diff options
Diffstat (limited to 'src/pkg/runtime/proc.c')
-rw-r--r-- | src/pkg/runtime/proc.c | 1368 |
1 files changed, 0 insertions, 1368 deletions
diff --git a/src/pkg/runtime/proc.c b/src/pkg/runtime/proc.c deleted file mode 100644 index a8f3a796a..000000000 --- a/src/pkg/runtime/proc.c +++ /dev/null @@ -1,1368 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "runtime.h" -#include "arch.h" -#include "defs.h" -#include "malloc.h" -#include "os.h" -#include "stack.h" - -bool runtime·iscgo; - -static void unwindstack(G*, byte*); -static void schedule(G*); -static void acquireproc(void); -static void releaseproc(void); - -typedef struct Sched Sched; - -M runtime·m0; -G runtime·g0; // idle goroutine for m0 - -static int32 debug = 0; - -int32 runtime·gcwaiting; - -// Go scheduler -// -// The go scheduler's job is to match ready-to-run goroutines (`g's) -// with waiting-for-work schedulers (`m's). If there are ready gs -// and no waiting ms, ready() will start a new m running in a new -// OS thread, so that all ready gs can run simultaneously, up to a limit. -// For now, ms never go away. -// -// By default, Go keeps only one kernel thread (m) running user code -// at a single time; other threads may be blocked in the operating system. -// Setting the environment variable $GOMAXPROCS or calling -// runtime.GOMAXPROCS() will change the number of user threads -// allowed to execute simultaneously. $GOMAXPROCS is thus an -// approximation of the maximum number of cores to use. -// -// Even a program that can run without deadlock in a single process -// might use more ms if given the chance. For example, the prime -// sieve will use as many ms as there are primes (up to runtime·sched.mmax), -// allowing different stages of the pipeline to execute in parallel. -// We could revisit this choice, only kicking off new ms for blocking -// system calls, but that would limit the amount of parallel computation -// that go would try to do. -// -// In general, one could imagine all sorts of refinements to the -// scheduler, but the goal now is just to get something working on -// Linux and OS X. - -struct Sched { - Lock; - - G *gfree; // available gs (status == Gdead) - - G *ghead; // gs waiting to run - G *gtail; - int32 gwait; // number of gs waiting to run - int32 gcount; // number of gs that are alive - - M *mhead; // ms waiting for work - int32 mwait; // number of ms waiting for work - int32 mcount; // number of ms that have been created - int32 mcpu; // number of ms executing on cpu - int32 mcpumax; // max number of ms allowed on cpu - int32 msyscall; // number of ms in system calls - - int32 predawn; // running initialization, don't run new gs. - int32 profilehz; // cpu profiling rate - - Note stopped; // one g can wait here for ms to stop - int32 waitstop; // after setting this flag -}; - -Sched runtime·sched; -int32 runtime·gomaxprocs; - -// An m that is waiting for notewakeup(&m->havenextg). This may be -// only be accessed while the scheduler lock is held. This is used to -// minimize the number of times we call notewakeup while the scheduler -// lock is held, since the m will normally move quickly to lock the -// scheduler itself, producing lock contention. -static M* mwakeup; - -// Scheduling helpers. Sched must be locked. -static void gput(G*); // put/get on ghead/gtail -static G* gget(void); -static void mput(M*); // put/get on mhead -static M* mget(G*); -static void gfput(G*); // put/get on gfree -static G* gfget(void); -static void matchmg(void); // match ms to gs -static void readylocked(G*); // ready, but sched is locked -static void mnextg(M*, G*); - -// The bootstrap sequence is: -// -// call osinit -// call schedinit -// make & queue new G -// call runtime·mstart -// -// The new G does: -// -// call main·init_function -// call initdone -// call main·main -void -runtime·schedinit(void) -{ - int32 n; - byte *p; - - runtime·allm = m; - m->nomemprof++; - - runtime·mallocinit(); - runtime·goargs(); - runtime·goenvs(); - - // For debugging: - // Allocate internal symbol table representation now, - // so that we don't need to call malloc when we crash. - // runtime·findfunc(0); - - runtime·gomaxprocs = 1; - p = runtime·getenv("GOMAXPROCS"); - if(p != nil && (n = runtime·atoi(p)) != 0) - runtime·gomaxprocs = n; - runtime·sched.mcpumax = runtime·gomaxprocs; - runtime·sched.mcount = 1; - runtime·sched.predawn = 1; - - m->nomemprof--; -} - -// Lock the scheduler. -static void -schedlock(void) -{ - runtime·lock(&runtime·sched); -} - -// Unlock the scheduler. -static void -schedunlock(void) -{ - M *m; - - m = mwakeup; - mwakeup = nil; - runtime·unlock(&runtime·sched); - if(m != nil) - runtime·notewakeup(&m->havenextg); -} - -// Called after main·init_function; main·main will be called on return. -void -runtime·initdone(void) -{ - // Let's go. - runtime·sched.predawn = 0; - mstats.enablegc = 1; - - // If main·init_function started other goroutines, - // kick off new ms to handle them, like ready - // would have, had it not been pre-dawn. - schedlock(); - matchmg(); - schedunlock(); -} - -void -runtime·goexit(void) -{ - g->status = Gmoribund; - runtime·gosched(); -} - -void -runtime·tracebackothers(G *me) -{ - G *g; - - for(g = runtime·allg; g != nil; g = g->alllink) { - if(g == me || g->status == Gdead) - continue; - runtime·printf("\ngoroutine %d [%d]:\n", g->goid, g->status); - runtime·traceback(g->sched.pc, g->sched.sp, 0, g); - } -} - -// Mark this g as m's idle goroutine. -// This functionality might be used in environments where programs -// are limited to a single thread, to simulate a select-driven -// network server. It is not exposed via the standard runtime API. -void -runtime·idlegoroutine(void) -{ - if(g->idlem != nil) - runtime·throw("g is already an idle goroutine"); - g->idlem = m; -} - -// Put on `g' queue. Sched must be locked. -static void -gput(G *g) -{ - M *m; - - // If g is wired, hand it off directly. - if(runtime·sched.mcpu < runtime·sched.mcpumax && (m = g->lockedm) != nil) { - mnextg(m, g); - return; - } - - // If g is the idle goroutine for an m, hand it off. - if(g->idlem != nil) { - if(g->idlem->idleg != nil) { - runtime·printf("m%d idle out of sync: g%d g%d\n", - g->idlem->id, - g->idlem->idleg->goid, g->goid); - runtime·throw("runtime: double idle"); - } - g->idlem->idleg = g; - return; - } - - g->schedlink = nil; - if(runtime·sched.ghead == nil) - runtime·sched.ghead = g; - else - runtime·sched.gtail->schedlink = g; - runtime·sched.gtail = g; - runtime·sched.gwait++; -} - -// Get from `g' queue. Sched must be locked. -static G* -gget(void) -{ - G *g; - - g = runtime·sched.ghead; - if(g){ - runtime·sched.ghead = g->schedlink; - if(runtime·sched.ghead == nil) - runtime·sched.gtail = nil; - runtime·sched.gwait--; - } else if(m->idleg != nil) { - g = m->idleg; - m->idleg = nil; - } - return g; -} - -// Put on `m' list. Sched must be locked. -static void -mput(M *m) -{ - m->schedlink = runtime·sched.mhead; - runtime·sched.mhead = m; - runtime·sched.mwait++; -} - -// Get an `m' to run `g'. Sched must be locked. -static M* -mget(G *g) -{ - M *m; - - // if g has its own m, use it. - if((m = g->lockedm) != nil) - return m; - - // otherwise use general m pool. - if((m = runtime·sched.mhead) != nil){ - runtime·sched.mhead = m->schedlink; - runtime·sched.mwait--; - } - return m; -} - -// Mark g ready to run. -void -runtime·ready(G *g) -{ - schedlock(); - readylocked(g); - schedunlock(); -} - -// Mark g ready to run. Sched is already locked. -// G might be running already and about to stop. -// The sched lock protects g->status from changing underfoot. -static void -readylocked(G *g) -{ - if(g->m){ - // Running on another machine. - // Ready it when it stops. - g->readyonstop = 1; - return; - } - - // Mark runnable. - if(g->status == Grunnable || g->status == Grunning) { - runtime·printf("goroutine %d has status %d\n", g->goid, g->status); - runtime·throw("bad g->status in ready"); - } - g->status = Grunnable; - - gput(g); - if(!runtime·sched.predawn) - matchmg(); -} - -static void -nop(void) -{ -} - -// Same as readylocked but a different symbol so that -// debuggers can set a breakpoint here and catch all -// new goroutines. -static void -newprocreadylocked(G *g) -{ - nop(); // avoid inlining in 6l - readylocked(g); -} - -// Pass g to m for running. -static void -mnextg(M *m, G *g) -{ - runtime·sched.mcpu++; - m->nextg = g; - if(m->waitnextg) { - m->waitnextg = 0; - if(mwakeup != nil) - runtime·notewakeup(&mwakeup->havenextg); - mwakeup = m; - } -} - -// Get the next goroutine that m should run. -// Sched must be locked on entry, is unlocked on exit. -// Makes sure that at most $GOMAXPROCS gs are -// running on cpus (not in system calls) at any given time. -static G* -nextgandunlock(void) -{ - G *gp; - - if(runtime·sched.mcpu < 0) - runtime·throw("negative runtime·sched.mcpu"); - - // If there is a g waiting as m->nextg, - // mnextg took care of the runtime·sched.mcpu++. - if(m->nextg != nil) { - gp = m->nextg; - m->nextg = nil; - schedunlock(); - return gp; - } - - if(m->lockedg != nil) { - // We can only run one g, and it's not available. - // Make sure some other cpu is running to handle - // the ordinary run queue. - if(runtime·sched.gwait != 0) - matchmg(); - } else { - // Look for work on global queue. - while(runtime·sched.mcpu < runtime·sched.mcpumax && (gp=gget()) != nil) { - if(gp->lockedm) { - mnextg(gp->lockedm, gp); - continue; - } - runtime·sched.mcpu++; // this m will run gp - schedunlock(); - return gp; - } - // Otherwise, wait on global m queue. - mput(m); - } - if(runtime·sched.mcpu == 0 && runtime·sched.msyscall == 0) - runtime·throw("all goroutines are asleep - deadlock!"); - m->nextg = nil; - m->waitnextg = 1; - runtime·noteclear(&m->havenextg); - if(runtime·sched.waitstop && runtime·sched.mcpu <= runtime·sched.mcpumax) { - runtime·sched.waitstop = 0; - runtime·notewakeup(&runtime·sched.stopped); - } - schedunlock(); - - runtime·notesleep(&m->havenextg); - if((gp = m->nextg) == nil) - runtime·throw("bad m->nextg in nextgoroutine"); - m->nextg = nil; - return gp; -} - -// TODO(rsc): Remove. This is only temporary, -// for the mark and sweep collector. -void -runtime·stoptheworld(void) -{ - schedlock(); - runtime·gcwaiting = 1; - runtime·sched.mcpumax = 1; - while(runtime·sched.mcpu > 1) { - // It would be unsafe for multiple threads to be using - // the stopped note at once, but there is only - // ever one thread doing garbage collection, - // so this is okay. - runtime·noteclear(&runtime·sched.stopped); - runtime·sched.waitstop = 1; - schedunlock(); - runtime·notesleep(&runtime·sched.stopped); - schedlock(); - } - schedunlock(); -} - -// TODO(rsc): Remove. This is only temporary, -// for the mark and sweep collector. -void -runtime·starttheworld(void) -{ - schedlock(); - runtime·gcwaiting = 0; - runtime·sched.mcpumax = runtime·gomaxprocs; - matchmg(); - schedunlock(); -} - -// Called to start an M. -void -runtime·mstart(void) -{ - if(g != m->g0) - runtime·throw("bad runtime·mstart"); - if(m->mcache == nil) - m->mcache = runtime·allocmcache(); - - // Record top of stack for use by mcall. - // Once we call schedule we're never coming back, - // so other calls can reuse this stack space. - runtime·gosave(&m->g0->sched); - m->g0->sched.pc = (void*)-1; // make sure it is never used - - runtime·minit(); - schedule(nil); -} - -// When running with cgo, we call libcgo_thread_start -// to start threads for us so that we can play nicely with -// foreign code. -void (*libcgo_thread_start)(void*); - -typedef struct CgoThreadStart CgoThreadStart; -struct CgoThreadStart -{ - M *m; - G *g; - void (*fn)(void); -}; - -// Kick off new ms as needed (up to mcpumax). -// There are already `other' other cpus that will -// start looking for goroutines shortly. -// Sched is locked. -static void -matchmg(void) -{ - G *g; - - if(m->mallocing || m->gcing) - return; - while(runtime·sched.mcpu < runtime·sched.mcpumax && (g = gget()) != nil){ - M *m; - - // Find the m that will run g. - if((m = mget(g)) == nil){ - m = runtime·malloc(sizeof(M)); - // Add to runtime·allm so garbage collector doesn't free m - // when it is just in a register or thread-local storage. - m->alllink = runtime·allm; - runtime·allm = m; - m->id = runtime·sched.mcount++; - - if(runtime·iscgo) { - CgoThreadStart ts; - - if(libcgo_thread_start == nil) - runtime·throw("libcgo_thread_start missing"); - // pthread_create will make us a stack. - m->g0 = runtime·malg(-1); - ts.m = m; - ts.g = m->g0; - ts.fn = runtime·mstart; - runtime·asmcgocall(libcgo_thread_start, &ts); - } else { - if(Windows) - // windows will layout sched stack on os stack - m->g0 = runtime·malg(-1); - else - m->g0 = runtime·malg(8192); - runtime·newosproc(m, m->g0, m->g0->stackbase, runtime·mstart); - } - } - mnextg(m, g); - } -} - -// One round of scheduler: find a goroutine and run it. -// The argument is the goroutine that was running before -// schedule was called, or nil if this is the first call. -// Never returns. -static void -schedule(G *gp) -{ - int32 hz; - - schedlock(); - if(gp != nil) { - if(runtime·sched.predawn) - runtime·throw("init rescheduling"); - - // Just finished running gp. - gp->m = nil; - runtime·sched.mcpu--; - - if(runtime·sched.mcpu < 0) - runtime·throw("runtime·sched.mcpu < 0 in scheduler"); - switch(gp->status){ - case Grunnable: - case Gdead: - // Shouldn't have been running! - runtime·throw("bad gp->status in sched"); - case Grunning: - gp->status = Grunnable; - gput(gp); - break; - case Gmoribund: - gp->status = Gdead; - if(gp->lockedm) { - gp->lockedm = nil; - m->lockedg = nil; - } - gp->idlem = nil; - unwindstack(gp, nil); - gfput(gp); - if(--runtime·sched.gcount == 0) - runtime·exit(0); - break; - } - if(gp->readyonstop){ - gp->readyonstop = 0; - readylocked(gp); - } - } - - // Find (or wait for) g to run. Unlocks runtime·sched. - gp = nextgandunlock(); - gp->readyonstop = 0; - gp->status = Grunning; - m->curg = gp; - gp->m = m; - - // Check whether the profiler needs to be turned on or off. - hz = runtime·sched.profilehz; - if(m->profilehz != hz) - runtime·resetcpuprofiler(hz); - - if(gp->sched.pc == (byte*)runtime·goexit) { // kickoff - runtime·gogocall(&gp->sched, (void(*)(void))gp->entry); - } - runtime·gogo(&gp->sched, 0); -} - -// Enter scheduler. If g->status is Grunning, -// re-queues g and runs everyone else who is waiting -// before running g again. If g->status is Gmoribund, -// kills off g. -// Cannot split stack because it is called from exitsyscall. -// See comment below. -#pragma textflag 7 -void -runtime·gosched(void) -{ - if(m->locks != 0) - runtime·throw("gosched holding locks"); - if(g == m->g0) - runtime·throw("gosched of g0"); - runtime·mcall(schedule); -} - -// The goroutine g is about to enter a system call. -// Record that it's not using the cpu anymore. -// This is called only from the go syscall library and cgocall, -// not from the low-level system calls used by the runtime. -// -// Entersyscall cannot split the stack: the runtime·gosave must -// make g->sched refer to the caller's stack segment, because -// entersyscall is going to return immediately after. -// It's okay to call matchmg and notewakeup even after -// decrementing mcpu, because we haven't released the -// sched lock yet, so the garbage collector cannot be running. -#pragma textflag 7 -void -runtime·entersyscall(void) -{ - if(runtime·sched.predawn) - return; - schedlock(); - g->status = Gsyscall; - runtime·sched.mcpu--; - runtime·sched.msyscall++; - if(runtime·sched.gwait != 0) - matchmg(); - - if(runtime·sched.waitstop && runtime·sched.mcpu <= runtime·sched.mcpumax) { - runtime·sched.waitstop = 0; - runtime·notewakeup(&runtime·sched.stopped); - } - - // Leave SP around for gc and traceback. - // Do before schedunlock so that gc - // never sees Gsyscall with wrong stack. - runtime·gosave(&g->sched); - g->gcsp = g->sched.sp; - g->gcstack = g->stackbase; - g->gcguard = g->stackguard; - if(g->gcsp < g->gcguard-StackGuard || g->gcstack < g->gcsp) { - runtime·printf("entersyscall inconsistent %p [%p,%p]\n", g->gcsp, g->gcguard-StackGuard, g->gcstack); - runtime·throw("entersyscall"); - } - schedunlock(); -} - -// The goroutine g exited its system call. -// Arrange for it to run on a cpu again. -// This is called only from the go syscall library, not -// from the low-level system calls used by the runtime. -void -runtime·exitsyscall(void) -{ - if(runtime·sched.predawn) - return; - - schedlock(); - runtime·sched.msyscall--; - runtime·sched.mcpu++; - // Fast path - if there's room for this m, we're done. - if(m->profilehz == runtime·sched.profilehz && runtime·sched.mcpu <= runtime·sched.mcpumax) { - // There's a cpu for us, so we can run. - g->status = Grunning; - // Garbage collector isn't running (since we are), - // so okay to clear gcstack. - g->gcstack = nil; - schedunlock(); - return; - } - // Tell scheduler to put g back on the run queue: - // mostly equivalent to g->status = Grunning, - // but keeps the garbage collector from thinking - // that g is running right now, which it's not. - g->readyonstop = 1; - schedunlock(); - - // Slow path - all the cpus are taken. - // The scheduler will ready g and put this m to sleep. - // When the scheduler takes g away from m, - // it will undo the runtime·sched.mcpu++ above. - runtime·gosched(); - - // Gosched returned, so we're allowed to run now. - // Delete the gcstack information that we left for - // the garbage collector during the system call. - // Must wait until now because until gosched returns - // we don't know for sure that the garbage collector - // is not running. - g->gcstack = nil; -} - -void -runtime·oldstack(void) -{ - Stktop *top, old; - uint32 argsize; - byte *sp; - G *g1; - static int32 goid; - -//printf("oldstack m->cret=%p\n", m->cret); - - g1 = m->curg; - top = (Stktop*)g1->stackbase; - sp = (byte*)top; - old = *top; - argsize = old.argsize; - if(argsize > 0) { - sp -= argsize; - runtime·mcpy(top->argp, sp, argsize); - } - goid = old.gobuf.g->goid; // fault if g is bad, before gogo - - if(old.free != 0) - runtime·stackfree(g1->stackguard - StackGuard, old.free); - g1->stackbase = old.stackbase; - g1->stackguard = old.stackguard; - - runtime·gogo(&old.gobuf, m->cret); -} - -void -runtime·newstack(void) -{ - int32 framesize, argsize; - Stktop *top; - byte *stk, *sp; - G *g1; - Gobuf label; - bool reflectcall; - uintptr free; - - framesize = m->moreframesize; - argsize = m->moreargsize; - g1 = m->curg; - - if(m->morebuf.sp < g1->stackguard - StackGuard) { - runtime·printf("runtime: split stack overflow: %p < %p\n", m->morebuf.sp, g1->stackguard - StackGuard); - runtime·throw("runtime: split stack overflow"); - } - if(argsize % sizeof(uintptr) != 0) { - runtime·printf("runtime: stack split with misaligned argsize %d\n", argsize); - runtime·throw("runtime: stack split argsize"); - } - - reflectcall = framesize==1; - if(reflectcall) - framesize = 0; - - if(reflectcall && m->morebuf.sp - sizeof(Stktop) - argsize - 32 > g1->stackguard) { - // special case: called from reflect.call (framesize==1) - // to call code with an arbitrary argument size, - // and we have enough space on the current stack. - // the new Stktop* is necessary to unwind, but - // we don't need to create a new segment. - top = (Stktop*)(m->morebuf.sp - sizeof(*top)); - stk = g1->stackguard - StackGuard; - free = 0; - } else { - // allocate new segment. - framesize += argsize; - framesize += StackExtra; // room for more functions, Stktop. - if(framesize < StackMin) - framesize = StackMin; - framesize += StackSystem; - stk = runtime·stackalloc(framesize); - top = (Stktop*)(stk+framesize-sizeof(*top)); - free = framesize; - } - -//runtime·printf("newstack framesize=%d argsize=%d morepc=%p moreargp=%p gobuf=%p, %p top=%p old=%p\n", -//framesize, argsize, m->morepc, m->moreargp, m->morebuf.pc, m->morebuf.sp, top, g1->stackbase); - - top->stackbase = g1->stackbase; - top->stackguard = g1->stackguard; - top->gobuf = m->morebuf; - top->argp = m->moreargp; - top->argsize = argsize; - top->free = free; - - // copy flag from panic - top->panic = g1->ispanic; - g1->ispanic = false; - - g1->stackbase = (byte*)top; - g1->stackguard = stk + StackGuard; - - sp = (byte*)top; - if(argsize > 0) { - sp -= argsize; - runtime·mcpy(sp, m->moreargp, argsize); - } - if(thechar == '5') { - // caller would have saved its LR below args. - sp -= sizeof(void*); - *(void**)sp = nil; - } - - // Continue as if lessstack had just called m->morepc - // (the PC that decided to grow the stack). - label.sp = sp; - label.pc = (byte*)runtime·lessstack; - label.g = m->curg; - runtime·gogocall(&label, m->morepc); - - *(int32*)345 = 123; // never return -} - -static void -mstackalloc(G *gp) -{ - gp->param = runtime·stackalloc((uintptr)gp->param); - runtime·gogo(&gp->sched, 0); -} - -G* -runtime·malg(int32 stacksize) -{ - G *newg; - byte *stk; - - newg = runtime·malloc(sizeof(G)); - if(stacksize >= 0) { - if(g == m->g0) { - // running on scheduler stack already. - stk = runtime·stackalloc(StackSystem + stacksize); - } else { - // have to call stackalloc on scheduler stack. - g->param = (void*)(StackSystem + stacksize); - runtime·mcall(mstackalloc); - stk = g->param; - g->param = nil; - } - newg->stack0 = stk; - newg->stackguard = stk + StackGuard; - newg->stackbase = stk + StackSystem + stacksize - sizeof(Stktop); - runtime·memclr(newg->stackbase, sizeof(Stktop)); - } - return newg; -} - -/* - * Newproc and deferproc need to be textflag 7 - * (no possible stack split when nearing overflow) - * because they assume that the arguments to fn - * are available sequentially beginning at &arg0. - * If a stack split happened, only the one word - * arg0 would be copied. It's okay if any functions - * they call split the stack below the newproc frame. - */ -#pragma textflag 7 -void -runtime·newproc(int32 siz, byte* fn, ...) -{ - byte *argp; - - if(thechar == '5') - argp = (byte*)(&fn+2); // skip caller's saved LR - else - argp = (byte*)(&fn+1); - runtime·newproc1(fn, argp, siz, 0, runtime·getcallerpc(&siz)); -} - -G* -runtime·newproc1(byte *fn, byte *argp, int32 narg, int32 nret, void *callerpc) -{ - byte *sp; - G *newg; - int32 siz; - -//printf("newproc1 %p %p narg=%d nret=%d\n", fn, argp, narg, nret); - siz = narg + nret; - siz = (siz+7) & ~7; - if(siz > 1024) - runtime·throw("runtime.newproc: too many args"); - - schedlock(); - - if((newg = gfget()) != nil){ - newg->status = Gwaiting; - if(newg->stackguard - StackGuard != newg->stack0) - runtime·throw("invalid stack in newg"); - } else { - newg = runtime·malg(StackMin); - newg->status = Gwaiting; - newg->alllink = runtime·allg; - runtime·allg = newg; - } - - sp = newg->stackbase; - sp -= siz; - runtime·mcpy(sp, argp, narg); - if(thechar == '5') { - // caller's LR - sp -= sizeof(void*); - *(void**)sp = nil; - } - - newg->sched.sp = sp; - newg->sched.pc = (byte*)runtime·goexit; - newg->sched.g = newg; - newg->entry = fn; - newg->gopc = (uintptr)callerpc; - - runtime·sched.gcount++; - runtime·goidgen++; - newg->goid = runtime·goidgen; - - newprocreadylocked(newg); - schedunlock(); - - return newg; -//printf(" goid=%d\n", newg->goid); -} - -#pragma textflag 7 -uintptr -runtime·deferproc(int32 siz, byte* fn, ...) -{ - Defer *d; - - d = runtime·malloc(sizeof(*d) + siz - sizeof(d->args)); - d->fn = fn; - d->siz = siz; - d->pc = runtime·getcallerpc(&siz); - if(thechar == '5') - d->argp = (byte*)(&fn+2); // skip caller's saved link register - else - d->argp = (byte*)(&fn+1); - runtime·mcpy(d->args, d->argp, d->siz); - - d->link = g->defer; - g->defer = d; - - // deferproc returns 0 normally. - // a deferred func that stops a panic - // makes the deferproc return 1. - // the code the compiler generates always - // checks the return value and jumps to the - // end of the function if deferproc returns != 0. - return 0; -} - -#pragma textflag 7 -void -runtime·deferreturn(uintptr arg0) -{ - Defer *d; - byte *argp, *fn; - - d = g->defer; - if(d == nil) - return; - argp = (byte*)&arg0; - if(d->argp != argp) - return; - runtime·mcpy(argp, d->args, d->siz); - g->defer = d->link; - fn = d->fn; - runtime·free(d); - runtime·jmpdefer(fn, argp); -} - -static void -rundefer(void) -{ - Defer *d; - - while((d = g->defer) != nil) { - g->defer = d->link; - reflect·call(d->fn, d->args, d->siz); - runtime·free(d); - } -} - -// Free stack frames until we hit the last one -// or until we find the one that contains the argp. -static void -unwindstack(G *gp, byte *sp) -{ - Stktop *top; - byte *stk; - - // Must be called from a different goroutine, usually m->g0. - if(g == gp) - runtime·throw("unwindstack on self"); - - while((top = (Stktop*)gp->stackbase) != nil && top->stackbase != nil) { - stk = gp->stackguard - StackGuard; - if(stk <= sp && sp < gp->stackbase) - break; - gp->stackbase = top->stackbase; - gp->stackguard = top->stackguard; - if(top->free != 0) - runtime·stackfree(stk, top->free); - } - - if(sp != nil && (sp < gp->stackguard - StackGuard || gp->stackbase < sp)) { - runtime·printf("recover: %p not in [%p, %p]\n", sp, gp->stackguard - StackGuard, gp->stackbase); - runtime·throw("bad unwindstack"); - } -} - -static void -printpanics(Panic *p) -{ - if(p->link) { - printpanics(p->link); - runtime·printf("\t"); - } - runtime·printf("panic: "); - runtime·printany(p->arg); - if(p->recovered) - runtime·printf(" [recovered]"); - runtime·printf("\n"); -} - -static void recovery(G*); - -void -runtime·panic(Eface e) -{ - Defer *d; - Panic *p; - - p = runtime·mal(sizeof *p); - p->arg = e; - p->link = g->panic; - p->stackbase = g->stackbase; - g->panic = p; - - for(;;) { - d = g->defer; - if(d == nil) - break; - // take defer off list in case of recursive panic - g->defer = d->link; - g->ispanic = true; // rock for newstack, where reflect.call ends up - reflect·call(d->fn, d->args, d->siz); - if(p->recovered) { - g->panic = p->link; - if(g->panic == nil) // must be done with signal - g->sig = 0; - runtime·free(p); - // put recovering defer back on list - // for scheduler to find. - d->link = g->defer; - g->defer = d; - runtime·mcall(recovery); - runtime·throw("recovery failed"); // mcall should not return - } - runtime·free(d); - } - - // ran out of deferred calls - old-school panic now - runtime·startpanic(); - printpanics(g->panic); - runtime·dopanic(0); -} - -static void -recovery(G *gp) -{ - Defer *d; - - // Rewind gp's stack; we're running on m->g0's stack. - d = gp->defer; - gp->defer = d->link; - - // Unwind to the stack frame with d's arguments in it. - unwindstack(gp, d->argp); - - // Make the deferproc for this d return again, - // this time returning 1. The calling function will - // jump to the standard return epilogue. - // The -2*sizeof(uintptr) makes up for the - // two extra words that are on the stack at - // each call to deferproc. - // (The pc we're returning to does pop pop - // before it tests the return value.) - // On the arm there are 2 saved LRs mixed in too. - if(thechar == '5') - gp->sched.sp = (byte*)d->argp - 4*sizeof(uintptr); - else - gp->sched.sp = (byte*)d->argp - 2*sizeof(uintptr); - gp->sched.pc = d->pc; - runtime·free(d); - runtime·gogo(&gp->sched, 1); -} - -#pragma textflag 7 /* no split, or else g->stackguard is not the stack for fp */ -void -runtime·recover(byte *argp, Eface ret) -{ - Stktop *top, *oldtop; - Panic *p; - - // Must be a panic going on. - if((p = g->panic) == nil || p->recovered) - goto nomatch; - - // Frame must be at the top of the stack segment, - // because each deferred call starts a new stack - // segment as a side effect of using reflect.call. - // (There has to be some way to remember the - // variable argument frame size, and the segment - // code already takes care of that for us, so we - // reuse it.) - // - // As usual closures complicate things: the fp that - // the closure implementation function claims to have - // is where the explicit arguments start, after the - // implicit pointer arguments and PC slot. - // If we're on the first new segment for a closure, - // then fp == top - top->args is correct, but if - // the closure has its own big argument frame and - // allocated a second segment (see below), - // the fp is slightly above top - top->args. - // That condition can't happen normally though - // (stack pointers go down, not up), so we can accept - // any fp between top and top - top->args as - // indicating the top of the segment. - top = (Stktop*)g->stackbase; - if(argp < (byte*)top - top->argsize || (byte*)top < argp) - goto nomatch; - - // The deferred call makes a new segment big enough - // for the argument frame but not necessarily big - // enough for the function's local frame (size unknown - // at the time of the call), so the function might have - // made its own segment immediately. If that's the - // case, back top up to the older one, the one that - // reflect.call would have made for the panic. - // - // The fp comparison here checks that the argument - // frame that was copied during the split (the top->args - // bytes above top->fp) abuts the old top of stack. - // This is a correct test for both closure and non-closure code. - oldtop = (Stktop*)top->stackbase; - if(oldtop != nil && top->argp == (byte*)oldtop - top->argsize) - top = oldtop; - - // Now we have the segment that was created to - // run this call. It must have been marked as a panic segment. - if(!top->panic) - goto nomatch; - - // Okay, this is the top frame of a deferred call - // in response to a panic. It can see the panic argument. - p->recovered = 1; - ret = p->arg; - FLUSH(&ret); - return; - -nomatch: - ret.type = nil; - ret.data = nil; - FLUSH(&ret); -} - - -// Put on gfree list. Sched must be locked. -static void -gfput(G *g) -{ - if(g->stackguard - StackGuard != g->stack0) - runtime·throw("invalid stack in gfput"); - g->schedlink = runtime·sched.gfree; - runtime·sched.gfree = g; -} - -// Get from gfree list. Sched must be locked. -static G* -gfget(void) -{ - G *g; - - g = runtime·sched.gfree; - if(g) - runtime·sched.gfree = g->schedlink; - return g; -} - -void -runtime·Breakpoint(void) -{ - runtime·breakpoint(); -} - -void -runtime·Goexit(void) -{ - rundefer(); - runtime·goexit(); -} - -void -runtime·Gosched(void) -{ - runtime·gosched(); -} - -void -runtime·LockOSThread(void) -{ - if(runtime·sched.predawn) - runtime·throw("cannot wire during init"); - m->lockedg = g; - g->lockedm = m; -} - -// delete when scheduler is stronger -int32 -runtime·gomaxprocsfunc(int32 n) -{ - int32 ret; - - schedlock(); - ret = runtime·gomaxprocs; - if (n <= 0) - n = ret; - runtime·gomaxprocs = n; - if (runtime·gcwaiting != 0) { - if (runtime·sched.mcpumax != 1) - runtime·throw("invalid runtime·sched.mcpumax during gc"); - schedunlock(); - return ret; - } - runtime·sched.mcpumax = n; - // handle fewer procs? - if(runtime·sched.mcpu > runtime·sched.mcpumax) { - schedunlock(); - // just give up the cpu. - // we'll only get rescheduled once the - // number has come down. - runtime·gosched(); - return ret; - } - // handle more procs - matchmg(); - schedunlock(); - return ret; -} - -void -runtime·UnlockOSThread(void) -{ - m->lockedg = nil; - g->lockedm = nil; -} - -bool -runtime·lockedOSThread(void) -{ - return g->lockedm != nil && m->lockedg != nil; -} - -// for testing of wire, unwire -void -runtime·mid(uint32 ret) -{ - ret = m->id; - FLUSH(&ret); -} - -void -runtime·Goroutines(int32 ret) -{ - ret = runtime·sched.gcount; - FLUSH(&ret); -} - -int32 -runtime·mcount(void) -{ - return runtime·sched.mcount; -} - -void -runtime·badmcall(void) // called from assembly -{ - runtime·throw("runtime: mcall called on m->g0 stack"); -} - -void -runtime·badmcall2(void) // called from assembly -{ - runtime·throw("runtime: mcall function returned"); -} - -static struct { - Lock; - void (*fn)(uintptr*, int32); - int32 hz; - uintptr pcbuf[100]; -} prof; - -void -runtime·sigprof(uint8 *pc, uint8 *sp, uint8 *lr, G *gp) -{ - int32 n; - - if(prof.fn == nil || prof.hz == 0) - return; - - runtime·lock(&prof); - if(prof.fn == nil) { - runtime·unlock(&prof); - return; - } - n = runtime·gentraceback(pc, sp, lr, gp, 0, prof.pcbuf, nelem(prof.pcbuf)); - if(n > 0) - prof.fn(prof.pcbuf, n); - runtime·unlock(&prof); -} - -void -runtime·setcpuprofilerate(void (*fn)(uintptr*, int32), int32 hz) -{ - // Force sane arguments. - if(hz < 0) - hz = 0; - if(hz == 0) - fn = nil; - if(fn == nil) - hz = 0; - - // Stop profiler on this cpu so that it is safe to lock prof. - // if a profiling signal came in while we had prof locked, - // it would deadlock. - runtime·resetcpuprofiler(0); - - runtime·lock(&prof); - prof.fn = fn; - prof.hz = hz; - runtime·unlock(&prof); - runtime·lock(&runtime·sched); - runtime·sched.profilehz = hz; - runtime·unlock(&runtime·sched); - - if(hz != 0) - runtime·resetcpuprofiler(hz); -} - -void (*libcgo_setenv)(byte**); - -void -os·setenv_c(String k, String v) -{ - byte *arg[2]; - - if(libcgo_setenv == nil) - return; - - arg[0] = runtime·malloc(k.len + 1); - runtime·mcpy(arg[0], k.str, k.len); - arg[0][k.len] = 0; - - arg[1] = runtime·malloc(v.len + 1); - runtime·mcpy(arg[1], v.str, v.len); - arg[1][v.len] = 0; - - runtime·asmcgocall(libcgo_setenv, arg); - runtime·free(arg[0]); - runtime·free(arg[1]); -} |