diff options
Diffstat (limited to 'src/pkg/runtime/proc.c')
-rw-r--r-- | src/pkg/runtime/proc.c | 3153 |
1 files changed, 0 insertions, 3153 deletions
diff --git a/src/pkg/runtime/proc.c b/src/pkg/runtime/proc.c deleted file mode 100644 index de4f70153..000000000 --- a/src/pkg/runtime/proc.c +++ /dev/null @@ -1,3153 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -#include "runtime.h" -#include "arch_GOARCH.h" -#include "zaexperiment.h" -#include "malloc.h" -#include "stack.h" -#include "race.h" -#include "type.h" -#include "../../cmd/ld/textflag.h" - -// Goroutine scheduler -// The scheduler's job is to distribute ready-to-run goroutines over worker threads. -// -// The main concepts are: -// G - goroutine. -// M - worker thread, or machine. -// P - processor, a resource that is required to execute Go code. -// M must have an associated P to execute Go code, however it can be -// blocked or in a syscall w/o an associated P. -// -// Design doc at http://golang.org/s/go11sched. - -typedef struct Sched Sched; -struct Sched { - Lock; - - uint64 goidgen; - - M* midle; // idle m's waiting for work - int32 nmidle; // number of idle m's waiting for work - int32 nmidlelocked; // number of locked m's waiting for work - int32 mcount; // number of m's that have been created - int32 maxmcount; // maximum number of m's allowed (or die) - - P* pidle; // idle P's - uint32 npidle; - uint32 nmspinning; - - // Global runnable queue. - G* runqhead; - G* runqtail; - int32 runqsize; - - // Global cache of dead G's. - Lock gflock; - G* gfree; - - uint32 gcwaiting; // gc is waiting to run - int32 stopwait; - Note stopnote; - uint32 sysmonwait; - Note sysmonnote; - uint64 lastpoll; - - int32 profilehz; // cpu profiling rate -}; - -enum -{ - // The max value of GOMAXPROCS. - // There are no fundamental restrictions on the value. - MaxGomaxprocs = 1<<8, - - // Number of goroutine ids to grab from runtime·sched.goidgen to local per-P cache at once. - // 16 seems to provide enough amortization, but other than that it's mostly arbitrary number. - GoidCacheBatch = 16, -}; - -Sched runtime·sched; -int32 runtime·gomaxprocs; -uint32 runtime·needextram; -bool runtime·iscgo; -M runtime·m0; -G runtime·g0; // idle goroutine for m0 -G* runtime·lastg; -M* runtime·allm; -M* runtime·extram; -int8* runtime·goos; -int32 runtime·ncpu; -static int32 newprocs; - -static Lock allglock; // the following vars are protected by this lock or by stoptheworld -G** runtime·allg; -uintptr runtime·allglen; -static uintptr allgcap; - -void runtime·mstart(void); -static void runqput(P*, G*); -static G* runqget(P*); -static bool runqputslow(P*, G*, uint32, uint32); -static G* runqsteal(P*, P*); -static void mput(M*); -static M* mget(void); -static void mcommoninit(M*); -static void schedule(void); -static void procresize(int32); -static void acquirep(P*); -static P* releasep(void); -static void newm(void(*)(void), P*); -static void stopm(void); -static void startm(P*, bool); -static void handoffp(P*); -static void wakep(void); -static void stoplockedm(void); -static void startlockedm(G*); -static void sysmon(void); -static uint32 retake(int64); -static void incidlelocked(int32); -static void checkdead(void); -static void exitsyscall0(G*); -static void park0(G*); -static void goexit0(G*); -static void gfput(P*, G*); -static G* gfget(P*); -static void gfpurge(P*); -static void globrunqput(G*); -static void globrunqputbatch(G*, G*, int32); -static G* globrunqget(P*, int32); -static P* pidleget(void); -static void pidleput(P*); -static void injectglist(G*); -static bool preemptall(void); -static bool preemptone(P*); -static bool exitsyscallfast(void); -static bool haveexperiment(int8*); -static void allgadd(G*); - -// The bootstrap sequence is: -// -// call osinit -// call schedinit -// make & queue new G -// call runtime·mstart -// -// The new G calls runtime·main. -void -runtime·schedinit(void) -{ - int32 n, procs; - byte *p; - Eface i; - - runtime·sched.maxmcount = 10000; - runtime·precisestack = true; // haveexperiment("precisestack"); - - runtime·symtabinit(); - runtime·mallocinit(); - mcommoninit(m); - - // Initialize the itable value for newErrorCString, - // so that the next time it gets called, possibly - // in a fault during a garbage collection, it will not - // need to allocated memory. - runtime·newErrorCString(0, &i); - - // Initialize the cached gotraceback value, since - // gotraceback calls getenv, which mallocs on Plan 9. - runtime·gotraceback(nil); - - runtime·goargs(); - runtime·goenvs(); - runtime·parsedebugvars(); - - runtime·sched.lastpoll = runtime·nanotime(); - procs = 1; - p = runtime·getenv("GOMAXPROCS"); - if(p != nil && (n = runtime·atoi(p)) > 0) { - if(n > MaxGomaxprocs) - n = MaxGomaxprocs; - procs = n; - } - runtime·allp = runtime·malloc((MaxGomaxprocs+1)*sizeof(runtime·allp[0])); - procresize(procs); - - runtime·copystack = runtime·precisestack; - p = runtime·getenv("GOCOPYSTACK"); - if(p != nil && !runtime·strcmp(p, (byte*)"0")) - runtime·copystack = false; - - mstats.enablegc = 1; - - if(raceenabled) - g->racectx = runtime·raceinit(); -} - -extern void main·init(void); -extern void main·main(void); - -static FuncVal scavenger = {runtime·MHeap_Scavenger}; - -static FuncVal initDone = { runtime·unlockOSThread }; - -// The main goroutine. -// Note: C frames in general are not copyable during stack growth, for two reasons: -// 1) We don't know where in a frame to find pointers to other stack locations. -// 2) There's no guarantee that globals or heap values do not point into the frame. -// -// The C frame for runtime.main is copyable, because: -// 1) There are no pointers to other stack locations in the frame -// (d.fn points at a global, d.link is nil, d.argp is -1). -// 2) The only pointer into this frame is from the defer chain, -// which is explicitly handled during stack copying. -void -runtime·main(void) -{ - Defer d; - - // Max stack size is 1 GB on 64-bit, 250 MB on 32-bit. - // Using decimal instead of binary GB and MB because - // they look nicer in the stack overflow failure message. - if(sizeof(void*) == 8) - runtime·maxstacksize = 1000000000; - else - runtime·maxstacksize = 250000000; - - newm(sysmon, nil); - - // Lock the main goroutine onto this, the main OS thread, - // during initialization. Most programs won't care, but a few - // do require certain calls to be made by the main thread. - // Those can arrange for main.main to run in the main thread - // by calling runtime.LockOSThread during initialization - // to preserve the lock. - runtime·lockOSThread(); - - // Defer unlock so that runtime.Goexit during init does the unlock too. - d.fn = &initDone; - d.siz = 0; - d.link = g->defer; - d.argp = NoArgs; - d.special = true; - g->defer = &d; - - if(m != &runtime·m0) - runtime·throw("runtime·main not on m0"); - runtime·newproc1(&scavenger, nil, 0, 0, runtime·main); - main·init(); - - if(g->defer != &d || d.fn != &initDone) - runtime·throw("runtime: bad defer entry after init"); - g->defer = d.link; - runtime·unlockOSThread(); - - main·main(); - if(raceenabled) - runtime·racefini(); - - // Make racy client program work: if panicking on - // another goroutine at the same time as main returns, - // let the other goroutine finish printing the panic trace. - // Once it does, it will exit. See issue 3934. - if(runtime·panicking) - runtime·park(nil, nil, "panicwait"); - - runtime·exit(0); - for(;;) - *(int32*)runtime·main = 0; -} - -void -runtime·goroutineheader(G *gp) -{ - int8 *status; - int64 waitfor; - - switch(gp->status) { - case Gidle: - status = "idle"; - break; - case Grunnable: - status = "runnable"; - break; - case Grunning: - status = "running"; - break; - case Gsyscall: - status = "syscall"; - break; - case Gwaiting: - if(gp->waitreason) - status = gp->waitreason; - else - status = "waiting"; - break; - default: - status = "???"; - break; - } - - // approx time the G is blocked, in minutes - waitfor = 0; - if((gp->status == Gwaiting || gp->status == Gsyscall) && gp->waitsince != 0) - waitfor = (runtime·nanotime() - gp->waitsince) / (60LL*1000*1000*1000); - - if(waitfor < 1) - runtime·printf("goroutine %D [%s]:\n", gp->goid, status); - else - runtime·printf("goroutine %D [%s, %D minutes]:\n", gp->goid, status, waitfor); -} - -void -runtime·tracebackothers(G *me) -{ - G *gp; - int32 traceback; - uintptr i; - - traceback = runtime·gotraceback(nil); - - // Show the current goroutine first, if we haven't already. - if((gp = m->curg) != nil && gp != me) { - runtime·printf("\n"); - runtime·goroutineheader(gp); - runtime·traceback(~(uintptr)0, ~(uintptr)0, 0, gp); - } - - runtime·lock(&allglock); - for(i = 0; i < runtime·allglen; i++) { - gp = runtime·allg[i]; - if(gp == me || gp == m->curg || gp->status == Gdead) - continue; - if(gp->issystem && traceback < 2) - continue; - runtime·printf("\n"); - runtime·goroutineheader(gp); - if(gp->status == Grunning) { - runtime·printf("\tgoroutine running on other thread; stack unavailable\n"); - runtime·printcreatedby(gp); - } else - runtime·traceback(~(uintptr)0, ~(uintptr)0, 0, gp); - } - runtime·unlock(&allglock); -} - -static void -checkmcount(void) -{ - // sched lock is held - if(runtime·sched.mcount > runtime·sched.maxmcount) { - runtime·printf("runtime: program exceeds %d-thread limit\n", runtime·sched.maxmcount); - runtime·throw("thread exhaustion"); - } -} - -static void -mcommoninit(M *mp) -{ - // If there is no mcache runtime·callers() will crash, - // and we are most likely in sysmon thread so the stack is senseless anyway. - if(m->mcache) - runtime·callers(1, mp->createstack, nelem(mp->createstack)); - - mp->fastrand = 0x49f6428aUL + mp->id + runtime·cputicks(); - - runtime·lock(&runtime·sched); - mp->id = runtime·sched.mcount++; - checkmcount(); - runtime·mpreinit(mp); - - // Add to runtime·allm so garbage collector doesn't free m - // when it is just in a register or thread-local storage. - mp->alllink = runtime·allm; - // runtime·NumCgoCall() iterates over allm w/o schedlock, - // so we need to publish it safely. - runtime·atomicstorep(&runtime·allm, mp); - runtime·unlock(&runtime·sched); -} - -// Mark gp ready to run. -void -runtime·ready(G *gp) -{ - // Mark runnable. - m->locks++; // disable preemption because it can be holding p in a local var - if(gp->status != Gwaiting) { - runtime·printf("goroutine %D has status %d\n", gp->goid, gp->status); - runtime·throw("bad g->status in ready"); - } - gp->status = Grunnable; - runqput(m->p, gp); - if(runtime·atomicload(&runtime·sched.npidle) != 0 && runtime·atomicload(&runtime·sched.nmspinning) == 0) // TODO: fast atomic - wakep(); - m->locks--; - if(m->locks == 0 && g->preempt) // restore the preemption request in case we've cleared it in newstack - g->stackguard0 = StackPreempt; -} - -int32 -runtime·gcprocs(void) -{ - int32 n; - - // Figure out how many CPUs to use during GC. - // Limited by gomaxprocs, number of actual CPUs, and MaxGcproc. - runtime·lock(&runtime·sched); - n = runtime·gomaxprocs; - if(n > runtime·ncpu) - n = runtime·ncpu; - if(n > MaxGcproc) - n = MaxGcproc; - if(n > runtime·sched.nmidle+1) // one M is currently running - n = runtime·sched.nmidle+1; - runtime·unlock(&runtime·sched); - return n; -} - -static bool -needaddgcproc(void) -{ - int32 n; - - runtime·lock(&runtime·sched); - n = runtime·gomaxprocs; - if(n > runtime·ncpu) - n = runtime·ncpu; - if(n > MaxGcproc) - n = MaxGcproc; - n -= runtime·sched.nmidle+1; // one M is currently running - runtime·unlock(&runtime·sched); - return n > 0; -} - -void -runtime·helpgc(int32 nproc) -{ - M *mp; - int32 n, pos; - - runtime·lock(&runtime·sched); - pos = 0; - for(n = 1; n < nproc; n++) { // one M is currently running - if(runtime·allp[pos]->mcache == m->mcache) - pos++; - mp = mget(); - if(mp == nil) - runtime·throw("runtime·gcprocs inconsistency"); - mp->helpgc = n; - mp->mcache = runtime·allp[pos]->mcache; - pos++; - runtime·notewakeup(&mp->park); - } - runtime·unlock(&runtime·sched); -} - -// Similar to stoptheworld but best-effort and can be called several times. -// There is no reverse operation, used during crashing. -// This function must not lock any mutexes. -void -runtime·freezetheworld(void) -{ - int32 i; - - if(runtime·gomaxprocs == 1) - return; - // stopwait and preemption requests can be lost - // due to races with concurrently executing threads, - // so try several times - for(i = 0; i < 5; i++) { - // this should tell the scheduler to not start any new goroutines - runtime·sched.stopwait = 0x7fffffff; - runtime·atomicstore((uint32*)&runtime·sched.gcwaiting, 1); - // this should stop running goroutines - if(!preemptall()) - break; // no running goroutines - runtime·usleep(1000); - } - // to be sure - runtime·usleep(1000); - preemptall(); - runtime·usleep(1000); -} - -void -runtime·stoptheworld(void) -{ - int32 i; - uint32 s; - P *p; - bool wait; - - runtime·lock(&runtime·sched); - runtime·sched.stopwait = runtime·gomaxprocs; - runtime·atomicstore((uint32*)&runtime·sched.gcwaiting, 1); - preemptall(); - // stop current P - m->p->status = Pgcstop; - runtime·sched.stopwait--; - // try to retake all P's in Psyscall status - for(i = 0; i < runtime·gomaxprocs; i++) { - p = runtime·allp[i]; - s = p->status; - if(s == Psyscall && runtime·cas(&p->status, s, Pgcstop)) - runtime·sched.stopwait--; - } - // stop idle P's - while(p = pidleget()) { - p->status = Pgcstop; - runtime·sched.stopwait--; - } - wait = runtime·sched.stopwait > 0; - runtime·unlock(&runtime·sched); - - // wait for remaining P's to stop voluntarily - if(wait) { - for(;;) { - // wait for 100us, then try to re-preempt in case of any races - if(runtime·notetsleep(&runtime·sched.stopnote, 100*1000)) { - runtime·noteclear(&runtime·sched.stopnote); - break; - } - preemptall(); - } - } - if(runtime·sched.stopwait) - runtime·throw("stoptheworld: not stopped"); - for(i = 0; i < runtime·gomaxprocs; i++) { - p = runtime·allp[i]; - if(p->status != Pgcstop) - runtime·throw("stoptheworld: not stopped"); - } -} - -static void -mhelpgc(void) -{ - m->helpgc = -1; -} - -void -runtime·starttheworld(void) -{ - P *p, *p1; - M *mp; - G *gp; - bool add; - - m->locks++; // disable preemption because it can be holding p in a local var - gp = runtime·netpoll(false); // non-blocking - injectglist(gp); - add = needaddgcproc(); - runtime·lock(&runtime·sched); - if(newprocs) { - procresize(newprocs); - newprocs = 0; - } else - procresize(runtime·gomaxprocs); - runtime·sched.gcwaiting = 0; - - p1 = nil; - while(p = pidleget()) { - // procresize() puts p's with work at the beginning of the list. - // Once we reach a p without a run queue, the rest don't have one either. - if(p->runqhead == p->runqtail) { - pidleput(p); - break; - } - p->m = mget(); - p->link = p1; - p1 = p; - } - if(runtime·sched.sysmonwait) { - runtime·sched.sysmonwait = false; - runtime·notewakeup(&runtime·sched.sysmonnote); - } - runtime·unlock(&runtime·sched); - - while(p1) { - p = p1; - p1 = p1->link; - if(p->m) { - mp = p->m; - p->m = nil; - if(mp->nextp) - runtime·throw("starttheworld: inconsistent mp->nextp"); - mp->nextp = p; - runtime·notewakeup(&mp->park); - } else { - // Start M to run P. Do not start another M below. - newm(nil, p); - add = false; - } - } - - if(add) { - // If GC could have used another helper proc, start one now, - // in the hope that it will be available next time. - // It would have been even better to start it before the collection, - // but doing so requires allocating memory, so it's tricky to - // coordinate. This lazy approach works out in practice: - // we don't mind if the first couple gc rounds don't have quite - // the maximum number of procs. - newm(mhelpgc, nil); - } - m->locks--; - if(m->locks == 0 && g->preempt) // restore the preemption request in case we've cleared it in newstack - g->stackguard0 = StackPreempt; -} - -// Called to start an M. -void -runtime·mstart(void) -{ - if(g != m->g0) - runtime·throw("bad runtime·mstart"); - - // Record top of stack for use by mcall. - // Once we call schedule we're never coming back, - // so other calls can reuse this stack space. - runtime·gosave(&m->g0->sched); - m->g0->sched.pc = (uintptr)-1; // make sure it is never used - m->g0->stackguard = m->g0->stackguard0; // cgo sets only stackguard0, copy it to stackguard - runtime·asminit(); - runtime·minit(); - - // Install signal handlers; after minit so that minit can - // prepare the thread to be able to handle the signals. - if(m == &runtime·m0) - runtime·initsig(); - - if(m->mstartfn) - m->mstartfn(); - - if(m->helpgc) { - m->helpgc = 0; - stopm(); - } else if(m != &runtime·m0) { - acquirep(m->nextp); - m->nextp = nil; - } - schedule(); - - // TODO(brainman): This point is never reached, because scheduler - // does not release os threads at the moment. But once this path - // is enabled, we must remove our seh here. -} - -// When running with cgo, we call _cgo_thread_start -// to start threads for us so that we can play nicely with -// foreign code. -void (*_cgo_thread_start)(void*); - -typedef struct CgoThreadStart CgoThreadStart; -struct CgoThreadStart -{ - M *m; - G *g; - uintptr *tls; - void (*fn)(void); -}; - -// Allocate a new m unassociated with any thread. -// Can use p for allocation context if needed. -M* -runtime·allocm(P *p) -{ - M *mp; - static Type *mtype; // The Go type M - - m->locks++; // disable GC because it can be called from sysmon - if(m->p == nil) - acquirep(p); // temporarily borrow p for mallocs in this function - if(mtype == nil) { - Eface e; - runtime·gc_m_ptr(&e); - mtype = ((PtrType*)e.type)->elem; - } - - mp = runtime·cnew(mtype); - mcommoninit(mp); - - // In case of cgo or Solaris, pthread_create will make us a stack. - // Windows will layout sched stack on OS stack. - if(runtime·iscgo || Solaris || Windows) - mp->g0 = runtime·malg(-1); - else - mp->g0 = runtime·malg(8192); - - if(p == m->p) - releasep(); - m->locks--; - if(m->locks == 0 && g->preempt) // restore the preemption request in case we've cleared it in newstack - g->stackguard0 = StackPreempt; - - return mp; -} - -static G* -allocg(void) -{ - G *gp; - static Type *gtype; - - if(gtype == nil) { - Eface e; - runtime·gc_g_ptr(&e); - gtype = ((PtrType*)e.type)->elem; - } - gp = runtime·cnew(gtype); - return gp; -} - -static M* lockextra(bool nilokay); -static void unlockextra(M*); - -// needm is called when a cgo callback happens on a -// thread without an m (a thread not created by Go). -// In this case, needm is expected to find an m to use -// and return with m, g initialized correctly. -// Since m and g are not set now (likely nil, but see below) -// needm is limited in what routines it can call. In particular -// it can only call nosplit functions (textflag 7) and cannot -// do any scheduling that requires an m. -// -// In order to avoid needing heavy lifting here, we adopt -// the following strategy: there is a stack of available m's -// that can be stolen. Using compare-and-swap -// to pop from the stack has ABA races, so we simulate -// a lock by doing an exchange (via casp) to steal the stack -// head and replace the top pointer with MLOCKED (1). -// This serves as a simple spin lock that we can use even -// without an m. The thread that locks the stack in this way -// unlocks the stack by storing a valid stack head pointer. -// -// In order to make sure that there is always an m structure -// available to be stolen, we maintain the invariant that there -// is always one more than needed. At the beginning of the -// program (if cgo is in use) the list is seeded with a single m. -// If needm finds that it has taken the last m off the list, its job -// is - once it has installed its own m so that it can do things like -// allocate memory - to create a spare m and put it on the list. -// -// Each of these extra m's also has a g0 and a curg that are -// pressed into service as the scheduling stack and current -// goroutine for the duration of the cgo callback. -// -// When the callback is done with the m, it calls dropm to -// put the m back on the list. -#pragma textflag NOSPLIT -void -runtime·needm(byte x) -{ - M *mp; - - if(runtime·needextram) { - // Can happen if C/C++ code calls Go from a global ctor. - // Can not throw, because scheduler is not initialized yet. - runtime·write(2, "fatal error: cgo callback before cgo call\n", - sizeof("fatal error: cgo callback before cgo call\n")-1); - runtime·exit(1); - } - - // Lock extra list, take head, unlock popped list. - // nilokay=false is safe here because of the invariant above, - // that the extra list always contains or will soon contain - // at least one m. - mp = lockextra(false); - - // Set needextram when we've just emptied the list, - // so that the eventual call into cgocallbackg will - // allocate a new m for the extra list. We delay the - // allocation until then so that it can be done - // after exitsyscall makes sure it is okay to be - // running at all (that is, there's no garbage collection - // running right now). - mp->needextram = mp->schedlink == nil; - unlockextra(mp->schedlink); - - // Install m and g (= m->g0) and set the stack bounds - // to match the current stack. We don't actually know - // how big the stack is, like we don't know how big any - // scheduling stack is, but we assume there's at least 32 kB, - // which is more than enough for us. - runtime·setmg(mp, mp->g0); - g->stackbase = (uintptr)(&x + 1024); - g->stackguard = (uintptr)(&x - 32*1024); - g->stackguard0 = g->stackguard; - - // Initialize this thread to use the m. - runtime·asminit(); - runtime·minit(); -} - -// newextram allocates an m and puts it on the extra list. -// It is called with a working local m, so that it can do things -// like call schedlock and allocate. -void -runtime·newextram(void) -{ - M *mp, *mnext; - G *gp; - - // Create extra goroutine locked to extra m. - // The goroutine is the context in which the cgo callback will run. - // The sched.pc will never be returned to, but setting it to - // runtime.goexit makes clear to the traceback routines where - // the goroutine stack ends. - mp = runtime·allocm(nil); - gp = runtime·malg(4096); - gp->sched.pc = (uintptr)runtime·goexit; - gp->sched.sp = gp->stackbase; - gp->sched.lr = 0; - gp->sched.g = gp; - gp->syscallpc = gp->sched.pc; - gp->syscallsp = gp->sched.sp; - gp->syscallstack = gp->stackbase; - gp->syscallguard = gp->stackguard; - gp->status = Gsyscall; - mp->curg = gp; - mp->locked = LockInternal; - mp->lockedg = gp; - gp->lockedm = mp; - gp->goid = runtime·xadd64(&runtime·sched.goidgen, 1); - if(raceenabled) - gp->racectx = runtime·racegostart(runtime·newextram); - // put on allg for garbage collector - allgadd(gp); - - // Add m to the extra list. - mnext = lockextra(true); - mp->schedlink = mnext; - unlockextra(mp); -} - -// dropm is called when a cgo callback has called needm but is now -// done with the callback and returning back into the non-Go thread. -// It puts the current m back onto the extra list. -// -// The main expense here is the call to signalstack to release the -// m's signal stack, and then the call to needm on the next callback -// from this thread. It is tempting to try to save the m for next time, -// which would eliminate both these costs, but there might not be -// a next time: the current thread (which Go does not control) might exit. -// If we saved the m for that thread, there would be an m leak each time -// such a thread exited. Instead, we acquire and release an m on each -// call. These should typically not be scheduling operations, just a few -// atomics, so the cost should be small. -// -// TODO(rsc): An alternative would be to allocate a dummy pthread per-thread -// variable using pthread_key_create. Unlike the pthread keys we already use -// on OS X, this dummy key would never be read by Go code. It would exist -// only so that we could register at thread-exit-time destructor. -// That destructor would put the m back onto the extra list. -// This is purely a performance optimization. The current version, -// in which dropm happens on each cgo call, is still correct too. -// We may have to keep the current version on systems with cgo -// but without pthreads, like Windows. -void -runtime·dropm(void) -{ - M *mp, *mnext; - - // Undo whatever initialization minit did during needm. - runtime·unminit(); - - // Clear m and g, and return m to the extra list. - // After the call to setmg we can only call nosplit functions. - mp = m; - runtime·setmg(nil, nil); - - mnext = lockextra(true); - mp->schedlink = mnext; - unlockextra(mp); -} - -#define MLOCKED ((M*)1) - -// lockextra locks the extra list and returns the list head. -// The caller must unlock the list by storing a new list head -// to runtime.extram. If nilokay is true, then lockextra will -// return a nil list head if that's what it finds. If nilokay is false, -// lockextra will keep waiting until the list head is no longer nil. -#pragma textflag NOSPLIT -static M* -lockextra(bool nilokay) -{ - M *mp; - void (*yield)(void); - - for(;;) { - mp = runtime·atomicloadp(&runtime·extram); - if(mp == MLOCKED) { - yield = runtime·osyield; - yield(); - continue; - } - if(mp == nil && !nilokay) { - runtime·usleep(1); - continue; - } - if(!runtime·casp(&runtime·extram, mp, MLOCKED)) { - yield = runtime·osyield; - yield(); - continue; - } - break; - } - return mp; -} - -#pragma textflag NOSPLIT -static void -unlockextra(M *mp) -{ - runtime·atomicstorep(&runtime·extram, mp); -} - - -// Create a new m. It will start off with a call to fn, or else the scheduler. -static void -newm(void(*fn)(void), P *p) -{ - M *mp; - - mp = runtime·allocm(p); - mp->nextp = p; - mp->mstartfn = fn; - - if(runtime·iscgo) { - CgoThreadStart ts; - - if(_cgo_thread_start == nil) - runtime·throw("_cgo_thread_start missing"); - ts.m = mp; - ts.g = mp->g0; - ts.tls = mp->tls; - ts.fn = runtime·mstart; - runtime·asmcgocall(_cgo_thread_start, &ts); - return; - } - runtime·newosproc(mp, (byte*)mp->g0->stackbase); -} - -// Stops execution of the current m until new work is available. -// Returns with acquired P. -static void -stopm(void) -{ - if(m->locks) - runtime·throw("stopm holding locks"); - if(m->p) - runtime·throw("stopm holding p"); - if(m->spinning) { - m->spinning = false; - runtime·xadd(&runtime·sched.nmspinning, -1); - } - -retry: - runtime·lock(&runtime·sched); - mput(m); - runtime·unlock(&runtime·sched); - runtime·notesleep(&m->park); - runtime·noteclear(&m->park); - if(m->helpgc) { - runtime·gchelper(); - m->helpgc = 0; - m->mcache = nil; - goto retry; - } - acquirep(m->nextp); - m->nextp = nil; -} - -static void -mspinning(void) -{ - m->spinning = true; -} - -// Schedules some M to run the p (creates an M if necessary). -// If p==nil, tries to get an idle P, if no idle P's does nothing. -static void -startm(P *p, bool spinning) -{ - M *mp; - void (*fn)(void); - - runtime·lock(&runtime·sched); - if(p == nil) { - p = pidleget(); - if(p == nil) { - runtime·unlock(&runtime·sched); - if(spinning) - runtime·xadd(&runtime·sched.nmspinning, -1); - return; - } - } - mp = mget(); - runtime·unlock(&runtime·sched); - if(mp == nil) { - fn = nil; - if(spinning) - fn = mspinning; - newm(fn, p); - return; - } - if(mp->spinning) - runtime·throw("startm: m is spinning"); - if(mp->nextp) - runtime·throw("startm: m has p"); - mp->spinning = spinning; - mp->nextp = p; - runtime·notewakeup(&mp->park); -} - -// Hands off P from syscall or locked M. -static void -handoffp(P *p) -{ - // if it has local work, start it straight away - if(p->runqhead != p->runqtail || runtime·sched.runqsize) { - startm(p, false); - return; - } - // no local work, check that there are no spinning/idle M's, - // otherwise our help is not required - if(runtime·atomicload(&runtime·sched.nmspinning) + runtime·atomicload(&runtime·sched.npidle) == 0 && // TODO: fast atomic - runtime·cas(&runtime·sched.nmspinning, 0, 1)) { - startm(p, true); - return; - } - runtime·lock(&runtime·sched); - if(runtime·sched.gcwaiting) { - p->status = Pgcstop; - if(--runtime·sched.stopwait == 0) - runtime·notewakeup(&runtime·sched.stopnote); - runtime·unlock(&runtime·sched); - return; - } - if(runtime·sched.runqsize) { - runtime·unlock(&runtime·sched); - startm(p, false); - return; - } - // If this is the last running P and nobody is polling network, - // need to wakeup another M to poll network. - if(runtime·sched.npidle == runtime·gomaxprocs-1 && runtime·atomicload64(&runtime·sched.lastpoll) != 0) { - runtime·unlock(&runtime·sched); - startm(p, false); - return; - } - pidleput(p); - runtime·unlock(&runtime·sched); -} - -// Tries to add one more P to execute G's. -// Called when a G is made runnable (newproc, ready). -static void -wakep(void) -{ - // be conservative about spinning threads - if(!runtime·cas(&runtime·sched.nmspinning, 0, 1)) - return; - startm(nil, true); -} - -// Stops execution of the current m that is locked to a g until the g is runnable again. -// Returns with acquired P. -static void -stoplockedm(void) -{ - P *p; - - if(m->lockedg == nil || m->lockedg->lockedm != m) - runtime·throw("stoplockedm: inconsistent locking"); - if(m->p) { - // Schedule another M to run this p. - p = releasep(); - handoffp(p); - } - incidlelocked(1); - // Wait until another thread schedules lockedg again. - runtime·notesleep(&m->park); - runtime·noteclear(&m->park); - if(m->lockedg->status != Grunnable) - runtime·throw("stoplockedm: not runnable"); - acquirep(m->nextp); - m->nextp = nil; -} - -// Schedules the locked m to run the locked gp. -static void -startlockedm(G *gp) -{ - M *mp; - P *p; - - mp = gp->lockedm; - if(mp == m) - runtime·throw("startlockedm: locked to me"); - if(mp->nextp) - runtime·throw("startlockedm: m has p"); - // directly handoff current P to the locked m - incidlelocked(-1); - p = releasep(); - mp->nextp = p; - runtime·notewakeup(&mp->park); - stopm(); -} - -// Stops the current m for stoptheworld. -// Returns when the world is restarted. -static void -gcstopm(void) -{ - P *p; - - if(!runtime·sched.gcwaiting) - runtime·throw("gcstopm: not waiting for gc"); - if(m->spinning) { - m->spinning = false; - runtime·xadd(&runtime·sched.nmspinning, -1); - } - p = releasep(); - runtime·lock(&runtime·sched); - p->status = Pgcstop; - if(--runtime·sched.stopwait == 0) - runtime·notewakeup(&runtime·sched.stopnote); - runtime·unlock(&runtime·sched); - stopm(); -} - -// Schedules gp to run on the current M. -// Never returns. -static void -execute(G *gp) -{ - int32 hz; - - if(gp->status != Grunnable) { - runtime·printf("execute: bad g status %d\n", gp->status); - runtime·throw("execute: bad g status"); - } - gp->status = Grunning; - gp->waitsince = 0; - gp->preempt = false; - gp->stackguard0 = gp->stackguard; - m->p->schedtick++; - m->curg = gp; - gp->m = m; - - // Check whether the profiler needs to be turned on or off. - hz = runtime·sched.profilehz; - if(m->profilehz != hz) - runtime·resetcpuprofiler(hz); - - runtime·gogo(&gp->sched); -} - -// Finds a runnable goroutine to execute. -// Tries to steal from other P's, get g from global queue, poll network. -static G* -findrunnable(void) -{ - G *gp; - P *p; - int32 i; - -top: - if(runtime·sched.gcwaiting) { - gcstopm(); - goto top; - } - if(runtime·fingwait && runtime·fingwake && (gp = runtime·wakefing()) != nil) - runtime·ready(gp); - // local runq - gp = runqget(m->p); - if(gp) - return gp; - // global runq - if(runtime·sched.runqsize) { - runtime·lock(&runtime·sched); - gp = globrunqget(m->p, 0); - runtime·unlock(&runtime·sched); - if(gp) - return gp; - } - // poll network - gp = runtime·netpoll(false); // non-blocking - if(gp) { - injectglist(gp->schedlink); - gp->status = Grunnable; - return gp; - } - // If number of spinning M's >= number of busy P's, block. - // This is necessary to prevent excessive CPU consumption - // when GOMAXPROCS>>1 but the program parallelism is low. - if(!m->spinning && 2 * runtime·atomicload(&runtime·sched.nmspinning) >= runtime·gomaxprocs - runtime·atomicload(&runtime·sched.npidle)) // TODO: fast atomic - goto stop; - if(!m->spinning) { - m->spinning = true; - runtime·xadd(&runtime·sched.nmspinning, 1); - } - // random steal from other P's - for(i = 0; i < 2*runtime·gomaxprocs; i++) { - if(runtime·sched.gcwaiting) - goto top; - p = runtime·allp[runtime·fastrand1()%runtime·gomaxprocs]; - if(p == m->p) - gp = runqget(p); - else - gp = runqsteal(m->p, p); - if(gp) - return gp; - } -stop: - // return P and block - runtime·lock(&runtime·sched); - if(runtime·sched.gcwaiting) { - runtime·unlock(&runtime·sched); - goto top; - } - if(runtime·sched.runqsize) { - gp = globrunqget(m->p, 0); - runtime·unlock(&runtime·sched); - return gp; - } - p = releasep(); - pidleput(p); - runtime·unlock(&runtime·sched); - if(m->spinning) { - m->spinning = false; - runtime·xadd(&runtime·sched.nmspinning, -1); - } - // check all runqueues once again - for(i = 0; i < runtime·gomaxprocs; i++) { - p = runtime·allp[i]; - if(p && p->runqhead != p->runqtail) { - runtime·lock(&runtime·sched); - p = pidleget(); - runtime·unlock(&runtime·sched); - if(p) { - acquirep(p); - goto top; - } - break; - } - } - // poll network - if(runtime·xchg64(&runtime·sched.lastpoll, 0) != 0) { - if(m->p) - runtime·throw("findrunnable: netpoll with p"); - if(m->spinning) - runtime·throw("findrunnable: netpoll with spinning"); - gp = runtime·netpoll(true); // block until new work is available - runtime·atomicstore64(&runtime·sched.lastpoll, runtime·nanotime()); - if(gp) { - runtime·lock(&runtime·sched); - p = pidleget(); - runtime·unlock(&runtime·sched); - if(p) { - acquirep(p); - injectglist(gp->schedlink); - gp->status = Grunnable; - return gp; - } - injectglist(gp); - } - } - stopm(); - goto top; -} - -static void -resetspinning(void) -{ - int32 nmspinning; - - if(m->spinning) { - m->spinning = false; - nmspinning = runtime·xadd(&runtime·sched.nmspinning, -1); - if(nmspinning < 0) - runtime·throw("findrunnable: negative nmspinning"); - } else - nmspinning = runtime·atomicload(&runtime·sched.nmspinning); - - // M wakeup policy is deliberately somewhat conservative (see nmspinning handling), - // so see if we need to wakeup another P here. - if (nmspinning == 0 && runtime·atomicload(&runtime·sched.npidle) > 0) - wakep(); -} - -// Injects the list of runnable G's into the scheduler. -// Can run concurrently with GC. -static void -injectglist(G *glist) -{ - int32 n; - G *gp; - - if(glist == nil) - return; - runtime·lock(&runtime·sched); - for(n = 0; glist; n++) { - gp = glist; - glist = gp->schedlink; - gp->status = Grunnable; - globrunqput(gp); - } - runtime·unlock(&runtime·sched); - - for(; n && runtime·sched.npidle; n--) - startm(nil, false); -} - -// One round of scheduler: find a runnable goroutine and execute it. -// Never returns. -static void -schedule(void) -{ - G *gp; - uint32 tick; - - if(m->locks) - runtime·throw("schedule: holding locks"); - -top: - if(runtime·sched.gcwaiting) { - gcstopm(); - goto top; - } - - gp = nil; - // Check the global runnable queue once in a while to ensure fairness. - // Otherwise two goroutines can completely occupy the local runqueue - // by constantly respawning each other. - tick = m->p->schedtick; - // This is a fancy way to say tick%61==0, - // it uses 2 MUL instructions instead of a single DIV and so is faster on modern processors. - if(tick - (((uint64)tick*0x4325c53fu)>>36)*61 == 0 && runtime·sched.runqsize > 0) { - runtime·lock(&runtime·sched); - gp = globrunqget(m->p, 1); - runtime·unlock(&runtime·sched); - if(gp) - resetspinning(); - } - if(gp == nil) { - gp = runqget(m->p); - if(gp && m->spinning) - runtime·throw("schedule: spinning with local work"); - } - if(gp == nil) { - gp = findrunnable(); // blocks until work is available - resetspinning(); - } - - if(gp->lockedm) { - // Hands off own p to the locked m, - // then blocks waiting for a new p. - startlockedm(gp); - goto top; - } - - execute(gp); -} - -// Puts the current goroutine into a waiting state and calls unlockf. -// If unlockf returns false, the goroutine is resumed. -void -runtime·park(bool(*unlockf)(G*, void*), void *lock, int8 *reason) -{ - if(g->status != Grunning) - runtime·throw("bad g status"); - m->waitlock = lock; - m->waitunlockf = unlockf; - g->waitreason = reason; - runtime·mcall(park0); -} - -static bool -parkunlock(G *gp, void *lock) -{ - USED(gp); - runtime·unlock(lock); - return true; -} - -// Puts the current goroutine into a waiting state and unlocks the lock. -// The goroutine can be made runnable again by calling runtime·ready(gp). -void -runtime·parkunlock(Lock *lock, int8 *reason) -{ - runtime·park(parkunlock, lock, reason); -} - -// runtime·park continuation on g0. -static void -park0(G *gp) -{ - bool ok; - - gp->status = Gwaiting; - gp->m = nil; - m->curg = nil; - if(m->waitunlockf) { - ok = m->waitunlockf(gp, m->waitlock); - m->waitunlockf = nil; - m->waitlock = nil; - if(!ok) { - gp->status = Grunnable; - execute(gp); // Schedule it back, never returns. - } - } - if(m->lockedg) { - stoplockedm(); - execute(gp); // Never returns. - } - schedule(); -} - -// Scheduler yield. -void -runtime·gosched(void) -{ - if(g->status != Grunning) - runtime·throw("bad g status"); - runtime·mcall(runtime·gosched0); -} - -// runtime·gosched continuation on g0. -void -runtime·gosched0(G *gp) -{ - gp->status = Grunnable; - gp->m = nil; - m->curg = nil; - runtime·lock(&runtime·sched); - globrunqput(gp); - runtime·unlock(&runtime·sched); - if(m->lockedg) { - stoplockedm(); - execute(gp); // Never returns. - } - schedule(); -} - -// Finishes execution of the current goroutine. -// Need to mark it as nosplit, because it runs with sp > stackbase (as runtime·lessstack). -// Since it does not return it does not matter. But if it is preempted -// at the split stack check, GC will complain about inconsistent sp. -#pragma textflag NOSPLIT -void -runtime·goexit(void) -{ - if(g->status != Grunning) - runtime·throw("bad g status"); - if(raceenabled) - runtime·racegoend(); - runtime·mcall(goexit0); -} - -// runtime·goexit continuation on g0. -static void -goexit0(G *gp) -{ - gp->status = Gdead; - gp->m = nil; - gp->lockedm = nil; - gp->paniconfault = 0; - gp->defer = nil; // should be true already but just in case. - gp->panic = nil; // non-nil for Goexit during panic. points at stack-allocated data. - gp->writenbuf = 0; - gp->writebuf = nil; - gp->waitreason = nil; - gp->param = nil; - m->curg = nil; - m->lockedg = nil; - if(m->locked & ~LockExternal) { - runtime·printf("invalid m->locked = %d\n", m->locked); - runtime·throw("internal lockOSThread error"); - } - m->locked = 0; - runtime·unwindstack(gp, nil); - gfput(m->p, gp); - schedule(); -} - -#pragma textflag NOSPLIT -static void -save(void *pc, uintptr sp) -{ - g->sched.pc = (uintptr)pc; - g->sched.sp = sp; - g->sched.lr = 0; - g->sched.ret = 0; - g->sched.ctxt = 0; - g->sched.g = g; -} - -// The goroutine g is about to enter a system call. -// Record that it's not using the cpu anymore. -// This is called only from the go syscall library and cgocall, -// not from the low-level system calls used by the runtime. -// -// Entersyscall cannot split the stack: the runtime·gosave must -// make g->sched refer to the caller's stack segment, because -// entersyscall is going to return immediately after. -#pragma textflag NOSPLIT -void -runtime·reentersyscall(void *pc, uintptr sp) -{ - // Disable preemption because during this function g is in Gsyscall status, - // but can have inconsistent g->sched, do not let GC observe it. - m->locks++; - - // Leave SP around for GC and traceback. - save(pc, sp); - g->syscallsp = g->sched.sp; - g->syscallpc = g->sched.pc; - g->syscallstack = g->stackbase; - g->syscallguard = g->stackguard; - g->status = Gsyscall; - if(g->syscallsp < g->syscallguard-StackGuard || g->syscallstack < g->syscallsp) { - // runtime·printf("entersyscall inconsistent %p [%p,%p]\n", - // g->syscallsp, g->syscallguard-StackGuard, g->syscallstack); - runtime·throw("entersyscall"); - } - - if(runtime·atomicload(&runtime·sched.sysmonwait)) { // TODO: fast atomic - runtime·lock(&runtime·sched); - if(runtime·atomicload(&runtime·sched.sysmonwait)) { - runtime·atomicstore(&runtime·sched.sysmonwait, 0); - runtime·notewakeup(&runtime·sched.sysmonnote); - } - runtime·unlock(&runtime·sched); - save(pc, sp); - } - - m->mcache = nil; - m->p->m = nil; - runtime·atomicstore(&m->p->status, Psyscall); - if(runtime·sched.gcwaiting) { - runtime·lock(&runtime·sched); - if (runtime·sched.stopwait > 0 && runtime·cas(&m->p->status, Psyscall, Pgcstop)) { - if(--runtime·sched.stopwait == 0) - runtime·notewakeup(&runtime·sched.stopnote); - } - runtime·unlock(&runtime·sched); - save(pc, sp); - } - - // Goroutines must not split stacks in Gsyscall status (it would corrupt g->sched). - // We set stackguard to StackPreempt so that first split stack check calls morestack. - // Morestack detects this case and throws. - g->stackguard0 = StackPreempt; - m->locks--; -} - -#pragma textflag NOSPLIT -void -·entersyscall(int32 dummy) -{ - runtime·reentersyscall(runtime·getcallerpc(&dummy), runtime·getcallersp(&dummy)); -} - -// The same as runtime·entersyscall(), but with a hint that the syscall is blocking. -#pragma textflag NOSPLIT -void -·entersyscallblock(int32 dummy) -{ - P *p; - - m->locks++; // see comment in entersyscall - - // Leave SP around for GC and traceback. - save(runtime·getcallerpc(&dummy), runtime·getcallersp(&dummy)); - g->syscallsp = g->sched.sp; - g->syscallpc = g->sched.pc; - g->syscallstack = g->stackbase; - g->syscallguard = g->stackguard; - g->status = Gsyscall; - if(g->syscallsp < g->syscallguard-StackGuard || g->syscallstack < g->syscallsp) { - // runtime·printf("entersyscall inconsistent %p [%p,%p]\n", - // g->syscallsp, g->syscallguard-StackGuard, g->syscallstack); - runtime·throw("entersyscallblock"); - } - - p = releasep(); - handoffp(p); - if(g->isbackground) // do not consider blocked scavenger for deadlock detection - incidlelocked(1); - - // Resave for traceback during blocked call. - save(runtime·getcallerpc(&dummy), runtime·getcallersp(&dummy)); - - g->stackguard0 = StackPreempt; // see comment in entersyscall - m->locks--; -} - -// The goroutine g exited its system call. -// Arrange for it to run on a cpu again. -// This is called only from the go syscall library, not -// from the low-level system calls used by the runtime. -#pragma textflag NOSPLIT -void -·exitsyscall(int32 dummy) -{ - m->locks++; // see comment in entersyscall - - if(runtime·getcallersp(&dummy) > g->syscallsp) - runtime·throw("exitsyscall: syscall frame is no longer valid"); - - if(g->isbackground) // do not consider blocked scavenger for deadlock detection - incidlelocked(-1); - - g->waitsince = 0; - if(exitsyscallfast()) { - // There's a cpu for us, so we can run. - m->p->syscalltick++; - g->status = Grunning; - // Garbage collector isn't running (since we are), - // so okay to clear gcstack and gcsp. - g->syscallstack = (uintptr)nil; - g->syscallsp = (uintptr)nil; - m->locks--; - if(g->preempt) { - // restore the preemption request in case we've cleared it in newstack - g->stackguard0 = StackPreempt; - } else { - // otherwise restore the real stackguard, we've spoiled it in entersyscall/entersyscallblock - g->stackguard0 = g->stackguard; - } - return; - } - - m->locks--; - - // Call the scheduler. - runtime·mcall(exitsyscall0); - - // Scheduler returned, so we're allowed to run now. - // Delete the gcstack information that we left for - // the garbage collector during the system call. - // Must wait until now because until gosched returns - // we don't know for sure that the garbage collector - // is not running. - g->syscallstack = (uintptr)nil; - g->syscallsp = (uintptr)nil; - m->p->syscalltick++; -} - -#pragma textflag NOSPLIT -static bool -exitsyscallfast(void) -{ - P *p; - - // Freezetheworld sets stopwait but does not retake P's. - if(runtime·sched.stopwait) { - m->p = nil; - return false; - } - - // Try to re-acquire the last P. - if(m->p && m->p->status == Psyscall && runtime·cas(&m->p->status, Psyscall, Prunning)) { - // There's a cpu for us, so we can run. - m->mcache = m->p->mcache; - m->p->m = m; - return true; - } - // Try to get any other idle P. - m->p = nil; - if(runtime·sched.pidle) { - runtime·lock(&runtime·sched); - p = pidleget(); - if(p && runtime·atomicload(&runtime·sched.sysmonwait)) { - runtime·atomicstore(&runtime·sched.sysmonwait, 0); - runtime·notewakeup(&runtime·sched.sysmonnote); - } - runtime·unlock(&runtime·sched); - if(p) { - acquirep(p); - return true; - } - } - return false; -} - -// runtime·exitsyscall slow path on g0. -// Failed to acquire P, enqueue gp as runnable. -static void -exitsyscall0(G *gp) -{ - P *p; - - gp->status = Grunnable; - gp->m = nil; - m->curg = nil; - runtime·lock(&runtime·sched); - p = pidleget(); - if(p == nil) - globrunqput(gp); - else if(runtime·atomicload(&runtime·sched.sysmonwait)) { - runtime·atomicstore(&runtime·sched.sysmonwait, 0); - runtime·notewakeup(&runtime·sched.sysmonnote); - } - runtime·unlock(&runtime·sched); - if(p) { - acquirep(p); - execute(gp); // Never returns. - } - if(m->lockedg) { - // Wait until another thread schedules gp and so m again. - stoplockedm(); - execute(gp); // Never returns. - } - stopm(); - schedule(); // Never returns. -} - -// Called from syscall package before fork. -#pragma textflag NOSPLIT -void -syscall·runtime_BeforeFork(void) -{ - // Fork can hang if preempted with signals frequently enough (see issue 5517). - // Ensure that we stay on the same M where we disable profiling. - m->locks++; - if(m->profilehz != 0) - runtime·resetcpuprofiler(0); - - // This function is called before fork in syscall package. - // Code between fork and exec must not allocate memory nor even try to grow stack. - // Here we spoil g->stackguard to reliably detect any attempts to grow stack. - // runtime_AfterFork will undo this in parent process, but not in child. - m->forkstackguard = g->stackguard; - g->stackguard0 = StackPreempt-1; - g->stackguard = StackPreempt-1; -} - -// Called from syscall package after fork in parent. -#pragma textflag NOSPLIT -void -syscall·runtime_AfterFork(void) -{ - int32 hz; - - // See the comment in runtime_BeforeFork. - g->stackguard0 = m->forkstackguard; - g->stackguard = m->forkstackguard; - m->forkstackguard = 0; - - hz = runtime·sched.profilehz; - if(hz != 0) - runtime·resetcpuprofiler(hz); - m->locks--; -} - -// Hook used by runtime·malg to call runtime·stackalloc on the -// scheduler stack. This exists because runtime·stackalloc insists -// on being called on the scheduler stack, to avoid trying to grow -// the stack while allocating a new stack segment. -static void -mstackalloc(G *gp) -{ - G *newg; - uintptr size; - - newg = (G*)gp->param; - size = newg->stacksize; - newg->stacksize = 0; - gp->param = runtime·stackalloc(newg, size); - runtime·gogo(&gp->sched); -} - -// Allocate a new g, with a stack big enough for stacksize bytes. -G* -runtime·malg(int32 stacksize) -{ - G *newg; - byte *stk; - - if(StackTop < sizeof(Stktop)) { - runtime·printf("runtime: SizeofStktop=%d, should be >=%d\n", (int32)StackTop, (int32)sizeof(Stktop)); - runtime·throw("runtime: bad stack.h"); - } - - newg = allocg(); - if(stacksize >= 0) { - stacksize = runtime·round2(StackSystem + stacksize); - if(g == m->g0) { - // running on scheduler stack already. - stk = runtime·stackalloc(newg, stacksize); - } else { - // have to call stackalloc on scheduler stack. - newg->stacksize = stacksize; - g->param = newg; - runtime·mcall(mstackalloc); - stk = g->param; - g->param = nil; - } - newg->stack0 = (uintptr)stk; - newg->stackguard = (uintptr)stk + StackGuard; - newg->stackguard0 = newg->stackguard; - newg->stackbase = (uintptr)stk + stacksize - sizeof(Stktop); - } - return newg; -} - -// Create a new g running fn with siz bytes of arguments. -// Put it on the queue of g's waiting to run. -// The compiler turns a go statement into a call to this. -// Cannot split the stack because it assumes that the arguments -// are available sequentially after &fn; they would not be -// copied if a stack split occurred. It's OK for this to call -// functions that split the stack. -#pragma textflag NOSPLIT -void -runtime·newproc(int32 siz, FuncVal* fn, ...) -{ - byte *argp; - - if(thechar == '5') - argp = (byte*)(&fn+2); // skip caller's saved LR - else - argp = (byte*)(&fn+1); - runtime·newproc1(fn, argp, siz, 0, runtime·getcallerpc(&siz)); -} - -// Create a new g running fn with narg bytes of arguments starting -// at argp and returning nret bytes of results. callerpc is the -// address of the go statement that created this. The new g is put -// on the queue of g's waiting to run. -G* -runtime·newproc1(FuncVal *fn, byte *argp, int32 narg, int32 nret, void *callerpc) -{ - byte *sp; - G *newg; - P *p; - int32 siz; - -//runtime·printf("newproc1 %p %p narg=%d nret=%d\n", fn->fn, argp, narg, nret); - if(fn == nil) { - m->throwing = -1; // do not dump full stacks - runtime·throw("go of nil func value"); - } - m->locks++; // disable preemption because it can be holding p in a local var - siz = narg + nret; - siz = (siz+7) & ~7; - - // We could instead create a secondary stack frame - // and make it look like goexit was on the original but - // the call to the actual goroutine function was split. - // Not worth it: this is almost always an error. - if(siz > StackMin - 1024) - runtime·throw("runtime.newproc: function arguments too large for new goroutine"); - - p = m->p; - if((newg = gfget(p)) != nil) { - if(newg->stackguard - StackGuard != newg->stack0) - runtime·throw("invalid stack in newg"); - } else { - newg = runtime·malg(StackMin); - allgadd(newg); - } - - sp = (byte*)newg->stackbase; - sp -= siz; - runtime·memmove(sp, argp, narg); - if(thechar == '5') { - // caller's LR - sp -= sizeof(void*); - *(void**)sp = nil; - } - - runtime·memclr((byte*)&newg->sched, sizeof newg->sched); - newg->sched.sp = (uintptr)sp; - newg->sched.pc = (uintptr)runtime·goexit; - newg->sched.g = newg; - runtime·gostartcallfn(&newg->sched, fn); - newg->gopc = (uintptr)callerpc; - newg->status = Grunnable; - if(p->goidcache == p->goidcacheend) { - p->goidcache = runtime·xadd64(&runtime·sched.goidgen, GoidCacheBatch); - p->goidcacheend = p->goidcache + GoidCacheBatch; - } - newg->goid = p->goidcache++; - newg->panicwrap = 0; - if(raceenabled) - newg->racectx = runtime·racegostart((void*)callerpc); - runqput(p, newg); - - if(runtime·atomicload(&runtime·sched.npidle) != 0 && runtime·atomicload(&runtime·sched.nmspinning) == 0 && fn->fn != runtime·main) // TODO: fast atomic - wakep(); - m->locks--; - if(m->locks == 0 && g->preempt) // restore the preemption request in case we've cleared it in newstack - g->stackguard0 = StackPreempt; - return newg; -} - -static void -allgadd(G *gp) -{ - G **new; - uintptr cap; - - runtime·lock(&allglock); - if(runtime·allglen >= allgcap) { - cap = 4096/sizeof(new[0]); - if(cap < 2*allgcap) - cap = 2*allgcap; - new = runtime·malloc(cap*sizeof(new[0])); - if(new == nil) - runtime·throw("runtime: cannot allocate memory"); - if(runtime·allg != nil) { - runtime·memmove(new, runtime·allg, runtime·allglen*sizeof(new[0])); - runtime·free(runtime·allg); - } - runtime·allg = new; - allgcap = cap; - } - runtime·allg[runtime·allglen++] = gp; - runtime·unlock(&allglock); -} - -// Put on gfree list. -// If local list is too long, transfer a batch to the global list. -static void -gfput(P *p, G *gp) -{ - uintptr stksize; - Stktop *top; - - if(gp->stackguard - StackGuard != gp->stack0) - runtime·throw("invalid stack in gfput"); - stksize = gp->stackbase + sizeof(Stktop) - gp->stack0; - if(stksize != gp->stacksize) { - runtime·printf("runtime: bad stacksize, goroutine %D, remain=%d, last=%d\n", - gp->goid, (int32)gp->stacksize, (int32)stksize); - runtime·throw("gfput: bad stacksize"); - } - top = (Stktop*)gp->stackbase; - if(top->malloced) { - // non-standard stack size - free it. - runtime·stackfree(gp, (void*)gp->stack0, top); - gp->stack0 = 0; - gp->stackguard = 0; - gp->stackguard0 = 0; - gp->stackbase = 0; - } - gp->schedlink = p->gfree; - p->gfree = gp; - p->gfreecnt++; - if(p->gfreecnt >= 64) { - runtime·lock(&runtime·sched.gflock); - while(p->gfreecnt >= 32) { - p->gfreecnt--; - gp = p->gfree; - p->gfree = gp->schedlink; - gp->schedlink = runtime·sched.gfree; - runtime·sched.gfree = gp; - } - runtime·unlock(&runtime·sched.gflock); - } -} - -// Get from gfree list. -// If local list is empty, grab a batch from global list. -static G* -gfget(P *p) -{ - G *gp; - byte *stk; - -retry: - gp = p->gfree; - if(gp == nil && runtime·sched.gfree) { - runtime·lock(&runtime·sched.gflock); - while(p->gfreecnt < 32 && runtime·sched.gfree) { - p->gfreecnt++; - gp = runtime·sched.gfree; - runtime·sched.gfree = gp->schedlink; - gp->schedlink = p->gfree; - p->gfree = gp; - } - runtime·unlock(&runtime·sched.gflock); - goto retry; - } - if(gp) { - p->gfree = gp->schedlink; - p->gfreecnt--; - - if(gp->stack0 == 0) { - // Stack was deallocated in gfput. Allocate a new one. - if(g == m->g0) { - stk = runtime·stackalloc(gp, FixedStack); - } else { - gp->stacksize = FixedStack; - g->param = gp; - runtime·mcall(mstackalloc); - stk = g->param; - g->param = nil; - } - gp->stack0 = (uintptr)stk; - gp->stackbase = (uintptr)stk + FixedStack - sizeof(Stktop); - gp->stackguard = (uintptr)stk + StackGuard; - gp->stackguard0 = gp->stackguard; - } - } - return gp; -} - -// Purge all cached G's from gfree list to the global list. -static void -gfpurge(P *p) -{ - G *gp; - - runtime·lock(&runtime·sched.gflock); - while(p->gfreecnt) { - p->gfreecnt--; - gp = p->gfree; - p->gfree = gp->schedlink; - gp->schedlink = runtime·sched.gfree; - runtime·sched.gfree = gp; - } - runtime·unlock(&runtime·sched.gflock); -} - -void -runtime·Breakpoint(void) -{ - runtime·breakpoint(); -} - -void -runtime·Gosched(void) -{ - runtime·gosched(); -} - -// Implementation of runtime.GOMAXPROCS. -// delete when scheduler is even stronger -int32 -runtime·gomaxprocsfunc(int32 n) -{ - int32 ret; - - if(n > MaxGomaxprocs) - n = MaxGomaxprocs; - runtime·lock(&runtime·sched); - ret = runtime·gomaxprocs; - if(n <= 0 || n == ret) { - runtime·unlock(&runtime·sched); - return ret; - } - runtime·unlock(&runtime·sched); - - runtime·semacquire(&runtime·worldsema, false); - m->gcing = 1; - runtime·stoptheworld(); - newprocs = n; - m->gcing = 0; - runtime·semrelease(&runtime·worldsema); - runtime·starttheworld(); - - return ret; -} - -// lockOSThread is called by runtime.LockOSThread and runtime.lockOSThread below -// after they modify m->locked. Do not allow preemption during this call, -// or else the m might be different in this function than in the caller. -#pragma textflag NOSPLIT -static void -lockOSThread(void) -{ - m->lockedg = g; - g->lockedm = m; -} - -void -runtime·LockOSThread(void) -{ - m->locked |= LockExternal; - lockOSThread(); -} - -void -runtime·lockOSThread(void) -{ - m->locked += LockInternal; - lockOSThread(); -} - - -// unlockOSThread is called by runtime.UnlockOSThread and runtime.unlockOSThread below -// after they update m->locked. Do not allow preemption during this call, -// or else the m might be in different in this function than in the caller. -#pragma textflag NOSPLIT -static void -unlockOSThread(void) -{ - if(m->locked != 0) - return; - m->lockedg = nil; - g->lockedm = nil; -} - -void -runtime·UnlockOSThread(void) -{ - m->locked &= ~LockExternal; - unlockOSThread(); -} - -void -runtime·unlockOSThread(void) -{ - if(m->locked < LockInternal) - runtime·throw("runtime: internal error: misuse of lockOSThread/unlockOSThread"); - m->locked -= LockInternal; - unlockOSThread(); -} - -bool -runtime·lockedOSThread(void) -{ - return g->lockedm != nil && m->lockedg != nil; -} - -int32 -runtime·gcount(void) -{ - G *gp; - int32 n, s; - uintptr i; - - n = 0; - runtime·lock(&allglock); - // TODO(dvyukov): runtime.NumGoroutine() is O(N). - // We do not want to increment/decrement centralized counter in newproc/goexit, - // just to make runtime.NumGoroutine() faster. - // Compromise solution is to introduce per-P counters of active goroutines. - for(i = 0; i < runtime·allglen; i++) { - gp = runtime·allg[i]; - s = gp->status; - if(s == Grunnable || s == Grunning || s == Gsyscall || s == Gwaiting) - n++; - } - runtime·unlock(&allglock); - return n; -} - -int32 -runtime·mcount(void) -{ - return runtime·sched.mcount; -} - -void -runtime·badmcall(void (*fn)(G*)) // called from assembly -{ - USED(fn); // TODO: print fn? - runtime·throw("runtime: mcall called on m->g0 stack"); -} - -void -runtime·badmcall2(void (*fn)(G*)) // called from assembly -{ - USED(fn); - runtime·throw("runtime: mcall function returned"); -} - -void -runtime·badreflectcall(void) // called from assembly -{ - runtime·panicstring("runtime: arg size to reflect.call more than 1GB"); -} - -static struct { - Lock; - void (*fn)(uintptr*, int32); - int32 hz; - uintptr pcbuf[100]; -} prof; - -static void System(void) {} -static void ExternalCode(void) {} -static void GC(void) {} -extern byte etext[]; - -// Called if we receive a SIGPROF signal. -void -runtime·sigprof(uint8 *pc, uint8 *sp, uint8 *lr, G *gp, M *mp) -{ - int32 n; - bool traceback; - // Do not use global m in this function, use mp instead. - // On windows one m is sending reports about all the g's, so m means a wrong thing. - byte m; - - m = 0; - USED(m); - - if(prof.fn == nil || prof.hz == 0) - return; - - // Profiling runs concurrently with GC, so it must not allocate. - mp->mallocing++; - - // Define that a "user g" is a user-created goroutine, and a "system g" - // is one that is m->g0 or m->gsignal. We've only made sure that we - // can unwind user g's, so exclude the system g's. - // - // It is not quite as easy as testing gp == m->curg (the current user g) - // because we might be interrupted for profiling halfway through a - // goroutine switch. The switch involves updating three (or four) values: - // g, PC, SP, and (on arm) LR. The PC must be the last to be updated, - // because once it gets updated the new g is running. - // - // When switching from a user g to a system g, LR is not considered live, - // so the update only affects g, SP, and PC. Since PC must be last, there - // the possible partial transitions in ordinary execution are (1) g alone is updated, - // (2) both g and SP are updated, and (3) SP alone is updated. - // If g is updated, we'll see a system g and not look closer. - // If SP alone is updated, we can detect the partial transition by checking - // whether the SP is within g's stack bounds. (We could also require that SP - // be changed only after g, but the stack bounds check is needed by other - // cases, so there is no need to impose an additional requirement.) - // - // There is one exceptional transition to a system g, not in ordinary execution. - // When a signal arrives, the operating system starts the signal handler running - // with an updated PC and SP. The g is updated last, at the beginning of the - // handler. There are two reasons this is okay. First, until g is updated the - // g and SP do not match, so the stack bounds check detects the partial transition. - // Second, signal handlers currently run with signals disabled, so a profiling - // signal cannot arrive during the handler. - // - // When switching from a system g to a user g, there are three possibilities. - // - // First, it may be that the g switch has no PC update, because the SP - // either corresponds to a user g throughout (as in runtime.asmcgocall) - // or because it has been arranged to look like a user g frame - // (as in runtime.cgocallback_gofunc). In this case, since the entire - // transition is a g+SP update, a partial transition updating just one of - // those will be detected by the stack bounds check. - // - // Second, when returning from a signal handler, the PC and SP updates - // are performed by the operating system in an atomic update, so the g - // update must be done before them. The stack bounds check detects - // the partial transition here, and (again) signal handlers run with signals - // disabled, so a profiling signal cannot arrive then anyway. - // - // Third, the common case: it may be that the switch updates g, SP, and PC - // separately, as in runtime.gogo. - // - // Because runtime.gogo is the only instance, we check whether the PC lies - // within that function, and if so, not ask for a traceback. This approach - // requires knowing the size of the runtime.gogo function, which we - // record in arch_*.h and check in runtime_test.go. - // - // There is another apparently viable approach, recorded here in case - // the "PC within runtime.gogo" check turns out not to be usable. - // It would be possible to delay the update of either g or SP until immediately - // before the PC update instruction. Then, because of the stack bounds check, - // the only problematic interrupt point is just before that PC update instruction, - // and the sigprof handler can detect that instruction and simulate stepping past - // it in order to reach a consistent state. On ARM, the update of g must be made - // in two places (in R10 and also in a TLS slot), so the delayed update would - // need to be the SP update. The sigprof handler must read the instruction at - // the current PC and if it was the known instruction (for example, JMP BX or - // MOV R2, PC), use that other register in place of the PC value. - // The biggest drawback to this solution is that it requires that we can tell - // whether it's safe to read from the memory pointed at by PC. - // In a correct program, we can test PC == nil and otherwise read, - // but if a profiling signal happens at the instant that a program executes - // a bad jump (before the program manages to handle the resulting fault) - // the profiling handler could fault trying to read nonexistent memory. - // - // To recap, there are no constraints on the assembly being used for the - // transition. We simply require that g and SP match and that the PC is not - // in runtime.gogo. - traceback = true; - if(gp == nil || gp != mp->curg || - (uintptr)sp < gp->stackguard - StackGuard || gp->stackbase < (uintptr)sp || - ((uint8*)runtime·gogo <= pc && pc < (uint8*)runtime·gogo + RuntimeGogoBytes)) - traceback = false; - - runtime·lock(&prof); - if(prof.fn == nil) { - runtime·unlock(&prof); - mp->mallocing--; - return; - } - n = 0; - if(traceback) - n = runtime·gentraceback((uintptr)pc, (uintptr)sp, (uintptr)lr, gp, 0, prof.pcbuf, nelem(prof.pcbuf), nil, nil, false); - if(!traceback || n <= 0) { - // Normal traceback is impossible or has failed. - // See if it falls into several common cases. - n = 0; - if(mp->ncgo > 0 && mp->curg != nil && - mp->curg->syscallpc != 0 && mp->curg->syscallsp != 0) { - // Cgo, we can't unwind and symbolize arbitrary C code, - // so instead collect Go stack that leads to the cgo call. - // This is especially important on windows, since all syscalls are cgo calls. - n = runtime·gentraceback(mp->curg->syscallpc, mp->curg->syscallsp, 0, mp->curg, 0, prof.pcbuf, nelem(prof.pcbuf), nil, nil, false); - } -#ifdef GOOS_windows - if(n == 0 && mp->libcallg != nil && mp->libcallpc != 0 && mp->libcallsp != 0) { - // Libcall, i.e. runtime syscall on windows. - // Collect Go stack that leads to the call. - n = runtime·gentraceback(mp->libcallpc, mp->libcallsp, 0, mp->libcallg, 0, prof.pcbuf, nelem(prof.pcbuf), nil, nil, false); - } -#endif - if(n == 0) { - // If all of the above has failed, account it against abstract "System" or "GC". - n = 2; - // "ExternalCode" is better than "etext". - if((uintptr)pc > (uintptr)etext) - pc = (byte*)ExternalCode + PCQuantum; - prof.pcbuf[0] = (uintptr)pc; - if(mp->gcing || mp->helpgc) - prof.pcbuf[1] = (uintptr)GC + PCQuantum; - else - prof.pcbuf[1] = (uintptr)System + PCQuantum; - } - } - prof.fn(prof.pcbuf, n); - runtime·unlock(&prof); - mp->mallocing--; -} - -// Arrange to call fn with a traceback hz times a second. -void -runtime·setcpuprofilerate(void (*fn)(uintptr*, int32), int32 hz) -{ - // Force sane arguments. - if(hz < 0) - hz = 0; - if(hz == 0) - fn = nil; - if(fn == nil) - hz = 0; - - // Disable preemption, otherwise we can be rescheduled to another thread - // that has profiling enabled. - m->locks++; - - // Stop profiler on this thread so that it is safe to lock prof. - // if a profiling signal came in while we had prof locked, - // it would deadlock. - runtime·resetcpuprofiler(0); - - runtime·lock(&prof); - prof.fn = fn; - prof.hz = hz; - runtime·unlock(&prof); - runtime·lock(&runtime·sched); - runtime·sched.profilehz = hz; - runtime·unlock(&runtime·sched); - - if(hz != 0) - runtime·resetcpuprofiler(hz); - - m->locks--; -} - -// Change number of processors. The world is stopped, sched is locked. -static void -procresize(int32 new) -{ - int32 i, old; - bool empty; - G *gp; - P *p; - - old = runtime·gomaxprocs; - if(old < 0 || old > MaxGomaxprocs || new <= 0 || new >MaxGomaxprocs) - runtime·throw("procresize: invalid arg"); - // initialize new P's - for(i = 0; i < new; i++) { - p = runtime·allp[i]; - if(p == nil) { - p = (P*)runtime·mallocgc(sizeof(*p), 0, FlagNoInvokeGC); - p->id = i; - p->status = Pgcstop; - runtime·atomicstorep(&runtime·allp[i], p); - } - if(p->mcache == nil) { - if(old==0 && i==0) - p->mcache = m->mcache; // bootstrap - else - p->mcache = runtime·allocmcache(); - } - } - - // redistribute runnable G's evenly - // collect all runnable goroutines in global queue preserving FIFO order - // FIFO order is required to ensure fairness even during frequent GCs - // see http://golang.org/issue/7126 - empty = false; - while(!empty) { - empty = true; - for(i = 0; i < old; i++) { - p = runtime·allp[i]; - if(p->runqhead == p->runqtail) - continue; - empty = false; - // pop from tail of local queue - p->runqtail--; - gp = p->runq[p->runqtail%nelem(p->runq)]; - // push onto head of global queue - gp->schedlink = runtime·sched.runqhead; - runtime·sched.runqhead = gp; - if(runtime·sched.runqtail == nil) - runtime·sched.runqtail = gp; - runtime·sched.runqsize++; - } - } - // fill local queues with at most nelem(p->runq)/2 goroutines - // start at 1 because current M already executes some G and will acquire allp[0] below, - // so if we have a spare G we want to put it into allp[1]. - for(i = 1; i < new * nelem(p->runq)/2 && runtime·sched.runqsize > 0; i++) { - gp = runtime·sched.runqhead; - runtime·sched.runqhead = gp->schedlink; - if(runtime·sched.runqhead == nil) - runtime·sched.runqtail = nil; - runtime·sched.runqsize--; - runqput(runtime·allp[i%new], gp); - } - - // free unused P's - for(i = new; i < old; i++) { - p = runtime·allp[i]; - runtime·freemcache(p->mcache); - p->mcache = nil; - gfpurge(p); - p->status = Pdead; - // can't free P itself because it can be referenced by an M in syscall - } - - if(m->p) - m->p->m = nil; - m->p = nil; - m->mcache = nil; - p = runtime·allp[0]; - p->m = nil; - p->status = Pidle; - acquirep(p); - for(i = new-1; i > 0; i--) { - p = runtime·allp[i]; - p->status = Pidle; - pidleput(p); - } - runtime·atomicstore((uint32*)&runtime·gomaxprocs, new); -} - -// Associate p and the current m. -static void -acquirep(P *p) -{ - if(m->p || m->mcache) - runtime·throw("acquirep: already in go"); - if(p->m || p->status != Pidle) { - runtime·printf("acquirep: p->m=%p(%d) p->status=%d\n", p->m, p->m ? p->m->id : 0, p->status); - runtime·throw("acquirep: invalid p state"); - } - m->mcache = p->mcache; - m->p = p; - p->m = m; - p->status = Prunning; -} - -// Disassociate p and the current m. -static P* -releasep(void) -{ - P *p; - - if(m->p == nil || m->mcache == nil) - runtime·throw("releasep: invalid arg"); - p = m->p; - if(p->m != m || p->mcache != m->mcache || p->status != Prunning) { - runtime·printf("releasep: m=%p m->p=%p p->m=%p m->mcache=%p p->mcache=%p p->status=%d\n", - m, m->p, p->m, m->mcache, p->mcache, p->status); - runtime·throw("releasep: invalid p state"); - } - m->p = nil; - m->mcache = nil; - p->m = nil; - p->status = Pidle; - return p; -} - -static void -incidlelocked(int32 v) -{ - runtime·lock(&runtime·sched); - runtime·sched.nmidlelocked += v; - if(v > 0) - checkdead(); - runtime·unlock(&runtime·sched); -} - -// Check for deadlock situation. -// The check is based on number of running M's, if 0 -> deadlock. -static void -checkdead(void) -{ - G *gp; - int32 run, grunning, s; - uintptr i; - - // -1 for sysmon - run = runtime·sched.mcount - runtime·sched.nmidle - runtime·sched.nmidlelocked - 1; - if(run > 0) - return; - // If we are dying because of a signal caught on an already idle thread, - // freezetheworld will cause all running threads to block. - // And runtime will essentially enter into deadlock state, - // except that there is a thread that will call runtime·exit soon. - if(runtime·panicking > 0) - return; - if(run < 0) { - runtime·printf("runtime: checkdead: nmidle=%d nmidlelocked=%d mcount=%d\n", - runtime·sched.nmidle, runtime·sched.nmidlelocked, runtime·sched.mcount); - runtime·throw("checkdead: inconsistent counts"); - } - grunning = 0; - runtime·lock(&allglock); - for(i = 0; i < runtime·allglen; i++) { - gp = runtime·allg[i]; - if(gp->isbackground) - continue; - s = gp->status; - if(s == Gwaiting) - grunning++; - else if(s == Grunnable || s == Grunning || s == Gsyscall) { - runtime·unlock(&allglock); - runtime·printf("runtime: checkdead: find g %D in status %d\n", gp->goid, s); - runtime·throw("checkdead: runnable g"); - } - } - runtime·unlock(&allglock); - if(grunning == 0) // possible if main goroutine calls runtime·Goexit() - runtime·throw("no goroutines (main called runtime.Goexit) - deadlock!"); - m->throwing = -1; // do not dump full stacks - runtime·throw("all goroutines are asleep - deadlock!"); -} - -static void -sysmon(void) -{ - uint32 idle, delay; - int64 now, lastpoll, lasttrace; - G *gp; - - lasttrace = 0; - idle = 0; // how many cycles in succession we had not wokeup somebody - delay = 0; - for(;;) { - if(idle == 0) // start with 20us sleep... - delay = 20; - else if(idle > 50) // start doubling the sleep after 1ms... - delay *= 2; - if(delay > 10*1000) // up to 10ms - delay = 10*1000; - runtime·usleep(delay); - if(runtime·debug.schedtrace <= 0 && - (runtime·sched.gcwaiting || runtime·atomicload(&runtime·sched.npidle) == runtime·gomaxprocs)) { // TODO: fast atomic - runtime·lock(&runtime·sched); - if(runtime·atomicload(&runtime·sched.gcwaiting) || runtime·atomicload(&runtime·sched.npidle) == runtime·gomaxprocs) { - runtime·atomicstore(&runtime·sched.sysmonwait, 1); - runtime·unlock(&runtime·sched); - runtime·notesleep(&runtime·sched.sysmonnote); - runtime·noteclear(&runtime·sched.sysmonnote); - idle = 0; - delay = 20; - } else - runtime·unlock(&runtime·sched); - } - // poll network if not polled for more than 10ms - lastpoll = runtime·atomicload64(&runtime·sched.lastpoll); - now = runtime·nanotime(); - if(lastpoll != 0 && lastpoll + 10*1000*1000 < now) { - runtime·cas64(&runtime·sched.lastpoll, lastpoll, now); - gp = runtime·netpoll(false); // non-blocking - if(gp) { - // Need to decrement number of idle locked M's - // (pretending that one more is running) before injectglist. - // Otherwise it can lead to the following situation: - // injectglist grabs all P's but before it starts M's to run the P's, - // another M returns from syscall, finishes running its G, - // observes that there is no work to do and no other running M's - // and reports deadlock. - incidlelocked(-1); - injectglist(gp); - incidlelocked(1); - } - } - // retake P's blocked in syscalls - // and preempt long running G's - if(retake(now)) - idle = 0; - else - idle++; - - if(runtime·debug.schedtrace > 0 && lasttrace + runtime·debug.schedtrace*1000000ll <= now) { - lasttrace = now; - runtime·schedtrace(runtime·debug.scheddetail); - } - } -} - -typedef struct Pdesc Pdesc; -struct Pdesc -{ - uint32 schedtick; - int64 schedwhen; - uint32 syscalltick; - int64 syscallwhen; -}; -#pragma dataflag NOPTR -static Pdesc pdesc[MaxGomaxprocs]; - -static uint32 -retake(int64 now) -{ - uint32 i, s, n; - int64 t; - P *p; - Pdesc *pd; - - n = 0; - for(i = 0; i < runtime·gomaxprocs; i++) { - p = runtime·allp[i]; - if(p==nil) - continue; - pd = &pdesc[i]; - s = p->status; - if(s == Psyscall) { - // Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us). - t = p->syscalltick; - if(pd->syscalltick != t) { - pd->syscalltick = t; - pd->syscallwhen = now; - continue; - } - // On the one hand we don't want to retake Ps if there is no other work to do, - // but on the other hand we want to retake them eventually - // because they can prevent the sysmon thread from deep sleep. - if(p->runqhead == p->runqtail && - runtime·atomicload(&runtime·sched.nmspinning) + runtime·atomicload(&runtime·sched.npidle) > 0 && - pd->syscallwhen + 10*1000*1000 > now) - continue; - // Need to decrement number of idle locked M's - // (pretending that one more is running) before the CAS. - // Otherwise the M from which we retake can exit the syscall, - // increment nmidle and report deadlock. - incidlelocked(-1); - if(runtime·cas(&p->status, s, Pidle)) { - n++; - handoffp(p); - } - incidlelocked(1); - } else if(s == Prunning) { - // Preempt G if it's running for more than 10ms. - t = p->schedtick; - if(pd->schedtick != t) { - pd->schedtick = t; - pd->schedwhen = now; - continue; - } - if(pd->schedwhen + 10*1000*1000 > now) - continue; - preemptone(p); - } - } - return n; -} - -// Tell all goroutines that they have been preempted and they should stop. -// This function is purely best-effort. It can fail to inform a goroutine if a -// processor just started running it. -// No locks need to be held. -// Returns true if preemption request was issued to at least one goroutine. -static bool -preemptall(void) -{ - P *p; - int32 i; - bool res; - - res = false; - for(i = 0; i < runtime·gomaxprocs; i++) { - p = runtime·allp[i]; - if(p == nil || p->status != Prunning) - continue; - res |= preemptone(p); - } - return res; -} - -// Tell the goroutine running on processor P to stop. -// This function is purely best-effort. It can incorrectly fail to inform the -// goroutine. It can send inform the wrong goroutine. Even if it informs the -// correct goroutine, that goroutine might ignore the request if it is -// simultaneously executing runtime·newstack. -// No lock needs to be held. -// Returns true if preemption request was issued. -static bool -preemptone(P *p) -{ - M *mp; - G *gp; - - mp = p->m; - if(mp == nil || mp == m) - return false; - gp = mp->curg; - if(gp == nil || gp == mp->g0) - return false; - gp->preempt = true; - gp->stackguard0 = StackPreempt; - return true; -} - -void -runtime·schedtrace(bool detailed) -{ - static int64 starttime; - int64 now; - int64 id1, id2, id3; - int32 i, t, h; - uintptr gi; - int8 *fmt; - M *mp, *lockedm; - G *gp, *lockedg; - P *p; - - now = runtime·nanotime(); - if(starttime == 0) - starttime = now; - - runtime·lock(&runtime·sched); - runtime·printf("SCHED %Dms: gomaxprocs=%d idleprocs=%d threads=%d idlethreads=%d runqueue=%d", - (now-starttime)/1000000, runtime·gomaxprocs, runtime·sched.npidle, runtime·sched.mcount, - runtime·sched.nmidle, runtime·sched.runqsize); - if(detailed) { - runtime·printf(" gcwaiting=%d nmidlelocked=%d nmspinning=%d stopwait=%d sysmonwait=%d\n", - runtime·sched.gcwaiting, runtime·sched.nmidlelocked, runtime·sched.nmspinning, - runtime·sched.stopwait, runtime·sched.sysmonwait); - } - // We must be careful while reading data from P's, M's and G's. - // Even if we hold schedlock, most data can be changed concurrently. - // E.g. (p->m ? p->m->id : -1) can crash if p->m changes from non-nil to nil. - for(i = 0; i < runtime·gomaxprocs; i++) { - p = runtime·allp[i]; - if(p == nil) - continue; - mp = p->m; - h = runtime·atomicload(&p->runqhead); - t = runtime·atomicload(&p->runqtail); - if(detailed) - runtime·printf(" P%d: status=%d schedtick=%d syscalltick=%d m=%d runqsize=%d gfreecnt=%d\n", - i, p->status, p->schedtick, p->syscalltick, mp ? mp->id : -1, t-h, p->gfreecnt); - else { - // In non-detailed mode format lengths of per-P run queues as: - // [len1 len2 len3 len4] - fmt = " %d"; - if(runtime·gomaxprocs == 1) - fmt = " [%d]\n"; - else if(i == 0) - fmt = " [%d"; - else if(i == runtime·gomaxprocs-1) - fmt = " %d]\n"; - runtime·printf(fmt, t-h); - } - } - if(!detailed) { - runtime·unlock(&runtime·sched); - return; - } - for(mp = runtime·allm; mp; mp = mp->alllink) { - p = mp->p; - gp = mp->curg; - lockedg = mp->lockedg; - id1 = -1; - if(p) - id1 = p->id; - id2 = -1; - if(gp) - id2 = gp->goid; - id3 = -1; - if(lockedg) - id3 = lockedg->goid; - runtime·printf(" M%d: p=%D curg=%D mallocing=%d throwing=%d gcing=%d" - " locks=%d dying=%d helpgc=%d spinning=%d blocked=%d lockedg=%D\n", - mp->id, id1, id2, - mp->mallocing, mp->throwing, mp->gcing, mp->locks, mp->dying, mp->helpgc, - mp->spinning, m->blocked, id3); - } - runtime·lock(&allglock); - for(gi = 0; gi < runtime·allglen; gi++) { - gp = runtime·allg[gi]; - mp = gp->m; - lockedm = gp->lockedm; - runtime·printf(" G%D: status=%d(%s) m=%d lockedm=%d\n", - gp->goid, gp->status, gp->waitreason, mp ? mp->id : -1, - lockedm ? lockedm->id : -1); - } - runtime·unlock(&allglock); - runtime·unlock(&runtime·sched); -} - -// Put mp on midle list. -// Sched must be locked. -static void -mput(M *mp) -{ - mp->schedlink = runtime·sched.midle; - runtime·sched.midle = mp; - runtime·sched.nmidle++; - checkdead(); -} - -// Try to get an m from midle list. -// Sched must be locked. -static M* -mget(void) -{ - M *mp; - - if((mp = runtime·sched.midle) != nil){ - runtime·sched.midle = mp->schedlink; - runtime·sched.nmidle--; - } - return mp; -} - -// Put gp on the global runnable queue. -// Sched must be locked. -static void -globrunqput(G *gp) -{ - gp->schedlink = nil; - if(runtime·sched.runqtail) - runtime·sched.runqtail->schedlink = gp; - else - runtime·sched.runqhead = gp; - runtime·sched.runqtail = gp; - runtime·sched.runqsize++; -} - -// Put a batch of runnable goroutines on the global runnable queue. -// Sched must be locked. -static void -globrunqputbatch(G *ghead, G *gtail, int32 n) -{ - gtail->schedlink = nil; - if(runtime·sched.runqtail) - runtime·sched.runqtail->schedlink = ghead; - else - runtime·sched.runqhead = ghead; - runtime·sched.runqtail = gtail; - runtime·sched.runqsize += n; -} - -// Try get a batch of G's from the global runnable queue. -// Sched must be locked. -static G* -globrunqget(P *p, int32 max) -{ - G *gp, *gp1; - int32 n; - - if(runtime·sched.runqsize == 0) - return nil; - n = runtime·sched.runqsize/runtime·gomaxprocs+1; - if(n > runtime·sched.runqsize) - n = runtime·sched.runqsize; - if(max > 0 && n > max) - n = max; - if(n > nelem(p->runq)/2) - n = nelem(p->runq)/2; - runtime·sched.runqsize -= n; - if(runtime·sched.runqsize == 0) - runtime·sched.runqtail = nil; - gp = runtime·sched.runqhead; - runtime·sched.runqhead = gp->schedlink; - n--; - while(n--) { - gp1 = runtime·sched.runqhead; - runtime·sched.runqhead = gp1->schedlink; - runqput(p, gp1); - } - return gp; -} - -// Put p to on pidle list. -// Sched must be locked. -static void -pidleput(P *p) -{ - p->link = runtime·sched.pidle; - runtime·sched.pidle = p; - runtime·xadd(&runtime·sched.npidle, 1); // TODO: fast atomic -} - -// Try get a p from pidle list. -// Sched must be locked. -static P* -pidleget(void) -{ - P *p; - - p = runtime·sched.pidle; - if(p) { - runtime·sched.pidle = p->link; - runtime·xadd(&runtime·sched.npidle, -1); // TODO: fast atomic - } - return p; -} - -// Try to put g on local runnable queue. -// If it's full, put onto global queue. -// Executed only by the owner P. -static void -runqput(P *p, G *gp) -{ - uint32 h, t; - -retry: - h = runtime·atomicload(&p->runqhead); // load-acquire, synchronize with consumers - t = p->runqtail; - if(t - h < nelem(p->runq)) { - p->runq[t%nelem(p->runq)] = gp; - runtime·atomicstore(&p->runqtail, t+1); // store-release, makes the item available for consumption - return; - } - if(runqputslow(p, gp, h, t)) - return; - // the queue is not full, now the put above must suceed - goto retry; -} - -// Put g and a batch of work from local runnable queue on global queue. -// Executed only by the owner P. -static bool -runqputslow(P *p, G *gp, uint32 h, uint32 t) -{ - G *batch[nelem(p->runq)/2+1]; - uint32 n, i; - - // First, grab a batch from local queue. - n = t-h; - n = n/2; - if(n != nelem(p->runq)/2) - runtime·throw("runqputslow: queue is not full"); - for(i=0; i<n; i++) - batch[i] = p->runq[(h+i)%nelem(p->runq)]; - if(!runtime·cas(&p->runqhead, h, h+n)) // cas-release, commits consume - return false; - batch[n] = gp; - // Link the goroutines. - for(i=0; i<n; i++) - batch[i]->schedlink = batch[i+1]; - // Now put the batch on global queue. - runtime·lock(&runtime·sched); - globrunqputbatch(batch[0], batch[n], n+1); - runtime·unlock(&runtime·sched); - return true; -} - -// Get g from local runnable queue. -// Executed only by the owner P. -static G* -runqget(P *p) -{ - G *gp; - uint32 t, h; - - for(;;) { - h = runtime·atomicload(&p->runqhead); // load-acquire, synchronize with other consumers - t = p->runqtail; - if(t == h) - return nil; - gp = p->runq[h%nelem(p->runq)]; - if(runtime·cas(&p->runqhead, h, h+1)) // cas-release, commits consume - return gp; - } -} - -// Grabs a batch of goroutines from local runnable queue. -// batch array must be of size nelem(p->runq)/2. Returns number of grabbed goroutines. -// Can be executed by any P. -static uint32 -runqgrab(P *p, G **batch) -{ - uint32 t, h, n, i; - - for(;;) { - h = runtime·atomicload(&p->runqhead); // load-acquire, synchronize with other consumers - t = runtime·atomicload(&p->runqtail); // load-acquire, synchronize with the producer - n = t-h; - n = n - n/2; - if(n == 0) - break; - if(n > nelem(p->runq)/2) // read inconsistent h and t - continue; - for(i=0; i<n; i++) - batch[i] = p->runq[(h+i)%nelem(p->runq)]; - if(runtime·cas(&p->runqhead, h, h+n)) // cas-release, commits consume - break; - } - return n; -} - -// Steal half of elements from local runnable queue of p2 -// and put onto local runnable queue of p. -// Returns one of the stolen elements (or nil if failed). -static G* -runqsteal(P *p, P *p2) -{ - G *gp; - G *batch[nelem(p->runq)/2]; - uint32 t, h, n, i; - - n = runqgrab(p2, batch); - if(n == 0) - return nil; - n--; - gp = batch[n]; - if(n == 0) - return gp; - h = runtime·atomicload(&p->runqhead); // load-acquire, synchronize with consumers - t = p->runqtail; - if(t - h + n >= nelem(p->runq)) - runtime·throw("runqsteal: runq overflow"); - for(i=0; i<n; i++, t++) - p->runq[t%nelem(p->runq)] = batch[i]; - runtime·atomicstore(&p->runqtail, t); // store-release, makes the item available for consumption - return gp; -} - -void -runtime·testSchedLocalQueue(void) -{ - P p; - G gs[nelem(p.runq)]; - int32 i, j; - - runtime·memclr((byte*)&p, sizeof(p)); - - for(i = 0; i < nelem(gs); i++) { - if(runqget(&p) != nil) - runtime·throw("runq is not empty initially"); - for(j = 0; j < i; j++) - runqput(&p, &gs[i]); - for(j = 0; j < i; j++) { - if(runqget(&p) != &gs[i]) { - runtime·printf("bad element at iter %d/%d\n", i, j); - runtime·throw("bad element"); - } - } - if(runqget(&p) != nil) - runtime·throw("runq is not empty afterwards"); - } -} - -void -runtime·testSchedLocalQueueSteal(void) -{ - P p1, p2; - G gs[nelem(p1.runq)], *gp; - int32 i, j, s; - - runtime·memclr((byte*)&p1, sizeof(p1)); - runtime·memclr((byte*)&p2, sizeof(p2)); - - for(i = 0; i < nelem(gs); i++) { - for(j = 0; j < i; j++) { - gs[j].sig = 0; - runqput(&p1, &gs[j]); - } - gp = runqsteal(&p2, &p1); - s = 0; - if(gp) { - s++; - gp->sig++; - } - while(gp = runqget(&p2)) { - s++; - gp->sig++; - } - while(gp = runqget(&p1)) - gp->sig++; - for(j = 0; j < i; j++) { - if(gs[j].sig != 1) { - runtime·printf("bad element %d(%d) at iter %d\n", j, gs[j].sig, i); - runtime·throw("bad element"); - } - } - if(s != i/2 && s != i/2+1) { - runtime·printf("bad steal %d, want %d or %d, iter %d\n", - s, i/2, i/2+1, i); - runtime·throw("bad steal"); - } - } -} - -extern void runtime·morestack(void); -uintptr runtime·externalthreadhandlerp; - -// Does f mark the top of a goroutine stack? -bool -runtime·topofstack(Func *f) -{ - return f->entry == (uintptr)runtime·goexit || - f->entry == (uintptr)runtime·mstart || - f->entry == (uintptr)runtime·mcall || - f->entry == (uintptr)runtime·morestack || - f->entry == (uintptr)runtime·lessstack || - f->entry == (uintptr)_rt0_go || - (runtime·externalthreadhandlerp != 0 && f->entry == runtime·externalthreadhandlerp); -} - -int32 -runtime·setmaxthreads(int32 in) -{ - int32 out; - - runtime·lock(&runtime·sched); - out = runtime·sched.maxmcount; - runtime·sched.maxmcount = in; - checkmcount(); - runtime·unlock(&runtime·sched); - return out; -} - -static int8 experiment[] = GOEXPERIMENT; // defined in zaexperiment.h - -static bool -haveexperiment(int8 *name) -{ - int32 i, j; - - for(i=0; i<sizeof(experiment); i++) { - if((i == 0 || experiment[i-1] == ',') && experiment[i] == name[0]) { - for(j=0; name[j]; j++) - if(experiment[i+j] != name[j]) - goto nomatch; - if(experiment[i+j] != '\0' && experiment[i+j] != ',') - goto nomatch; - return 1; - } - nomatch:; - } - return 0; -} |