if !testing.Short() {
- for k := 0; k < 256; k++ {
- b[2] = byte(k)
- h.addB(b[:3])
- }
- }
- }
- }
- h.check(t)
-}
-
-// Different length strings of all zeros have distinct hashes.
-func TestSmhasherZeros(t *testing.T) {
- N := 256 * 1024
- if testing.Short() {
- N = 1024
- }
- h := newHashSet()
- b := make([]byte, N)
- for i := 0; i <= N; i++ {
- h.addB(b[:i])
- }
- h.check(t)
-}
-
-// Strings with up to two nonzero bytes all have distinct hashes.
-func TestSmhasherTwoNonzero(t *testing.T) {
- if testing.Short() {
- t.Skip("Skipping in short mode")
- }
- h := newHashSet()
- for n := 2; n <= 16; n++ {
- twoNonZero(h, n)
- }
- h.check(t)
-}
-func twoNonZero(h *HashSet, n int) {
- b := make([]byte, n)
-
- // all zero
- h.addB(b[:])
-
- // one non-zero byte
- for i := 0; i < n; i++ {
- for x := 1; x < 256; x++ {
- b[i] = byte(x)
- h.addB(b[:])
- b[i] = 0
- }
- }
-
- // two non-zero bytes
- for i := 0; i < n; i++ {
- for x := 1; x < 256; x++ {
- b[i] = byte(x)
- for j := i + 1; j < n; j++ {
- for y := 1; y < 256; y++ {
- b[j] = byte(y)
- h.addB(b[:])
- b[j] = 0
- }
- }
- b[i] = 0
- }
- }
-}
-
-// Test strings with repeats, like "abcdabcdabcdabcd..."
-func TestSmhasherCyclic(t *testing.T) {
- if testing.Short() {
- t.Skip("Skipping in short mode")
- }
- if !HaveGoodHash() {
- t.Skip("fallback hash not good enough for this test")
- }
- r := rand.New(rand.NewSource(1234))
- const REPEAT = 8
- const N = 1000000
- for n := 4; n <= 12; n++ {
- h := newHashSet()
- b := make([]byte, REPEAT*n)
- for i := 0; i < N; i++ {
- b[0] = byte(i * 79 % 97)
- b[1] = byte(i * 43 % 137)
- b[2] = byte(i * 151 % 197)
- b[3] = byte(i * 199 % 251)
- randBytes(r, b[4:n])
- for j := n; j < n*REPEAT; j++ {
- b[j] = b[j-n]
- }
- h.addB(b)
- }
- h.check(t)
- }
-}
-
-// Test strings with only a few bits set
-func TestSmhasherSparse(t *testing.T) {
- if testing.Short() {
- t.Skip("Skipping in short mode")
- }
- sparse(t, 32, 6)
- sparse(t, 40, 6)
- sparse(t, 48, 5)
- sparse(t, 56, 5)
- sparse(t, 64, 5)
- sparse(t, 96, 4)
- sparse(t, 256, 3)
- sparse(t, 2048, 2)
-}
-func sparse(t *testing.T, n int, k int) {
- b := make([]byte, n/8)
- h := newHashSet()
- setbits(h, b, 0, k)
- h.check(t)
-}
-
-// set up to k bits at index i and greater
-func setbits(h *HashSet, b []byte, i int, k int) {
- h.addB(b)
- if k == 0 {
- return
- }
- for j := i; j < len(b)*8; j++ {
- b[j/8] |= byte(1 << uint(j&7))
- setbits(h, b, j+1, k-1)
- b[j/8] &= byte(^(1 << uint(j&7)))
- }
-}
-
-// Test all possible combinations of n blocks from the set s.
-// "permutation" is a bad name here, but it is what Smhasher uses.
-func TestSmhasherPermutation(t *testing.T) {
- if testing.Short() {
- t.Skip("Skipping in short mode")
- }
- if !HaveGoodHash() {
- t.Skip("fallback hash not good enough for this test")
- }
- permutation(t, []uint32{0, 1, 2, 3, 4, 5, 6, 7}, 8)
- permutation(t, []uint32{0, 1 << 29, 2 << 29, 3 << 29, 4 << 29, 5 << 29, 6 << 29, 7 << 29}, 8)
- permutation(t, []uint32{0, 1}, 20)
- permutation(t, []uint32{0, 1 << 31}, 20)
- permutation(t, []uint32{0, 1, 2, 3, 4, 5, 6, 7, 1 << 29, 2 << 29, 3 << 29, 4 << 29, 5 << 29, 6 << 29, 7 << 29}, 6)
-}
-func permutation(t *testing.T, s []uint32, n int) {
- b := make([]byte, n*4)
- h := newHashSet()
- genPerm(h, b, s, 0)
- h.check(t)
-}
-func genPerm(h *HashSet, b []byte, s []uint32, n int) {
- h.addB(b[:n])
- if n == len(b) {
- return
- }
- for _, v := range s {
- b[n] = byte(v)
- b[n+1] = byte(v >> 8)
- b[n+2] = byte(v >> 16)
- b[n+3] = byte(v >> 24)
- genPerm(h, b, s, n+4)
- }
-}
-
-type Key interface {
- clear() // set bits all to 0
- random(r *rand.Rand) // set key to something random
- bits() int // how many bits key has
- flipBit(i int) // flip bit i of the key
- hash() uintptr // hash the key
- name() string // for error reporting
-}
-
-type BytesKey struct {
- b []byte
-}
-
-func (k *BytesKey) clear() {
- for i := range k.b {
- k.b[i] = 0
- }
-}
-func (k *BytesKey) random(r *rand.Rand) {
- randBytes(r, k.b)
-}
-func (k *BytesKey) bits() int {
- return len(k.b) * 8
-}
-func (k *BytesKey) flipBit(i int) {
- k.b[i>>3] ^= byte(1 << uint(i&7))
-}
-func (k *BytesKey) hash() uintptr {
- return BytesHash(k.b, 0)
-}
-func (k *BytesKey) name() string {
- return fmt.Sprintf("bytes%d", len(k.b))
-}
-
-type Int32Key struct {
- i uint32
-}
-
-func (k *Int32Key) clear() {
- k.i = 0
-}
-func (k *Int32Key) random(r *rand.Rand) {
- k.i = r.Uint32()
-}
-func (k *Int32Key) bits() int {
- return 32
-}
-func (k *Int32Key) flipBit(i int) {
- k.i ^= 1 << uint(i)
-}
-func (k *Int32Key) hash() uintptr {
- return Int32Hash(k.i, 0)
-}
-func (k *Int32Key) name() string {
- return "int32"
-}
-
-type Int64Key struct {
- i uint64
-}
-
-func (k *Int64Key) clear() {
- k.i = 0
-}
-func (k *Int64Key) random(r *rand.Rand) {
- k.i = uint64(r.Uint32()) + uint64(r.Uint32())<<32
-}
-func (k *Int64Key) bits() int {
- return 64
-}
-func (k *Int64Key) flipBit(i int) {
- k.i ^= 1 << uint(i)
-}
-func (k *Int64Key) hash() uintptr {
- return Int64Hash(k.i, 0)
-}
-func (k *Int64Key) name() string {
- return "int64"
-}
-
-// Flipping a single bit of a key should flip each output bit with 50% probability.
-func TestSmhasherAvalanche(t *testing.T) {
- if !HaveGoodHash() {
- t.Skip("fallback hash not good enough for this test")
- }
- if testing.Short() {
- t.Skip("Skipping in short mode")
- }
- avalancheTest1(t, &BytesKey{make([]byte, 2)})
- avalancheTest1(t, &BytesKey{make([]byte, 4)})
- avalancheTest1(t, &BytesKey{make([]byte, 8)})
- avalancheTest1(t, &BytesKey{make([]byte, 16)})
- avalancheTest1(t, &BytesKey{make([]byte, 32)})
- avalancheTest1(t, &BytesKey{make([]byte, 200)})
- avalancheTest1(t, &Int32Key{})
- avalancheTest1(t, &Int64Key{})
-}
-func avalancheTest1(t *testing.T, k Key) {
- const REP = 100000
- r := rand.New(rand.NewSource(1234))
- n := k.bits()
-
- // grid[i][j] is a count of whether flipping
- // input bit i affects output bit j.
- grid := make([][hashSize]int, n)
-
- for z := 0; z < REP; z++ {
- // pick a random key, hash it
- k.random(r)
- h := k.hash()
-
- // flip each bit, hash & compare the results
- for i := 0; i < n; i++ {
- k.flipBit(i)
- d := h ^ k.hash()
- k.flipBit(i)
-
- // record the effects of that bit flip
- g := &grid[i]
- for j := 0; j < hashSize; j++ {
- g[j] += int(d & 1)
- d >>= 1
- }
- }
- }
-
- // Each entry in the grid should be about REP/2.
- // More precisely, we did N = k.bits() * hashSize experiments where
- // each is the sum of REP coin flips. We want to find bounds on the
- // sum of coin flips such that a truly random experiment would have
- // all sums inside those bounds with 99% probability.
- N := n * hashSize
- var c float64
- // find c such that Prob(mean-c*stddev < x < mean+c*stddev)^N > .9999
- for c = 0.0; math.Pow(math.Erf(c/math.Sqrt(2)), float64(N)) < .9999; c += .1 {
- }
- c *= 4.0 // allowed slack - we don't need to be perfectly random
- mean := .5 * REP
- stddev := .5 * math.Sqrt(REP)
- low := int(mean - c*stddev)
- high := int(mean + c*stddev)
- for i := 0; i < n; i++ {
- for j := 0; j < hashSize; j++ {
- x := grid[i][j]
- if x < low || x > high {
- t.Errorf("bad bias for %s bit %d -> bit %d: %d/%d\n", k.name(), i, j, x, REP)
- }
- }
- }
-}
-
-// All bit rotations of a set of distinct keys
-func TestSmhasherWindowed(t *testing.T) {
- windowed(t, &Int32Key{})
- windowed(t, &Int64Key{})
- windowed(t, &BytesKey{make([]byte, 128)})
-}
-func windowed(t *testing.T, k Key) {
- if testing.Short() {
- t.Skip("Skipping in short mode")
- }
- const BITS = 16
-
- for r := 0; r < k.bits(); r++ {
- h := newHashSet()
- for i := 0; i < 1<<BITS; i++ {
- k.clear()
- for j := 0; j < BITS; j++ {
- if i>>uint(j)&1 != 0 {
- k.flipBit((j + r) % k.bits())
- }
- }
- h.add(k.hash())
- }
- h.check(t)
- }
-}
-
-// All keys of the form prefix + [A-Za-z0-9]*N + suffix.
-func TestSmhasherText(t *testing.T) {
- if testing.Short() {
- t.Skip("Skipping in short mode")
- }
- text(t, "Foo", "Bar")
- text(t, "FooBar", "")
- text(t, "", "FooBar")
-}
-func text(t *testing.T, prefix, suffix string) {
- const N = 4
- const S = "ABCDEFGHIJKLMNOPQRSTabcdefghijklmnopqrst0123456789"
- const L = len(S)
- b := make([]byte, len(prefix)+N+len(suffix))
- copy(b, prefix)
- copy(b[len(prefix)+N:], suffix)
- h := newHashSet()
- c := b[len(prefix):]
- for i := 0; i < L; i++ {
- c[0] = S[i]
- for j := 0; j < L; j++ {
- c[1] = S[j]
- for k := 0; k < L; k++ {
- c[2] = S[k]
- for x := 0; x < L; x++ {
- c[3] = S[x]
- h.addB(b)
- }
- }
- }
- }
- h.check(t)
-}
-
-// Make sure different seed values generate different hashes.
-func TestSmhasherSeed(t *testing.T) {
- h := newHashSet()
- const N = 100000
- s := "hello"
- for i := 0; i < N; i++ {
- h.addS_seed(s, uintptr(i))
- }
- h.check(t)
-}
-
-// size of the hash output (32 or 64 bits)
-const hashSize = 32 + int(^uintptr(0)>>63<<5)
-
-func randBytes(r *rand.Rand, b []byte) {
- for i := range b {
- b[i] = byte(r.Uint32())
- }
-}
-
-func benchmarkHash(b *testing.B, n int) {
- s := strings.Repeat("A", n)
-
- for i := 0; i < b.N; i++ {
- StringHash(s, 0)
- }
- b.SetBytes(int64(n))
-}
-
-func BenchmarkHash5(b *testing.B) { benchmarkHash(b, 5) }
-func BenchmarkHash16(b *testing.B) { benchmarkHash(b, 16) }
-func BenchmarkHash64(b *testing.B) { benchmarkHash(b, 64) }
-func BenchmarkHash1024(b *testing.B) { benchmarkHash(b, 1024) }
-func BenchmarkHash65536(b *testing.B) { benchmarkHash(b, 65536) }