summaryrefslogtreecommitdiff
path: root/src/pkg/strconv/atof.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/strconv/atof.go')
-rw-r--r--src/pkg/strconv/atof.go413
1 files changed, 0 insertions, 413 deletions
diff --git a/src/pkg/strconv/atof.go b/src/pkg/strconv/atof.go
deleted file mode 100644
index a91e8bfa4..000000000
--- a/src/pkg/strconv/atof.go
+++ /dev/null
@@ -1,413 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Package strconv implements conversions to and from string representations
-// of basic data types.
-package strconv
-
-// decimal to binary floating point conversion.
-// Algorithm:
-// 1) Store input in multiprecision decimal.
-// 2) Multiply/divide decimal by powers of two until in range [0.5, 1)
-// 3) Multiply by 2^precision and round to get mantissa.
-
-import (
- "math"
- "os"
-)
-
-var optimize = true // can change for testing
-
-func equalIgnoreCase(s1, s2 string) bool {
- if len(s1) != len(s2) {
- return false
- }
- for i := 0; i < len(s1); i++ {
- c1 := s1[i]
- if 'A' <= c1 && c1 <= 'Z' {
- c1 += 'a' - 'A'
- }
- c2 := s2[i]
- if 'A' <= c2 && c2 <= 'Z' {
- c2 += 'a' - 'A'
- }
- if c1 != c2 {
- return false
- }
- }
- return true
-}
-
-func special(s string) (f float64, ok bool) {
- switch {
- case equalIgnoreCase(s, "nan"):
- return math.NaN(), true
- case equalIgnoreCase(s, "-inf"):
- return math.Inf(-1), true
- case equalIgnoreCase(s, "+inf"):
- return math.Inf(1), true
- case equalIgnoreCase(s, "inf"):
- return math.Inf(1), true
- }
- return
-}
-
-// TODO(rsc): Better truncation handling.
-func stringToDecimal(s string) (neg bool, d *decimal, trunc bool, ok bool) {
- i := 0
-
- // optional sign
- if i >= len(s) {
- return
- }
- switch {
- case s[i] == '+':
- i++
- case s[i] == '-':
- neg = true
- i++
- }
-
- // digits
- b := new(decimal)
- sawdot := false
- sawdigits := false
- for ; i < len(s); i++ {
- switch {
- case s[i] == '.':
- if sawdot {
- return
- }
- sawdot = true
- b.dp = b.nd
- continue
-
- case '0' <= s[i] && s[i] <= '9':
- sawdigits = true
- if s[i] == '0' && b.nd == 0 { // ignore leading zeros
- b.dp--
- continue
- }
- b.d[b.nd] = s[i]
- b.nd++
- continue
- }
- break
- }
- if !sawdigits {
- return
- }
- if !sawdot {
- b.dp = b.nd
- }
-
- // optional exponent moves decimal point.
- // if we read a very large, very long number,
- // just be sure to move the decimal point by
- // a lot (say, 100000). it doesn't matter if it's
- // not the exact number.
- if i < len(s) && (s[i] == 'e' || s[i] == 'E') {
- i++
- if i >= len(s) {
- return
- }
- esign := 1
- if s[i] == '+' {
- i++
- } else if s[i] == '-' {
- i++
- esign = -1
- }
- if i >= len(s) || s[i] < '0' || s[i] > '9' {
- return
- }
- e := 0
- for ; i < len(s) && '0' <= s[i] && s[i] <= '9'; i++ {
- if e < 10000 {
- e = e*10 + int(s[i]) - '0'
- }
- }
- b.dp += e * esign
- }
-
- if i != len(s) {
- return
- }
-
- d = b
- ok = true
- return
-}
-
-// decimal power of ten to binary power of two.
-var powtab = []int{1, 3, 6, 9, 13, 16, 19, 23, 26}
-
-func decimalToFloatBits(neg bool, d *decimal, trunc bool, flt *floatInfo) (b uint64, overflow bool) {
- var exp int
- var mant uint64
-
- // Zero is always a special case.
- if d.nd == 0 {
- mant = 0
- exp = flt.bias
- goto out
- }
-
- // Obvious overflow/underflow.
- // These bounds are for 64-bit floats.
- // Will have to change if we want to support 80-bit floats in the future.
- if d.dp > 310 {
- goto overflow
- }
- if d.dp < -330 {
- // zero
- mant = 0
- exp = flt.bias
- goto out
- }
-
- // Scale by powers of two until in range [0.5, 1.0)
- exp = 0
- for d.dp > 0 {
- var n int
- if d.dp >= len(powtab) {
- n = 27
- } else {
- n = powtab[d.dp]
- }
- d.Shift(-n)
- exp += n
- }
- for d.dp < 0 || d.dp == 0 && d.d[0] < '5' {
- var n int
- if -d.dp >= len(powtab) {
- n = 27
- } else {
- n = powtab[-d.dp]
- }
- d.Shift(n)
- exp -= n
- }
-
- // Our range is [0.5,1) but floating point range is [1,2).
- exp--
-
- // Minimum representable exponent is flt.bias+1.
- // If the exponent is smaller, move it up and
- // adjust d accordingly.
- if exp < flt.bias+1 {
- n := flt.bias + 1 - exp
- d.Shift(-n)
- exp += n
- }
-
- if exp-flt.bias >= 1<<flt.expbits-1 {
- goto overflow
- }
-
- // Extract 1+flt.mantbits bits.
- mant = d.Shift(int(1 + flt.mantbits)).RoundedInteger()
-
- // Rounding might have added a bit; shift down.
- if mant == 2<<flt.mantbits {
- mant >>= 1
- exp++
- if exp-flt.bias >= 1<<flt.expbits-1 {
- goto overflow
- }
- }
-
- // Denormalized?
- if mant&(1<<flt.mantbits) == 0 {
- exp = flt.bias
- }
- goto out
-
-overflow:
- // ±Inf
- mant = 0
- exp = 1<<flt.expbits - 1 + flt.bias
- overflow = true
-
-out:
- // Assemble bits.
- bits := mant & (uint64(1)<<flt.mantbits - 1)
- bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits
- if neg {
- bits |= 1 << flt.mantbits << flt.expbits
- }
- return bits, overflow
-}
-
-// Compute exact floating-point integer from d's digits.
-// Caller is responsible for avoiding overflow.
-func decimalAtof64Int(neg bool, d *decimal) float64 {
- f := 0.0
- for i := 0; i < d.nd; i++ {
- f = f*10 + float64(d.d[i]-'0')
- }
- if neg {
- f *= -1 // BUG work around 6g f = -f.
- }
- return f
-}
-
-func decimalAtof32Int(neg bool, d *decimal) float32 {
- f := float32(0)
- for i := 0; i < d.nd; i++ {
- f = f*10 + float32(d.d[i]-'0')
- }
- if neg {
- f *= -1 // BUG work around 6g f = -f.
- }
- return f
-}
-
-// Exact powers of 10.
-var float64pow10 = []float64{
- 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
- 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
- 1e20, 1e21, 1e22,
-}
-var float32pow10 = []float32{1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10}
-
-// If possible to convert decimal d to 64-bit float f exactly,
-// entirely in floating-point math, do so, avoiding the expense of decimalToFloatBits.
-// Three common cases:
-// value is exact integer
-// value is exact integer * exact power of ten
-// value is exact integer / exact power of ten
-// These all produce potentially inexact but correctly rounded answers.
-func decimalAtof64(neg bool, d *decimal, trunc bool) (f float64, ok bool) {
- // Exact integers are <= 10^15.
- // Exact powers of ten are <= 10^22.
- if d.nd > 15 {
- return
- }
- switch {
- case d.dp == d.nd: // int
- f := decimalAtof64Int(neg, d)
- return f, true
-
- case d.dp > d.nd && d.dp <= 15+22: // int * 10^k
- f := decimalAtof64Int(neg, d)
- k := d.dp - d.nd
- // If exponent is big but number of digits is not,
- // can move a few zeros into the integer part.
- if k > 22 {
- f *= float64pow10[k-22]
- k = 22
- }
- return f * float64pow10[k], true
-
- case d.dp < d.nd && d.nd-d.dp <= 22: // int / 10^k
- f := decimalAtof64Int(neg, d)
- return f / float64pow10[d.nd-d.dp], true
- }
- return
-}
-
-// If possible to convert decimal d to 32-bit float f exactly,
-// entirely in floating-point math, do so, avoiding the machinery above.
-func decimalAtof32(neg bool, d *decimal, trunc bool) (f float32, ok bool) {
- // Exact integers are <= 10^7.
- // Exact powers of ten are <= 10^10.
- if d.nd > 7 {
- return
- }
- switch {
- case d.dp == d.nd: // int
- f := decimalAtof32Int(neg, d)
- return f, true
-
- case d.dp > d.nd && d.dp <= 7+10: // int * 10^k
- f := decimalAtof32Int(neg, d)
- k := d.dp - d.nd
- // If exponent is big but number of digits is not,
- // can move a few zeros into the integer part.
- if k > 10 {
- f *= float32pow10[k-10]
- k = 10
- }
- return f * float32pow10[k], true
-
- case d.dp < d.nd && d.nd-d.dp <= 10: // int / 10^k
- f := decimalAtof32Int(neg, d)
- return f / float32pow10[d.nd-d.dp], true
- }
- return
-}
-
-// Atof32 converts the string s to a 32-bit floating-point number.
-//
-// If s is well-formed and near a valid floating point number,
-// Atof32 returns the nearest floating point number rounded
-// using IEEE754 unbiased rounding.
-//
-// The errors that Atof32 returns have concrete type *NumError
-// and include err.Num = s.
-//
-// If s is not syntactically well-formed, Atof32 returns err.Error = os.EINVAL.
-//
-// If s is syntactically well-formed but is more than 1/2 ULP
-// away from the largest floating point number of the given size,
-// Atof32 returns f = ±Inf, err.Error = os.ERANGE.
-func Atof32(s string) (f float32, err os.Error) {
- if val, ok := special(s); ok {
- return float32(val), nil
- }
-
- neg, d, trunc, ok := stringToDecimal(s)
- if !ok {
- return 0, &NumError{s, os.EINVAL}
- }
- if optimize {
- if f, ok := decimalAtof32(neg, d, trunc); ok {
- return f, nil
- }
- }
- b, ovf := decimalToFloatBits(neg, d, trunc, &float32info)
- f = math.Float32frombits(uint32(b))
- if ovf {
- err = &NumError{s, os.ERANGE}
- }
- return f, err
-}
-
-// Atof64 converts the string s to a 64-bit floating-point number.
-// Except for the type of its result, its definition is the same as that
-// of Atof32.
-func Atof64(s string) (f float64, err os.Error) {
- if val, ok := special(s); ok {
- return val, nil
- }
-
- neg, d, trunc, ok := stringToDecimal(s)
- if !ok {
- return 0, &NumError{s, os.EINVAL}
- }
- if optimize {
- if f, ok := decimalAtof64(neg, d, trunc); ok {
- return f, nil
- }
- }
- b, ovf := decimalToFloatBits(neg, d, trunc, &float64info)
- f = math.Float64frombits(b)
- if ovf {
- err = &NumError{s, os.ERANGE}
- }
- return f, err
-}
-
-// AtofN converts the string s to a 64-bit floating-point number,
-// but it rounds the result assuming that it will be stored in a value
-// of n bits (32 or 64).
-func AtofN(s string, n int) (f float64, err os.Error) {
- if n == 32 {
- f1, err1 := Atof32(s)
- return float64(f1), err1
- }
- f1, err1 := Atof64(s)
- return f1, err1
-}