summaryrefslogtreecommitdiff
path: root/src/pkg/runtime/signal_linux_arm.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/runtime/signal_linux_arm.c')
-rw-r--r--src/pkg/runtime/signal_linux_arm.c115
1 files changed, 108 insertions, 7 deletions
diff --git a/src/pkg/runtime/signal_linux_arm.c b/src/pkg/runtime/signal_linux_arm.c
index 176a4ce56..c26caa7cd 100644
--- a/src/pkg/runtime/signal_linux_arm.c
+++ b/src/pkg/runtime/signal_linux_arm.c
@@ -57,7 +57,7 @@ runtime·sighandler(int32 sig, Siginfo *info, void *context, G *gp)
t = &runtime·sigtab[sig];
if(info->si_code != SI_USER && (t->flags & SigPanic)) {
- if(gp == nil)
+ if(gp == nil || gp == m->g0)
goto Throw;
// Make it look like a call to the signal func.
// Have to pass arguments out of band since
@@ -68,13 +68,22 @@ runtime·sighandler(int32 sig, Siginfo *info, void *context, G *gp)
gp->sigcode1 = r->fault_address;
gp->sigpc = r->arm_pc;
- // If this is a leaf function, we do smash LR,
- // but we're not going back there anyway.
- // Don't bother smashing if r->arm_pc is 0,
- // which is probably a call to a nil func: the
- // old link register is more useful in the stack trace.
+ // We arrange lr, and pc to pretend the panicking
+ // function calls sigpanic directly.
+ // Always save LR to stack so that panics in leaf
+ // functions are correctly handled. This smashes
+ // the stack frame but we're not going back there
+ // anyway.
+ r->arm_sp -= 4;
+ *(uint32 *)r->arm_sp = r->arm_lr;
+ // Don't bother saving PC if it's zero, which is
+ // probably a call to a nil func: the old link register
+ // is more useful in the stack trace.
if(r->arm_pc != 0)
r->arm_lr = r->arm_pc;
+ // In case we are panicking from external C code
+ r->arm_r10 = (uintptr)gp;
+ r->arm_r9 = (uintptr)m;
r->arm_pc = (uintptr)runtime·sigpanic;
return;
}
@@ -98,6 +107,10 @@ Throw:
runtime·printf("%s\n", runtime·sigtab[sig].name);
runtime·printf("PC=%x\n", r->arm_pc);
+ if(m->lockedg != nil && m->ncgo > 0 && gp == m->g0) {
+ runtime·printf("signal arrived during cgo execution\n");
+ gp = m->lockedg;
+ }
runtime·printf("\n");
if(runtime·gotraceback()){
@@ -119,6 +132,8 @@ runtime·signalstack(byte *p, int32 n)
st.ss_sp = p;
st.ss_size = n;
st.ss_flags = 0;
+ if(p == nil)
+ st.ss_flags = SS_DISABLE;
runtime·sigaltstack(&st, nil);
}
@@ -127,6 +142,16 @@ runtime·setsig(int32 i, void (*fn)(int32, Siginfo*, void*, G*), bool restart)
{
Sigaction sa;
+ // If SIGHUP handler is SIG_IGN, assume running
+ // under nohup and do not set explicit handler.
+ if(i == SIGHUP) {
+ runtime·memclr((byte*)&sa, sizeof sa);
+ if(runtime·rt_sigaction(i, nil, &sa, sizeof(sa.sa_mask)) != 0)
+ runtime·throw("rt_sigaction read failure");
+ if(sa.sa_handler == SIG_IGN)
+ return;
+ }
+
runtime·memclr((byte*)&sa, sizeof sa);
sa.sa_flags = SA_ONSTACK | SA_SIGINFO | SA_RESTORER;
if(restart)
@@ -136,5 +161,81 @@ runtime·setsig(int32 i, void (*fn)(int32, Siginfo*, void*, G*), bool restart)
if(fn == runtime·sighandler)
fn = (void*)runtime·sigtramp;
sa.sa_handler = fn;
- runtime·rt_sigaction(i, &sa, nil, 8);
+ if(runtime·rt_sigaction(i, &sa, nil, sizeof(sa.sa_mask)) != 0)
+ runtime·throw("rt_sigaction failure");
+}
+
+#define AT_NULL 0
+#define AT_PLATFORM 15 // introduced in at least 2.6.11
+#define AT_HWCAP 16 // introduced in at least 2.6.11
+#define AT_RANDOM 25 // introduced in 2.6.29
+#define HWCAP_VFP (1 << 6) // introduced in at least 2.6.11
+#define HWCAP_VFPv3 (1 << 13) // introduced in 2.6.30
+static uint32 runtime·randomNumber;
+uint8 runtime·armArch = 6; // we default to ARMv6
+uint32 runtime·hwcap; // set by setup_auxv
+uint8 runtime·goarm; // set by 5l
+
+void
+runtime·checkgoarm(void)
+{
+ if(runtime·goarm > 5 && !(runtime·hwcap & HWCAP_VFP)) {
+ runtime·printf("runtime: this CPU has no floating point hardware, so it cannot run\n");
+ runtime·printf("this GOARM=%d binary. Recompile using GOARM=5.\n", runtime·goarm);
+ runtime·exit(1);
+ }
+ if(runtime·goarm > 6 && !(runtime·hwcap & HWCAP_VFPv3)) {
+ runtime·printf("runtime: this CPU has no VFPv3 floating point hardware, so it cannot run\n");
+ runtime·printf("this GOARM=%d binary. Recompile using GOARM=6.\n", runtime·goarm);
+ runtime·exit(1);
+ }
+}
+
+#pragma textflag 7
+void
+runtime·setup_auxv(int32 argc, void *argv_list)
+{
+ byte **argv;
+ byte **envp;
+ byte *rnd;
+ uint32 *auxv;
+ uint32 t;
+
+ argv = &argv_list;
+
+ // skip envp to get to ELF auxiliary vector.
+ for(envp = &argv[argc+1]; *envp != nil; envp++)
+ ;
+ envp++;
+
+ for(auxv=(uint32*)envp; auxv[0] != AT_NULL; auxv += 2) {
+ switch(auxv[0]) {
+ case AT_RANDOM: // kernel provided 16-byte worth of random data
+ if(auxv[1]) {
+ rnd = (byte*)auxv[1];
+ runtime·randomNumber = rnd[4] | rnd[5]<<8 | rnd[6]<<16 | rnd[7]<<24;
+ }
+ break;
+ case AT_PLATFORM: // v5l, v6l, v7l
+ if(auxv[1]) {
+ t = *(uint8*)(auxv[1]+1);
+ if(t >= '5' && t <= '7')
+ runtime·armArch = t - '0';
+ }
+ break;
+ case AT_HWCAP: // CPU capability bit flags
+ runtime·hwcap = auxv[1];
+ break;
+ }
+ }
+}
+
+#pragma textflag 7
+int64
+runtime·cputicks(void)
+{
+ // Currently cputicks() is used in blocking profiler and to seed runtime·fastrand1().
+ // runtime·nanotime() is a poor approximation of CPU ticks that is enough for the profiler.
+ // runtime·randomNumber provides better seeding of fastrand1.
+ return runtime·nanotime() + runtime·randomNumber;
}