summaryrefslogtreecommitdiff
path: root/src/pkg/runtime/proc.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/runtime/proc.c')
-rw-r--r--src/pkg/runtime/proc.c1368
1 files changed, 0 insertions, 1368 deletions
diff --git a/src/pkg/runtime/proc.c b/src/pkg/runtime/proc.c
deleted file mode 100644
index a8f3a796a..000000000
--- a/src/pkg/runtime/proc.c
+++ /dev/null
@@ -1,1368 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#include "runtime.h"
-#include "arch.h"
-#include "defs.h"
-#include "malloc.h"
-#include "os.h"
-#include "stack.h"
-
-bool runtime·iscgo;
-
-static void unwindstack(G*, byte*);
-static void schedule(G*);
-static void acquireproc(void);
-static void releaseproc(void);
-
-typedef struct Sched Sched;
-
-M runtime·m0;
-G runtime·g0; // idle goroutine for m0
-
-static int32 debug = 0;
-
-int32 runtime·gcwaiting;
-
-// Go scheduler
-//
-// The go scheduler's job is to match ready-to-run goroutines (`g's)
-// with waiting-for-work schedulers (`m's). If there are ready gs
-// and no waiting ms, ready() will start a new m running in a new
-// OS thread, so that all ready gs can run simultaneously, up to a limit.
-// For now, ms never go away.
-//
-// By default, Go keeps only one kernel thread (m) running user code
-// at a single time; other threads may be blocked in the operating system.
-// Setting the environment variable $GOMAXPROCS or calling
-// runtime.GOMAXPROCS() will change the number of user threads
-// allowed to execute simultaneously. $GOMAXPROCS is thus an
-// approximation of the maximum number of cores to use.
-//
-// Even a program that can run without deadlock in a single process
-// might use more ms if given the chance. For example, the prime
-// sieve will use as many ms as there are primes (up to runtime·sched.mmax),
-// allowing different stages of the pipeline to execute in parallel.
-// We could revisit this choice, only kicking off new ms for blocking
-// system calls, but that would limit the amount of parallel computation
-// that go would try to do.
-//
-// In general, one could imagine all sorts of refinements to the
-// scheduler, but the goal now is just to get something working on
-// Linux and OS X.
-
-struct Sched {
- Lock;
-
- G *gfree; // available gs (status == Gdead)
-
- G *ghead; // gs waiting to run
- G *gtail;
- int32 gwait; // number of gs waiting to run
- int32 gcount; // number of gs that are alive
-
- M *mhead; // ms waiting for work
- int32 mwait; // number of ms waiting for work
- int32 mcount; // number of ms that have been created
- int32 mcpu; // number of ms executing on cpu
- int32 mcpumax; // max number of ms allowed on cpu
- int32 msyscall; // number of ms in system calls
-
- int32 predawn; // running initialization, don't run new gs.
- int32 profilehz; // cpu profiling rate
-
- Note stopped; // one g can wait here for ms to stop
- int32 waitstop; // after setting this flag
-};
-
-Sched runtime·sched;
-int32 runtime·gomaxprocs;
-
-// An m that is waiting for notewakeup(&m->havenextg). This may be
-// only be accessed while the scheduler lock is held. This is used to
-// minimize the number of times we call notewakeup while the scheduler
-// lock is held, since the m will normally move quickly to lock the
-// scheduler itself, producing lock contention.
-static M* mwakeup;
-
-// Scheduling helpers. Sched must be locked.
-static void gput(G*); // put/get on ghead/gtail
-static G* gget(void);
-static void mput(M*); // put/get on mhead
-static M* mget(G*);
-static void gfput(G*); // put/get on gfree
-static G* gfget(void);
-static void matchmg(void); // match ms to gs
-static void readylocked(G*); // ready, but sched is locked
-static void mnextg(M*, G*);
-
-// The bootstrap sequence is:
-//
-// call osinit
-// call schedinit
-// make & queue new G
-// call runtime·mstart
-//
-// The new G does:
-//
-// call main·init_function
-// call initdone
-// call main·main
-void
-runtime·schedinit(void)
-{
- int32 n;
- byte *p;
-
- runtime·allm = m;
- m->nomemprof++;
-
- runtime·mallocinit();
- runtime·goargs();
- runtime·goenvs();
-
- // For debugging:
- // Allocate internal symbol table representation now,
- // so that we don't need to call malloc when we crash.
- // runtime·findfunc(0);
-
- runtime·gomaxprocs = 1;
- p = runtime·getenv("GOMAXPROCS");
- if(p != nil && (n = runtime·atoi(p)) != 0)
- runtime·gomaxprocs = n;
- runtime·sched.mcpumax = runtime·gomaxprocs;
- runtime·sched.mcount = 1;
- runtime·sched.predawn = 1;
-
- m->nomemprof--;
-}
-
-// Lock the scheduler.
-static void
-schedlock(void)
-{
- runtime·lock(&runtime·sched);
-}
-
-// Unlock the scheduler.
-static void
-schedunlock(void)
-{
- M *m;
-
- m = mwakeup;
- mwakeup = nil;
- runtime·unlock(&runtime·sched);
- if(m != nil)
- runtime·notewakeup(&m->havenextg);
-}
-
-// Called after main·init_function; main·main will be called on return.
-void
-runtime·initdone(void)
-{
- // Let's go.
- runtime·sched.predawn = 0;
- mstats.enablegc = 1;
-
- // If main·init_function started other goroutines,
- // kick off new ms to handle them, like ready
- // would have, had it not been pre-dawn.
- schedlock();
- matchmg();
- schedunlock();
-}
-
-void
-runtime·goexit(void)
-{
- g->status = Gmoribund;
- runtime·gosched();
-}
-
-void
-runtime·tracebackothers(G *me)
-{
- G *g;
-
- for(g = runtime·allg; g != nil; g = g->alllink) {
- if(g == me || g->status == Gdead)
- continue;
- runtime·printf("\ngoroutine %d [%d]:\n", g->goid, g->status);
- runtime·traceback(g->sched.pc, g->sched.sp, 0, g);
- }
-}
-
-// Mark this g as m's idle goroutine.
-// This functionality might be used in environments where programs
-// are limited to a single thread, to simulate a select-driven
-// network server. It is not exposed via the standard runtime API.
-void
-runtime·idlegoroutine(void)
-{
- if(g->idlem != nil)
- runtime·throw("g is already an idle goroutine");
- g->idlem = m;
-}
-
-// Put on `g' queue. Sched must be locked.
-static void
-gput(G *g)
-{
- M *m;
-
- // If g is wired, hand it off directly.
- if(runtime·sched.mcpu < runtime·sched.mcpumax && (m = g->lockedm) != nil) {
- mnextg(m, g);
- return;
- }
-
- // If g is the idle goroutine for an m, hand it off.
- if(g->idlem != nil) {
- if(g->idlem->idleg != nil) {
- runtime·printf("m%d idle out of sync: g%d g%d\n",
- g->idlem->id,
- g->idlem->idleg->goid, g->goid);
- runtime·throw("runtime: double idle");
- }
- g->idlem->idleg = g;
- return;
- }
-
- g->schedlink = nil;
- if(runtime·sched.ghead == nil)
- runtime·sched.ghead = g;
- else
- runtime·sched.gtail->schedlink = g;
- runtime·sched.gtail = g;
- runtime·sched.gwait++;
-}
-
-// Get from `g' queue. Sched must be locked.
-static G*
-gget(void)
-{
- G *g;
-
- g = runtime·sched.ghead;
- if(g){
- runtime·sched.ghead = g->schedlink;
- if(runtime·sched.ghead == nil)
- runtime·sched.gtail = nil;
- runtime·sched.gwait--;
- } else if(m->idleg != nil) {
- g = m->idleg;
- m->idleg = nil;
- }
- return g;
-}
-
-// Put on `m' list. Sched must be locked.
-static void
-mput(M *m)
-{
- m->schedlink = runtime·sched.mhead;
- runtime·sched.mhead = m;
- runtime·sched.mwait++;
-}
-
-// Get an `m' to run `g'. Sched must be locked.
-static M*
-mget(G *g)
-{
- M *m;
-
- // if g has its own m, use it.
- if((m = g->lockedm) != nil)
- return m;
-
- // otherwise use general m pool.
- if((m = runtime·sched.mhead) != nil){
- runtime·sched.mhead = m->schedlink;
- runtime·sched.mwait--;
- }
- return m;
-}
-
-// Mark g ready to run.
-void
-runtime·ready(G *g)
-{
- schedlock();
- readylocked(g);
- schedunlock();
-}
-
-// Mark g ready to run. Sched is already locked.
-// G might be running already and about to stop.
-// The sched lock protects g->status from changing underfoot.
-static void
-readylocked(G *g)
-{
- if(g->m){
- // Running on another machine.
- // Ready it when it stops.
- g->readyonstop = 1;
- return;
- }
-
- // Mark runnable.
- if(g->status == Grunnable || g->status == Grunning) {
- runtime·printf("goroutine %d has status %d\n", g->goid, g->status);
- runtime·throw("bad g->status in ready");
- }
- g->status = Grunnable;
-
- gput(g);
- if(!runtime·sched.predawn)
- matchmg();
-}
-
-static void
-nop(void)
-{
-}
-
-// Same as readylocked but a different symbol so that
-// debuggers can set a breakpoint here and catch all
-// new goroutines.
-static void
-newprocreadylocked(G *g)
-{
- nop(); // avoid inlining in 6l
- readylocked(g);
-}
-
-// Pass g to m for running.
-static void
-mnextg(M *m, G *g)
-{
- runtime·sched.mcpu++;
- m->nextg = g;
- if(m->waitnextg) {
- m->waitnextg = 0;
- if(mwakeup != nil)
- runtime·notewakeup(&mwakeup->havenextg);
- mwakeup = m;
- }
-}
-
-// Get the next goroutine that m should run.
-// Sched must be locked on entry, is unlocked on exit.
-// Makes sure that at most $GOMAXPROCS gs are
-// running on cpus (not in system calls) at any given time.
-static G*
-nextgandunlock(void)
-{
- G *gp;
-
- if(runtime·sched.mcpu < 0)
- runtime·throw("negative runtime·sched.mcpu");
-
- // If there is a g waiting as m->nextg,
- // mnextg took care of the runtime·sched.mcpu++.
- if(m->nextg != nil) {
- gp = m->nextg;
- m->nextg = nil;
- schedunlock();
- return gp;
- }
-
- if(m->lockedg != nil) {
- // We can only run one g, and it's not available.
- // Make sure some other cpu is running to handle
- // the ordinary run queue.
- if(runtime·sched.gwait != 0)
- matchmg();
- } else {
- // Look for work on global queue.
- while(runtime·sched.mcpu < runtime·sched.mcpumax && (gp=gget()) != nil) {
- if(gp->lockedm) {
- mnextg(gp->lockedm, gp);
- continue;
- }
- runtime·sched.mcpu++; // this m will run gp
- schedunlock();
- return gp;
- }
- // Otherwise, wait on global m queue.
- mput(m);
- }
- if(runtime·sched.mcpu == 0 && runtime·sched.msyscall == 0)
- runtime·throw("all goroutines are asleep - deadlock!");
- m->nextg = nil;
- m->waitnextg = 1;
- runtime·noteclear(&m->havenextg);
- if(runtime·sched.waitstop && runtime·sched.mcpu <= runtime·sched.mcpumax) {
- runtime·sched.waitstop = 0;
- runtime·notewakeup(&runtime·sched.stopped);
- }
- schedunlock();
-
- runtime·notesleep(&m->havenextg);
- if((gp = m->nextg) == nil)
- runtime·throw("bad m->nextg in nextgoroutine");
- m->nextg = nil;
- return gp;
-}
-
-// TODO(rsc): Remove. This is only temporary,
-// for the mark and sweep collector.
-void
-runtime·stoptheworld(void)
-{
- schedlock();
- runtime·gcwaiting = 1;
- runtime·sched.mcpumax = 1;
- while(runtime·sched.mcpu > 1) {
- // It would be unsafe for multiple threads to be using
- // the stopped note at once, but there is only
- // ever one thread doing garbage collection,
- // so this is okay.
- runtime·noteclear(&runtime·sched.stopped);
- runtime·sched.waitstop = 1;
- schedunlock();
- runtime·notesleep(&runtime·sched.stopped);
- schedlock();
- }
- schedunlock();
-}
-
-// TODO(rsc): Remove. This is only temporary,
-// for the mark and sweep collector.
-void
-runtime·starttheworld(void)
-{
- schedlock();
- runtime·gcwaiting = 0;
- runtime·sched.mcpumax = runtime·gomaxprocs;
- matchmg();
- schedunlock();
-}
-
-// Called to start an M.
-void
-runtime·mstart(void)
-{
- if(g != m->g0)
- runtime·throw("bad runtime·mstart");
- if(m->mcache == nil)
- m->mcache = runtime·allocmcache();
-
- // Record top of stack for use by mcall.
- // Once we call schedule we're never coming back,
- // so other calls can reuse this stack space.
- runtime·gosave(&m->g0->sched);
- m->g0->sched.pc = (void*)-1; // make sure it is never used
-
- runtime·minit();
- schedule(nil);
-}
-
-// When running with cgo, we call libcgo_thread_start
-// to start threads for us so that we can play nicely with
-// foreign code.
-void (*libcgo_thread_start)(void*);
-
-typedef struct CgoThreadStart CgoThreadStart;
-struct CgoThreadStart
-{
- M *m;
- G *g;
- void (*fn)(void);
-};
-
-// Kick off new ms as needed (up to mcpumax).
-// There are already `other' other cpus that will
-// start looking for goroutines shortly.
-// Sched is locked.
-static void
-matchmg(void)
-{
- G *g;
-
- if(m->mallocing || m->gcing)
- return;
- while(runtime·sched.mcpu < runtime·sched.mcpumax && (g = gget()) != nil){
- M *m;
-
- // Find the m that will run g.
- if((m = mget(g)) == nil){
- m = runtime·malloc(sizeof(M));
- // Add to runtime·allm so garbage collector doesn't free m
- // when it is just in a register or thread-local storage.
- m->alllink = runtime·allm;
- runtime·allm = m;
- m->id = runtime·sched.mcount++;
-
- if(runtime·iscgo) {
- CgoThreadStart ts;
-
- if(libcgo_thread_start == nil)
- runtime·throw("libcgo_thread_start missing");
- // pthread_create will make us a stack.
- m->g0 = runtime·malg(-1);
- ts.m = m;
- ts.g = m->g0;
- ts.fn = runtime·mstart;
- runtime·asmcgocall(libcgo_thread_start, &ts);
- } else {
- if(Windows)
- // windows will layout sched stack on os stack
- m->g0 = runtime·malg(-1);
- else
- m->g0 = runtime·malg(8192);
- runtime·newosproc(m, m->g0, m->g0->stackbase, runtime·mstart);
- }
- }
- mnextg(m, g);
- }
-}
-
-// One round of scheduler: find a goroutine and run it.
-// The argument is the goroutine that was running before
-// schedule was called, or nil if this is the first call.
-// Never returns.
-static void
-schedule(G *gp)
-{
- int32 hz;
-
- schedlock();
- if(gp != nil) {
- if(runtime·sched.predawn)
- runtime·throw("init rescheduling");
-
- // Just finished running gp.
- gp->m = nil;
- runtime·sched.mcpu--;
-
- if(runtime·sched.mcpu < 0)
- runtime·throw("runtime·sched.mcpu < 0 in scheduler");
- switch(gp->status){
- case Grunnable:
- case Gdead:
- // Shouldn't have been running!
- runtime·throw("bad gp->status in sched");
- case Grunning:
- gp->status = Grunnable;
- gput(gp);
- break;
- case Gmoribund:
- gp->status = Gdead;
- if(gp->lockedm) {
- gp->lockedm = nil;
- m->lockedg = nil;
- }
- gp->idlem = nil;
- unwindstack(gp, nil);
- gfput(gp);
- if(--runtime·sched.gcount == 0)
- runtime·exit(0);
- break;
- }
- if(gp->readyonstop){
- gp->readyonstop = 0;
- readylocked(gp);
- }
- }
-
- // Find (or wait for) g to run. Unlocks runtime·sched.
- gp = nextgandunlock();
- gp->readyonstop = 0;
- gp->status = Grunning;
- m->curg = gp;
- gp->m = m;
-
- // Check whether the profiler needs to be turned on or off.
- hz = runtime·sched.profilehz;
- if(m->profilehz != hz)
- runtime·resetcpuprofiler(hz);
-
- if(gp->sched.pc == (byte*)runtime·goexit) { // kickoff
- runtime·gogocall(&gp->sched, (void(*)(void))gp->entry);
- }
- runtime·gogo(&gp->sched, 0);
-}
-
-// Enter scheduler. If g->status is Grunning,
-// re-queues g and runs everyone else who is waiting
-// before running g again. If g->status is Gmoribund,
-// kills off g.
-// Cannot split stack because it is called from exitsyscall.
-// See comment below.
-#pragma textflag 7
-void
-runtime·gosched(void)
-{
- if(m->locks != 0)
- runtime·throw("gosched holding locks");
- if(g == m->g0)
- runtime·throw("gosched of g0");
- runtime·mcall(schedule);
-}
-
-// The goroutine g is about to enter a system call.
-// Record that it's not using the cpu anymore.
-// This is called only from the go syscall library and cgocall,
-// not from the low-level system calls used by the runtime.
-//
-// Entersyscall cannot split the stack: the runtime·gosave must
-// make g->sched refer to the caller's stack segment, because
-// entersyscall is going to return immediately after.
-// It's okay to call matchmg and notewakeup even after
-// decrementing mcpu, because we haven't released the
-// sched lock yet, so the garbage collector cannot be running.
-#pragma textflag 7
-void
-runtime·entersyscall(void)
-{
- if(runtime·sched.predawn)
- return;
- schedlock();
- g->status = Gsyscall;
- runtime·sched.mcpu--;
- runtime·sched.msyscall++;
- if(runtime·sched.gwait != 0)
- matchmg();
-
- if(runtime·sched.waitstop && runtime·sched.mcpu <= runtime·sched.mcpumax) {
- runtime·sched.waitstop = 0;
- runtime·notewakeup(&runtime·sched.stopped);
- }
-
- // Leave SP around for gc and traceback.
- // Do before schedunlock so that gc
- // never sees Gsyscall with wrong stack.
- runtime·gosave(&g->sched);
- g->gcsp = g->sched.sp;
- g->gcstack = g->stackbase;
- g->gcguard = g->stackguard;
- if(g->gcsp < g->gcguard-StackGuard || g->gcstack < g->gcsp) {
- runtime·printf("entersyscall inconsistent %p [%p,%p]\n", g->gcsp, g->gcguard-StackGuard, g->gcstack);
- runtime·throw("entersyscall");
- }
- schedunlock();
-}
-
-// The goroutine g exited its system call.
-// Arrange for it to run on a cpu again.
-// This is called only from the go syscall library, not
-// from the low-level system calls used by the runtime.
-void
-runtime·exitsyscall(void)
-{
- if(runtime·sched.predawn)
- return;
-
- schedlock();
- runtime·sched.msyscall--;
- runtime·sched.mcpu++;
- // Fast path - if there's room for this m, we're done.
- if(m->profilehz == runtime·sched.profilehz && runtime·sched.mcpu <= runtime·sched.mcpumax) {
- // There's a cpu for us, so we can run.
- g->status = Grunning;
- // Garbage collector isn't running (since we are),
- // so okay to clear gcstack.
- g->gcstack = nil;
- schedunlock();
- return;
- }
- // Tell scheduler to put g back on the run queue:
- // mostly equivalent to g->status = Grunning,
- // but keeps the garbage collector from thinking
- // that g is running right now, which it's not.
- g->readyonstop = 1;
- schedunlock();
-
- // Slow path - all the cpus are taken.
- // The scheduler will ready g and put this m to sleep.
- // When the scheduler takes g away from m,
- // it will undo the runtime·sched.mcpu++ above.
- runtime·gosched();
-
- // Gosched returned, so we're allowed to run now.
- // Delete the gcstack information that we left for
- // the garbage collector during the system call.
- // Must wait until now because until gosched returns
- // we don't know for sure that the garbage collector
- // is not running.
- g->gcstack = nil;
-}
-
-void
-runtime·oldstack(void)
-{
- Stktop *top, old;
- uint32 argsize;
- byte *sp;
- G *g1;
- static int32 goid;
-
-//printf("oldstack m->cret=%p\n", m->cret);
-
- g1 = m->curg;
- top = (Stktop*)g1->stackbase;
- sp = (byte*)top;
- old = *top;
- argsize = old.argsize;
- if(argsize > 0) {
- sp -= argsize;
- runtime·mcpy(top->argp, sp, argsize);
- }
- goid = old.gobuf.g->goid; // fault if g is bad, before gogo
-
- if(old.free != 0)
- runtime·stackfree(g1->stackguard - StackGuard, old.free);
- g1->stackbase = old.stackbase;
- g1->stackguard = old.stackguard;
-
- runtime·gogo(&old.gobuf, m->cret);
-}
-
-void
-runtime·newstack(void)
-{
- int32 framesize, argsize;
- Stktop *top;
- byte *stk, *sp;
- G *g1;
- Gobuf label;
- bool reflectcall;
- uintptr free;
-
- framesize = m->moreframesize;
- argsize = m->moreargsize;
- g1 = m->curg;
-
- if(m->morebuf.sp < g1->stackguard - StackGuard) {
- runtime·printf("runtime: split stack overflow: %p < %p\n", m->morebuf.sp, g1->stackguard - StackGuard);
- runtime·throw("runtime: split stack overflow");
- }
- if(argsize % sizeof(uintptr) != 0) {
- runtime·printf("runtime: stack split with misaligned argsize %d\n", argsize);
- runtime·throw("runtime: stack split argsize");
- }
-
- reflectcall = framesize==1;
- if(reflectcall)
- framesize = 0;
-
- if(reflectcall && m->morebuf.sp - sizeof(Stktop) - argsize - 32 > g1->stackguard) {
- // special case: called from reflect.call (framesize==1)
- // to call code with an arbitrary argument size,
- // and we have enough space on the current stack.
- // the new Stktop* is necessary to unwind, but
- // we don't need to create a new segment.
- top = (Stktop*)(m->morebuf.sp - sizeof(*top));
- stk = g1->stackguard - StackGuard;
- free = 0;
- } else {
- // allocate new segment.
- framesize += argsize;
- framesize += StackExtra; // room for more functions, Stktop.
- if(framesize < StackMin)
- framesize = StackMin;
- framesize += StackSystem;
- stk = runtime·stackalloc(framesize);
- top = (Stktop*)(stk+framesize-sizeof(*top));
- free = framesize;
- }
-
-//runtime·printf("newstack framesize=%d argsize=%d morepc=%p moreargp=%p gobuf=%p, %p top=%p old=%p\n",
-//framesize, argsize, m->morepc, m->moreargp, m->morebuf.pc, m->morebuf.sp, top, g1->stackbase);
-
- top->stackbase = g1->stackbase;
- top->stackguard = g1->stackguard;
- top->gobuf = m->morebuf;
- top->argp = m->moreargp;
- top->argsize = argsize;
- top->free = free;
-
- // copy flag from panic
- top->panic = g1->ispanic;
- g1->ispanic = false;
-
- g1->stackbase = (byte*)top;
- g1->stackguard = stk + StackGuard;
-
- sp = (byte*)top;
- if(argsize > 0) {
- sp -= argsize;
- runtime·mcpy(sp, m->moreargp, argsize);
- }
- if(thechar == '5') {
- // caller would have saved its LR below args.
- sp -= sizeof(void*);
- *(void**)sp = nil;
- }
-
- // Continue as if lessstack had just called m->morepc
- // (the PC that decided to grow the stack).
- label.sp = sp;
- label.pc = (byte*)runtime·lessstack;
- label.g = m->curg;
- runtime·gogocall(&label, m->morepc);
-
- *(int32*)345 = 123; // never return
-}
-
-static void
-mstackalloc(G *gp)
-{
- gp->param = runtime·stackalloc((uintptr)gp->param);
- runtime·gogo(&gp->sched, 0);
-}
-
-G*
-runtime·malg(int32 stacksize)
-{
- G *newg;
- byte *stk;
-
- newg = runtime·malloc(sizeof(G));
- if(stacksize >= 0) {
- if(g == m->g0) {
- // running on scheduler stack already.
- stk = runtime·stackalloc(StackSystem + stacksize);
- } else {
- // have to call stackalloc on scheduler stack.
- g->param = (void*)(StackSystem + stacksize);
- runtime·mcall(mstackalloc);
- stk = g->param;
- g->param = nil;
- }
- newg->stack0 = stk;
- newg->stackguard = stk + StackGuard;
- newg->stackbase = stk + StackSystem + stacksize - sizeof(Stktop);
- runtime·memclr(newg->stackbase, sizeof(Stktop));
- }
- return newg;
-}
-
-/*
- * Newproc and deferproc need to be textflag 7
- * (no possible stack split when nearing overflow)
- * because they assume that the arguments to fn
- * are available sequentially beginning at &arg0.
- * If a stack split happened, only the one word
- * arg0 would be copied. It's okay if any functions
- * they call split the stack below the newproc frame.
- */
-#pragma textflag 7
-void
-runtime·newproc(int32 siz, byte* fn, ...)
-{
- byte *argp;
-
- if(thechar == '5')
- argp = (byte*)(&fn+2); // skip caller's saved LR
- else
- argp = (byte*)(&fn+1);
- runtime·newproc1(fn, argp, siz, 0, runtime·getcallerpc(&siz));
-}
-
-G*
-runtime·newproc1(byte *fn, byte *argp, int32 narg, int32 nret, void *callerpc)
-{
- byte *sp;
- G *newg;
- int32 siz;
-
-//printf("newproc1 %p %p narg=%d nret=%d\n", fn, argp, narg, nret);
- siz = narg + nret;
- siz = (siz+7) & ~7;
- if(siz > 1024)
- runtime·throw("runtime.newproc: too many args");
-
- schedlock();
-
- if((newg = gfget()) != nil){
- newg->status = Gwaiting;
- if(newg->stackguard - StackGuard != newg->stack0)
- runtime·throw("invalid stack in newg");
- } else {
- newg = runtime·malg(StackMin);
- newg->status = Gwaiting;
- newg->alllink = runtime·allg;
- runtime·allg = newg;
- }
-
- sp = newg->stackbase;
- sp -= siz;
- runtime·mcpy(sp, argp, narg);
- if(thechar == '5') {
- // caller's LR
- sp -= sizeof(void*);
- *(void**)sp = nil;
- }
-
- newg->sched.sp = sp;
- newg->sched.pc = (byte*)runtime·goexit;
- newg->sched.g = newg;
- newg->entry = fn;
- newg->gopc = (uintptr)callerpc;
-
- runtime·sched.gcount++;
- runtime·goidgen++;
- newg->goid = runtime·goidgen;
-
- newprocreadylocked(newg);
- schedunlock();
-
- return newg;
-//printf(" goid=%d\n", newg->goid);
-}
-
-#pragma textflag 7
-uintptr
-runtime·deferproc(int32 siz, byte* fn, ...)
-{
- Defer *d;
-
- d = runtime·malloc(sizeof(*d) + siz - sizeof(d->args));
- d->fn = fn;
- d->siz = siz;
- d->pc = runtime·getcallerpc(&siz);
- if(thechar == '5')
- d->argp = (byte*)(&fn+2); // skip caller's saved link register
- else
- d->argp = (byte*)(&fn+1);
- runtime·mcpy(d->args, d->argp, d->siz);
-
- d->link = g->defer;
- g->defer = d;
-
- // deferproc returns 0 normally.
- // a deferred func that stops a panic
- // makes the deferproc return 1.
- // the code the compiler generates always
- // checks the return value and jumps to the
- // end of the function if deferproc returns != 0.
- return 0;
-}
-
-#pragma textflag 7
-void
-runtime·deferreturn(uintptr arg0)
-{
- Defer *d;
- byte *argp, *fn;
-
- d = g->defer;
- if(d == nil)
- return;
- argp = (byte*)&arg0;
- if(d->argp != argp)
- return;
- runtime·mcpy(argp, d->args, d->siz);
- g->defer = d->link;
- fn = d->fn;
- runtime·free(d);
- runtime·jmpdefer(fn, argp);
-}
-
-static void
-rundefer(void)
-{
- Defer *d;
-
- while((d = g->defer) != nil) {
- g->defer = d->link;
- reflect·call(d->fn, d->args, d->siz);
- runtime·free(d);
- }
-}
-
-// Free stack frames until we hit the last one
-// or until we find the one that contains the argp.
-static void
-unwindstack(G *gp, byte *sp)
-{
- Stktop *top;
- byte *stk;
-
- // Must be called from a different goroutine, usually m->g0.
- if(g == gp)
- runtime·throw("unwindstack on self");
-
- while((top = (Stktop*)gp->stackbase) != nil && top->stackbase != nil) {
- stk = gp->stackguard - StackGuard;
- if(stk <= sp && sp < gp->stackbase)
- break;
- gp->stackbase = top->stackbase;
- gp->stackguard = top->stackguard;
- if(top->free != 0)
- runtime·stackfree(stk, top->free);
- }
-
- if(sp != nil && (sp < gp->stackguard - StackGuard || gp->stackbase < sp)) {
- runtime·printf("recover: %p not in [%p, %p]\n", sp, gp->stackguard - StackGuard, gp->stackbase);
- runtime·throw("bad unwindstack");
- }
-}
-
-static void
-printpanics(Panic *p)
-{
- if(p->link) {
- printpanics(p->link);
- runtime·printf("\t");
- }
- runtime·printf("panic: ");
- runtime·printany(p->arg);
- if(p->recovered)
- runtime·printf(" [recovered]");
- runtime·printf("\n");
-}
-
-static void recovery(G*);
-
-void
-runtime·panic(Eface e)
-{
- Defer *d;
- Panic *p;
-
- p = runtime·mal(sizeof *p);
- p->arg = e;
- p->link = g->panic;
- p->stackbase = g->stackbase;
- g->panic = p;
-
- for(;;) {
- d = g->defer;
- if(d == nil)
- break;
- // take defer off list in case of recursive panic
- g->defer = d->link;
- g->ispanic = true; // rock for newstack, where reflect.call ends up
- reflect·call(d->fn, d->args, d->siz);
- if(p->recovered) {
- g->panic = p->link;
- if(g->panic == nil) // must be done with signal
- g->sig = 0;
- runtime·free(p);
- // put recovering defer back on list
- // for scheduler to find.
- d->link = g->defer;
- g->defer = d;
- runtime·mcall(recovery);
- runtime·throw("recovery failed"); // mcall should not return
- }
- runtime·free(d);
- }
-
- // ran out of deferred calls - old-school panic now
- runtime·startpanic();
- printpanics(g->panic);
- runtime·dopanic(0);
-}
-
-static void
-recovery(G *gp)
-{
- Defer *d;
-
- // Rewind gp's stack; we're running on m->g0's stack.
- d = gp->defer;
- gp->defer = d->link;
-
- // Unwind to the stack frame with d's arguments in it.
- unwindstack(gp, d->argp);
-
- // Make the deferproc for this d return again,
- // this time returning 1. The calling function will
- // jump to the standard return epilogue.
- // The -2*sizeof(uintptr) makes up for the
- // two extra words that are on the stack at
- // each call to deferproc.
- // (The pc we're returning to does pop pop
- // before it tests the return value.)
- // On the arm there are 2 saved LRs mixed in too.
- if(thechar == '5')
- gp->sched.sp = (byte*)d->argp - 4*sizeof(uintptr);
- else
- gp->sched.sp = (byte*)d->argp - 2*sizeof(uintptr);
- gp->sched.pc = d->pc;
- runtime·free(d);
- runtime·gogo(&gp->sched, 1);
-}
-
-#pragma textflag 7 /* no split, or else g->stackguard is not the stack for fp */
-void
-runtime·recover(byte *argp, Eface ret)
-{
- Stktop *top, *oldtop;
- Panic *p;
-
- // Must be a panic going on.
- if((p = g->panic) == nil || p->recovered)
- goto nomatch;
-
- // Frame must be at the top of the stack segment,
- // because each deferred call starts a new stack
- // segment as a side effect of using reflect.call.
- // (There has to be some way to remember the
- // variable argument frame size, and the segment
- // code already takes care of that for us, so we
- // reuse it.)
- //
- // As usual closures complicate things: the fp that
- // the closure implementation function claims to have
- // is where the explicit arguments start, after the
- // implicit pointer arguments and PC slot.
- // If we're on the first new segment for a closure,
- // then fp == top - top->args is correct, but if
- // the closure has its own big argument frame and
- // allocated a second segment (see below),
- // the fp is slightly above top - top->args.
- // That condition can't happen normally though
- // (stack pointers go down, not up), so we can accept
- // any fp between top and top - top->args as
- // indicating the top of the segment.
- top = (Stktop*)g->stackbase;
- if(argp < (byte*)top - top->argsize || (byte*)top < argp)
- goto nomatch;
-
- // The deferred call makes a new segment big enough
- // for the argument frame but not necessarily big
- // enough for the function's local frame (size unknown
- // at the time of the call), so the function might have
- // made its own segment immediately. If that's the
- // case, back top up to the older one, the one that
- // reflect.call would have made for the panic.
- //
- // The fp comparison here checks that the argument
- // frame that was copied during the split (the top->args
- // bytes above top->fp) abuts the old top of stack.
- // This is a correct test for both closure and non-closure code.
- oldtop = (Stktop*)top->stackbase;
- if(oldtop != nil && top->argp == (byte*)oldtop - top->argsize)
- top = oldtop;
-
- // Now we have the segment that was created to
- // run this call. It must have been marked as a panic segment.
- if(!top->panic)
- goto nomatch;
-
- // Okay, this is the top frame of a deferred call
- // in response to a panic. It can see the panic argument.
- p->recovered = 1;
- ret = p->arg;
- FLUSH(&ret);
- return;
-
-nomatch:
- ret.type = nil;
- ret.data = nil;
- FLUSH(&ret);
-}
-
-
-// Put on gfree list. Sched must be locked.
-static void
-gfput(G *g)
-{
- if(g->stackguard - StackGuard != g->stack0)
- runtime·throw("invalid stack in gfput");
- g->schedlink = runtime·sched.gfree;
- runtime·sched.gfree = g;
-}
-
-// Get from gfree list. Sched must be locked.
-static G*
-gfget(void)
-{
- G *g;
-
- g = runtime·sched.gfree;
- if(g)
- runtime·sched.gfree = g->schedlink;
- return g;
-}
-
-void
-runtime·Breakpoint(void)
-{
- runtime·breakpoint();
-}
-
-void
-runtime·Goexit(void)
-{
- rundefer();
- runtime·goexit();
-}
-
-void
-runtime·Gosched(void)
-{
- runtime·gosched();
-}
-
-void
-runtime·LockOSThread(void)
-{
- if(runtime·sched.predawn)
- runtime·throw("cannot wire during init");
- m->lockedg = g;
- g->lockedm = m;
-}
-
-// delete when scheduler is stronger
-int32
-runtime·gomaxprocsfunc(int32 n)
-{
- int32 ret;
-
- schedlock();
- ret = runtime·gomaxprocs;
- if (n <= 0)
- n = ret;
- runtime·gomaxprocs = n;
- if (runtime·gcwaiting != 0) {
- if (runtime·sched.mcpumax != 1)
- runtime·throw("invalid runtime·sched.mcpumax during gc");
- schedunlock();
- return ret;
- }
- runtime·sched.mcpumax = n;
- // handle fewer procs?
- if(runtime·sched.mcpu > runtime·sched.mcpumax) {
- schedunlock();
- // just give up the cpu.
- // we'll only get rescheduled once the
- // number has come down.
- runtime·gosched();
- return ret;
- }
- // handle more procs
- matchmg();
- schedunlock();
- return ret;
-}
-
-void
-runtime·UnlockOSThread(void)
-{
- m->lockedg = nil;
- g->lockedm = nil;
-}
-
-bool
-runtime·lockedOSThread(void)
-{
- return g->lockedm != nil && m->lockedg != nil;
-}
-
-// for testing of wire, unwire
-void
-runtime·mid(uint32 ret)
-{
- ret = m->id;
- FLUSH(&ret);
-}
-
-void
-runtime·Goroutines(int32 ret)
-{
- ret = runtime·sched.gcount;
- FLUSH(&ret);
-}
-
-int32
-runtime·mcount(void)
-{
- return runtime·sched.mcount;
-}
-
-void
-runtime·badmcall(void) // called from assembly
-{
- runtime·throw("runtime: mcall called on m->g0 stack");
-}
-
-void
-runtime·badmcall2(void) // called from assembly
-{
- runtime·throw("runtime: mcall function returned");
-}
-
-static struct {
- Lock;
- void (*fn)(uintptr*, int32);
- int32 hz;
- uintptr pcbuf[100];
-} prof;
-
-void
-runtime·sigprof(uint8 *pc, uint8 *sp, uint8 *lr, G *gp)
-{
- int32 n;
-
- if(prof.fn == nil || prof.hz == 0)
- return;
-
- runtime·lock(&prof);
- if(prof.fn == nil) {
- runtime·unlock(&prof);
- return;
- }
- n = runtime·gentraceback(pc, sp, lr, gp, 0, prof.pcbuf, nelem(prof.pcbuf));
- if(n > 0)
- prof.fn(prof.pcbuf, n);
- runtime·unlock(&prof);
-}
-
-void
-runtime·setcpuprofilerate(void (*fn)(uintptr*, int32), int32 hz)
-{
- // Force sane arguments.
- if(hz < 0)
- hz = 0;
- if(hz == 0)
- fn = nil;
- if(fn == nil)
- hz = 0;
-
- // Stop profiler on this cpu so that it is safe to lock prof.
- // if a profiling signal came in while we had prof locked,
- // it would deadlock.
- runtime·resetcpuprofiler(0);
-
- runtime·lock(&prof);
- prof.fn = fn;
- prof.hz = hz;
- runtime·unlock(&prof);
- runtime·lock(&runtime·sched);
- runtime·sched.profilehz = hz;
- runtime·unlock(&runtime·sched);
-
- if(hz != 0)
- runtime·resetcpuprofiler(hz);
-}
-
-void (*libcgo_setenv)(byte**);
-
-void
-os·setenv_c(String k, String v)
-{
- byte *arg[2];
-
- if(libcgo_setenv == nil)
- return;
-
- arg[0] = runtime·malloc(k.len + 1);
- runtime·mcpy(arg[0], k.str, k.len);
- arg[0][k.len] = 0;
-
- arg[1] = runtime·malloc(v.len + 1);
- runtime·mcpy(arg[1], v.str, v.len);
- arg[1][v.len] = 0;
-
- runtime·asmcgocall(libcgo_setenv, arg);
- runtime·free(arg[0]);
- runtime·free(arg[1]);
-}