diff options
Diffstat (limited to 'src/pkg/runtime/malloc.h')
-rw-r--r-- | src/pkg/runtime/malloc.h | 215 |
1 files changed, 178 insertions, 37 deletions
diff --git a/src/pkg/runtime/malloc.h b/src/pkg/runtime/malloc.h index 2c66c6fa7..798c130ad 100644 --- a/src/pkg/runtime/malloc.h +++ b/src/pkg/runtime/malloc.h @@ -20,7 +20,7 @@ // MHeap: the malloc heap, managed at page (4096-byte) granularity. // MSpan: a run of pages managed by the MHeap. // MCentral: a shared free list for a given size class. -// MCache: a per-thread (in Go, per-M) cache for small objects. +// MCache: a per-thread (in Go, per-P) cache for small objects. // MStats: allocation statistics. // // Allocating a small object proceeds up a hierarchy of caches: @@ -66,14 +66,14 @@ // // The small objects on the MCache and MCentral free lists // may or may not be zeroed. They are zeroed if and only if -// the second word of the object is zero. The spans in the -// page heap are always zeroed. When a span full of objects -// is returned to the page heap, the objects that need to be -// are zeroed first. There are two main benefits to delaying the +// the second word of the object is zero. A span in the +// page heap is zeroed unless s->needzero is set. When a span +// is allocated to break into small objects, it is zeroed if needed +// and s->needzero is set. There are two main benefits to delaying the // zeroing this way: // // 1. stack frames allocated from the small object lists -// can avoid zeroing altogether. +// or the page heap can avoid zeroing altogether. // 2. the cost of zeroing when reusing a small object is // charged to the mutator, not the garbage collector. // @@ -90,7 +90,7 @@ typedef struct GCStats GCStats; enum { - PageShift = 12, + PageShift = 13, PageSize = 1<<PageShift, PageMask = PageSize - 1, }; @@ -103,11 +103,15 @@ enum // size classes. NumSizeClasses is that number. It's needed here // because there are static arrays of this length; when msize runs its // size choosing algorithm it double-checks that NumSizeClasses agrees. - NumSizeClasses = 61, + NumSizeClasses = 67, // Tunable constants. MaxSmallSize = 32<<10, + // Tiny allocator parameters, see "Tiny allocator" comment in malloc.goc. + TinySize = 16, + TinySizeClass = 2, + FixAllocChunk = 16<<10, // Chunk size for FixAlloc MaxMHeapList = 1<<(20 - PageShift), // Maximum page length for fixed-size list in MHeap. HeapAllocChunk = 1<<20, // Chunk size for heap growth @@ -154,6 +158,9 @@ struct MLink // SysAlloc obtains a large chunk of zeroed memory from the // operating system, typically on the order of a hundred kilobytes // or a megabyte. +// NOTE: SysAlloc returns OS-aligned memory, but the heap allocator +// may use larger alignment, so the caller must be careful to realign the +// memory obtained by SysAlloc. // // SysUnused notifies the operating system that the contents // of the memory region are no longer needed and can be reused @@ -168,16 +175,29 @@ struct MLink // SysReserve reserves address space without allocating memory. // If the pointer passed to it is non-nil, the caller wants the // reservation there, but SysReserve can still choose another -// location if that one is unavailable. +// location if that one is unavailable. On some systems and in some +// cases SysReserve will simply check that the address space is +// available and not actually reserve it. If SysReserve returns +// non-nil, it sets *reserved to true if the address space is +// reserved, false if it has merely been checked. +// NOTE: SysReserve returns OS-aligned memory, but the heap allocator +// may use larger alignment, so the caller must be careful to realign the +// memory obtained by SysAlloc. // // SysMap maps previously reserved address space for use. +// The reserved argument is true if the address space was really +// reserved, not merely checked. +// +// SysFault marks a (already SysAlloc'd) region to fault +// if accessed. Used only for debugging the runtime. void* runtime·SysAlloc(uintptr nbytes, uint64 *stat); void runtime·SysFree(void *v, uintptr nbytes, uint64 *stat); void runtime·SysUnused(void *v, uintptr nbytes); void runtime·SysUsed(void *v, uintptr nbytes); -void runtime·SysMap(void *v, uintptr nbytes, uint64 *stat); -void* runtime·SysReserve(void *v, uintptr nbytes); +void runtime·SysMap(void *v, uintptr nbytes, bool reserved, uint64 *stat); +void* runtime·SysReserve(void *v, uintptr nbytes, bool *reserved); +void runtime·SysFault(void *v, uintptr nbytes); // FixAlloc is a simple free-list allocator for fixed size objects. // Malloc uses a FixAlloc wrapped around SysAlloc to manages its @@ -255,8 +275,9 @@ struct MStats } by_size[NumSizeClasses]; }; -#define mstats runtime·memStats /* name shared with Go */ +#define mstats runtime·memStats extern MStats mstats; +void runtime·updatememstats(GCStats *stats); // Size classes. Computed and initialized by InitSizes. // @@ -269,6 +290,7 @@ extern MStats mstats; // making new objects in class i int32 runtime·SizeToClass(int32); +uintptr runtime·roundupsize(uintptr); extern int32 runtime·class_to_size[NumSizeClasses]; extern int32 runtime·class_to_allocnpages[NumSizeClasses]; extern int8 runtime·size_to_class8[1024/8 + 1]; @@ -276,8 +298,6 @@ extern int8 runtime·size_to_class128[(MaxSmallSize-1024)/128 + 1]; extern void runtime·InitSizes(void); -// Per-thread (in Go, per-M) cache for small objects. -// No locking needed because it is per-thread (per-M). typedef struct MCacheList MCacheList; struct MCacheList { @@ -285,14 +305,21 @@ struct MCacheList uint32 nlist; }; +// Per-thread (in Go, per-P) cache for small objects. +// No locking needed because it is per-thread (per-P). struct MCache { // The following members are accessed on every malloc, // so they are grouped here for better caching. int32 next_sample; // trigger heap sample after allocating this many bytes intptr local_cachealloc; // bytes allocated (or freed) from cache since last lock of heap + // Allocator cache for tiny objects w/o pointers. + // See "Tiny allocator" comment in malloc.goc. + byte* tiny; + uintptr tinysize; // The rest is not accessed on every malloc. - MCacheList list[NumSizeClasses]; + MSpan* alloc[NumSizeClasses]; // spans to allocate from + MCacheList free[NumSizeClasses];// lists of explicitly freed objects // Local allocator stats, flushed during GC. uintptr local_nlookup; // number of pointer lookups uintptr local_largefree; // bytes freed for large objects (>MaxSmallSize) @@ -300,8 +327,8 @@ struct MCache uintptr local_nsmallfree[NumSizeClasses]; // number of frees for small objects (<=MaxSmallSize) }; -void runtime·MCache_Refill(MCache *c, int32 sizeclass); -void runtime·MCache_Free(MCache *c, void *p, int32 sizeclass, uintptr size); +MSpan* runtime·MCache_Refill(MCache *c, int32 sizeclass); +void runtime·MCache_Free(MCache *c, MLink *p, int32 sizeclass, uintptr size); void runtime·MCache_ReleaseAll(MCache *c); // MTypes describes the types of blocks allocated within a span. @@ -341,6 +368,44 @@ struct MTypes uintptr data; }; +enum +{ + KindSpecialFinalizer = 1, + KindSpecialProfile = 2, + // Note: The finalizer special must be first because if we're freeing + // an object, a finalizer special will cause the freeing operation + // to abort, and we want to keep the other special records around + // if that happens. +}; + +typedef struct Special Special; +struct Special +{ + Special* next; // linked list in span + uint16 offset; // span offset of object + byte kind; // kind of Special +}; + +// The described object has a finalizer set for it. +typedef struct SpecialFinalizer SpecialFinalizer; +struct SpecialFinalizer +{ + Special; + FuncVal* fn; + uintptr nret; + Type* fint; + PtrType* ot; +}; + +// The described object is being heap profiled. +typedef struct Bucket Bucket; // from mprof.goc +typedef struct SpecialProfile SpecialProfile; +struct SpecialProfile +{ + Special; + Bucket* b; +}; + // An MSpan is a run of pages. enum { @@ -356,17 +421,30 @@ struct MSpan PageID start; // starting page number uintptr npages; // number of pages in span MLink *freelist; // list of free objects - uint32 ref; // number of allocated objects in this span - int32 sizeclass; // size class + // sweep generation: + // if sweepgen == h->sweepgen - 2, the span needs sweeping + // if sweepgen == h->sweepgen - 1, the span is currently being swept + // if sweepgen == h->sweepgen, the span is swept and ready to use + // h->sweepgen is incremented by 2 after every GC + uint32 sweepgen; + uint16 ref; // capacity - number of objects in freelist + uint8 sizeclass; // size class + bool incache; // being used by an MCache + uint8 state; // MSpanInUse etc + uint8 needzero; // needs to be zeroed before allocation uintptr elemsize; // computed from sizeclass or from npages - uint32 state; // MSpanInUse etc int64 unusedsince; // First time spotted by GC in MSpanFree state uintptr npreleased; // number of pages released to the OS byte *limit; // end of data in span MTypes types; // types of allocated objects in this span + Lock specialLock; // guards specials list + Special *specials; // linked list of special records sorted by offset. + MLink *freebuf; // objects freed explicitly, not incorporated into freelist yet }; void runtime·MSpan_Init(MSpan *span, PageID start, uintptr npages); +void runtime·MSpan_EnsureSwept(MSpan *span); +bool runtime·MSpan_Sweep(MSpan *span); // Every MSpan is in one doubly-linked list, // either one of the MHeap's free lists or one of the @@ -374,6 +452,7 @@ void runtime·MSpan_Init(MSpan *span, PageID start, uintptr npages); void runtime·MSpanList_Init(MSpan *list); bool runtime·MSpanList_IsEmpty(MSpan *list); void runtime·MSpanList_Insert(MSpan *list, MSpan *span); +void runtime·MSpanList_InsertBack(MSpan *list, MSpan *span); void runtime·MSpanList_Remove(MSpan *span); // from whatever list it is in @@ -382,15 +461,16 @@ struct MCentral { Lock; int32 sizeclass; - MSpan nonempty; - MSpan empty; - int32 nfree; + MSpan nonempty; // list of spans with a free object + MSpan empty; // list of spans with no free objects (or cached in an MCache) + int32 nfree; // # of objects available in nonempty spans }; void runtime·MCentral_Init(MCentral *c, int32 sizeclass); -int32 runtime·MCentral_AllocList(MCentral *c, MLink **first); -void runtime·MCentral_FreeList(MCentral *c, MLink *first); -void runtime·MCentral_FreeSpan(MCentral *c, MSpan *s, int32 n, MLink *start, MLink *end); +MSpan* runtime·MCentral_CacheSpan(MCentral *c); +void runtime·MCentral_UncacheSpan(MCentral *c, MSpan *s); +bool runtime·MCentral_FreeSpan(MCentral *c, MSpan *s, int32 n, MLink *start, MLink *end); +void runtime·MCentral_FreeList(MCentral *c, MLink *start); // TODO: need this? // Main malloc heap. // The heap itself is the "free[]" and "large" arrays, @@ -399,10 +479,15 @@ struct MHeap { Lock; MSpan free[MaxMHeapList]; // free lists of given length - MSpan large; // free lists length >= MaxMHeapList - MSpan **allspans; + MSpan freelarge; // free lists length >= MaxMHeapList + MSpan busy[MaxMHeapList]; // busy lists of large objects of given length + MSpan busylarge; // busy lists of large objects length >= MaxMHeapList + MSpan **allspans; // all spans out there + MSpan **sweepspans; // copy of allspans referenced by sweeper uint32 nspan; uint32 nspancap; + uint32 sweepgen; // sweep generation, see comment in MSpan + uint32 sweepdone; // all spans are swept // span lookup MSpan** spans; @@ -414,6 +499,7 @@ struct MHeap byte *arena_start; byte *arena_used; byte *arena_end; + bool arena_reserved; // central free lists for small size classes. // the padding makes sure that the MCentrals are @@ -426,6 +512,9 @@ struct MHeap FixAlloc spanalloc; // allocator for Span* FixAlloc cachealloc; // allocator for MCache* + FixAlloc specialfinalizeralloc; // allocator for SpecialFinalizer* + FixAlloc specialprofilealloc; // allocator for SpecialProfile* + Lock speciallock; // lock for sepcial record allocators. // Malloc stats. uint64 largefree; // bytes freed for large objects (>MaxSmallSize) @@ -435,7 +524,7 @@ struct MHeap extern MHeap runtime·mheap; void runtime·MHeap_Init(MHeap *h); -MSpan* runtime·MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, int32 acct, int32 zeroed); +MSpan* runtime·MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, bool large, bool needzero); void runtime·MHeap_Free(MHeap *h, MSpan *s, int32 acct); MSpan* runtime·MHeap_Lookup(MHeap *h, void *v); MSpan* runtime·MHeap_LookupMaybe(MHeap *h, void *v); @@ -444,26 +533,28 @@ void* runtime·MHeap_SysAlloc(MHeap *h, uintptr n); void runtime·MHeap_MapBits(MHeap *h); void runtime·MHeap_MapSpans(MHeap *h); void runtime·MHeap_Scavenger(void); +void runtime·MHeap_SplitSpan(MHeap *h, MSpan *s); void* runtime·mallocgc(uintptr size, uintptr typ, uint32 flag); void* runtime·persistentalloc(uintptr size, uintptr align, uint64 *stat); int32 runtime·mlookup(void *v, byte **base, uintptr *size, MSpan **s); void runtime·gc(int32 force); -void runtime·markallocated(void *v, uintptr n, bool noptr); +uintptr runtime·sweepone(void); +void runtime·markscan(void *v); +void runtime·marknogc(void *v); void runtime·checkallocated(void *v, uintptr n); -void runtime·markfreed(void *v, uintptr n); +void runtime·markfreed(void *v); void runtime·checkfreed(void *v, uintptr n); extern int32 runtime·checking; void runtime·markspan(void *v, uintptr size, uintptr n, bool leftover); void runtime·unmarkspan(void *v, uintptr size); -bool runtime·blockspecial(void*); -void runtime·setblockspecial(void*, bool); void runtime·purgecachedstats(MCache*); void* runtime·cnew(Type*); void* runtime·cnewarray(Type*, intgo); +void runtime·tracealloc(void*, uintptr, uintptr); +void runtime·tracefree(void*, uintptr); +void runtime·tracegc(void); -void runtime·settype_flush(M*); -void runtime·settype_sysfree(MSpan*); uintptr runtime·gettype(void*); enum @@ -477,13 +568,25 @@ enum }; void runtime·MProf_Malloc(void*, uintptr); -void runtime·MProf_Free(void*, uintptr); +void runtime·MProf_Free(Bucket*, uintptr, bool); void runtime·MProf_GC(void); +void runtime·iterate_memprof(void (*callback)(Bucket*, uintptr, uintptr*, uintptr, uintptr, uintptr)); int32 runtime·gcprocs(void); void runtime·helpgc(int32 nproc); void runtime·gchelper(void); +void runtime·createfing(void); +G* runtime·wakefing(void); +extern bool runtime·fingwait; +extern bool runtime·fingwake; -void runtime·walkfintab(void (*fn)(void*)); +void runtime·setprofilebucket(void *p, Bucket *b); + +bool runtime·addfinalizer(void*, FuncVal *fn, uintptr, Type*, PtrType*); +void runtime·removefinalizer(void*); +void runtime·queuefinalizer(byte *p, FuncVal *fn, uintptr nret, Type *fint, PtrType *ot); + +void runtime·freeallspecials(MSpan *span, void *p, uintptr size); +bool runtime·freespecial(Special *s, void *p, uintptr size, bool freed); enum { @@ -495,8 +598,46 @@ enum DebugTypeAtBlockEnd = 0, }; +// Information from the compiler about the layout of stack frames. +typedef struct BitVector BitVector; +struct BitVector +{ + int32 n; // # of bits + uint32 *data; +}; +typedef struct StackMap StackMap; +struct StackMap +{ + int32 n; // number of bitmaps + int32 nbit; // number of bits in each bitmap + uint32 data[]; +}; +enum { + // Pointer map + BitsPerPointer = 2, + BitsDead = 0, + BitsScalar = 1, + BitsPointer = 2, + BitsMultiWord = 3, + // BitsMultiWord will be set for the first word of a multi-word item. + // When it is set, one of the following will be set for the second word. + BitsString = 0, + BitsSlice = 1, + BitsIface = 2, + BitsEface = 3, +}; +// Returns pointer map data for the given stackmap index +// (the index is encoded in PCDATA_StackMapIndex). +BitVector runtime·stackmapdata(StackMap *stackmap, int32 n); + // defined in mgc0.go void runtime·gc_m_ptr(Eface*); +void runtime·gc_g_ptr(Eface*); void runtime·gc_itab_ptr(Eface*); void runtime·memorydump(void); +int32 runtime·setgcpercent(int32); + +// Value we use to mark dead pointers when GODEBUG=gcdead=1. +#define PoisonGC ((uintptr)0xf969696969696969ULL) +#define PoisonStack ((uintptr)0x6868686868686868ULL) |