summaryrefslogtreecommitdiff
path: root/src/pkg/strconv/atof.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/strconv/atof.go')
-rw-r--r--src/pkg/strconv/atof.go372
1 files changed, 372 insertions, 0 deletions
diff --git a/src/pkg/strconv/atof.go b/src/pkg/strconv/atof.go
new file mode 100644
index 000000000..c257b2a33
--- /dev/null
+++ b/src/pkg/strconv/atof.go
@@ -0,0 +1,372 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// decimal to binary floating point conversion.
+// Algorithm:
+// 1) Store input in multiprecision decimal.
+// 2) Multiply/divide decimal by powers of two until in range [0.5, 1)
+// 3) Multiply by 2^precision and round to get mantissa.
+
+// The strconv package implements conversions to and from
+// string representations of basic data types.
+package strconv
+
+import (
+ "math";
+ "os";
+ "strconv";
+)
+
+var optimize = true // can change for testing
+
+// TODO(rsc): Better truncation handling.
+func stringToDecimal(s string) (neg bool, d *decimal, trunc bool, ok bool) {
+ i := 0;
+
+ // optional sign
+ if i >= len(s) {
+ return;
+ }
+ switch {
+ case s[i] == '+':
+ i++;
+ case s[i] == '-':
+ neg = true;
+ i++;
+ }
+
+ // digits
+ b := new(decimal);
+ sawdot := false;
+ sawdigits := false;
+ for ; i < len(s); i++ {
+ switch {
+ case s[i] == '.':
+ if sawdot {
+ return;
+ }
+ sawdot = true;
+ b.dp = b.nd;
+ continue;
+
+ case '0' <= s[i] && s[i] <= '9':
+ sawdigits = true;
+ if s[i] == '0' && b.nd == 0 { // ignore leading zeros
+ b.dp--;
+ continue;
+ }
+ b.d[b.nd] = s[i];
+ b.nd++;
+ continue;
+ }
+ break;
+ }
+ if !sawdigits {
+ return;
+ }
+ if !sawdot {
+ b.dp = b.nd;
+ }
+
+ // optional exponent moves decimal point.
+ // if we read a very large, very long number,
+ // just be sure to move the decimal point by
+ // a lot (say, 100000). it doesn't matter if it's
+ // not the exact number.
+ if i < len(s) && s[i] == 'e' {
+ i++;
+ if i >= len(s) {
+ return;
+ }
+ esign := 1;
+ if s[i] == '+' {
+ i++;
+ } else if s[i] == '-' {
+ i++;
+ esign = -1;
+ }
+ if i >= len(s) || s[i] < '0' || s[i] > '9' {
+ return;
+ }
+ e := 0;
+ for ; i < len(s) && '0' <= s[i] && s[i] <= '9'; i++ {
+ if e < 10000 {
+ e = e*10 + int(s[i]) - '0';
+ }
+ }
+ b.dp += e*esign;
+ }
+
+ if i != len(s) {
+ return;
+ }
+
+ d = b;
+ ok = true;
+ return;
+}
+
+// decimal power of ten to binary power of two.
+var powtab = []int{
+ 1, 3, 6, 9, 13, 16, 19, 23, 26
+}
+
+func decimalToFloatBits(neg bool, d *decimal, trunc bool, flt *floatInfo) (b uint64, overflow bool) {
+ var exp int;
+ var mant uint64;
+
+ // Zero is always a special case.
+ if d.nd == 0 {
+ mant = 0;
+ exp = flt.bias;
+ goto out;
+ }
+
+ // Obvious overflow/underflow.
+ // These bounds are for 64-bit floats.
+ // Will have to change if we want to support 80-bit floats in the future.
+ if d.dp > 310 {
+ goto overflow;
+ }
+ if d.dp < -330 {
+ // zero
+ mant = 0;
+ exp = flt.bias;
+ goto out;
+ }
+
+ // Scale by powers of two until in range [0.5, 1.0)
+ exp = 0;
+ for d.dp > 0 {
+ var n int;
+ if d.dp >= len(powtab) {
+ n = 27;
+ } else {
+ n = powtab[d.dp];
+ }
+ d.Shift(-n);
+ exp += n;
+ }
+ for d.dp < 0 || d.dp == 0 && d.d[0] < '5' {
+ var n int;
+ if -d.dp >= len(powtab) {
+ n = 27;
+ } else {
+ n = powtab[-d.dp];
+ }
+ d.Shift(n);
+ exp -= n;
+ }
+
+ // Our range is [0.5,1) but floating point range is [1,2).
+ exp--;
+
+ // Minimum representable exponent is flt.bias+1.
+ // If the exponent is smaller, move it up and
+ // adjust d accordingly.
+ if exp < flt.bias+1 {
+ n := flt.bias+1 - exp;
+ d.Shift(-n);
+ exp += n;
+ }
+
+ if exp-flt.bias >= 1<<flt.expbits - 1 {
+ goto overflow;
+ }
+
+ // Extract 1+flt.mantbits bits.
+ mant = d.Shift(int(1+flt.mantbits)).RoundedInteger();
+
+ // Rounding might have added a bit; shift down.
+ if mant == 2<<flt.mantbits {
+ mant >>= 1;
+ exp++;
+ if exp-flt.bias >= 1<<flt.expbits - 1 {
+ goto overflow;
+ }
+ }
+
+ // Denormalized?
+ if mant&(1<<flt.mantbits) == 0 {
+ exp = flt.bias;
+ }
+ goto out;
+
+overflow:
+ // ±Inf
+ mant = 0;
+ exp = 1<<flt.expbits - 1 + flt.bias;
+ overflow = true;
+
+out:
+ // Assemble bits.
+ bits := mant & (uint64(1)<<flt.mantbits - 1);
+ bits |= uint64((exp-flt.bias)&(1<<flt.expbits - 1)) << flt.mantbits;
+ if neg {
+ bits |= 1<<flt.mantbits<<flt.expbits;
+ }
+ return bits, overflow;
+}
+
+// Compute exact floating-point integer from d's digits.
+// Caller is responsible for avoiding overflow.
+func decimalAtof64Int(neg bool, d *decimal) float64 {
+ f := float64(0);
+ for i := 0; i < d.nd; i++ {
+ f = f*10 + float64(d.d[i] - '0');
+ }
+ if neg {
+ f *= -1; // BUG work around 6g f = -f.
+ }
+ return f;
+}
+
+func decimalAtof32Int(neg bool, d *decimal) float32 {
+ f := float32(0);
+ for i := 0; i < d.nd; i++ {
+ f = f*10 + float32(d.d[i] - '0');
+ }
+ if neg {
+ f *= -1; // BUG work around 6g f = -f.
+ }
+ return f;
+}
+
+// Exact powers of 10.
+var float64pow10 = []float64 {
+ 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
+ 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
+ 1e20, 1e21, 1e22
+}
+var float32pow10 = []float32 {
+ 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10
+}
+
+// If possible to convert decimal d to 64-bit float f exactly,
+// entirely in floating-point math, do so, avoiding the expense of decimalToFloatBits.
+// Three common cases:
+// value is exact integer
+// value is exact integer * exact power of ten
+// value is exact integer / exact power of ten
+// These all produce potentially inexact but correctly rounded answers.
+func decimalAtof64(neg bool, d *decimal, trunc bool) (f float64, ok bool) {
+ // Exact integers are <= 10^15.
+ // Exact powers of ten are <= 10^22.
+ if d.nd > 15 {
+ return;
+ }
+ switch {
+ case d.dp == d.nd: // int
+ f := decimalAtof64Int(neg, d);
+ return f, true;
+
+ case d.dp > d.nd && d.dp <= 15+22: // int * 10^k
+ f := decimalAtof64Int(neg, d);
+ k := d.dp - d.nd;
+ // If exponent is big but number of digits is not,
+ // can move a few zeros into the integer part.
+ if k > 22 {
+ f *= float64pow10[k-22];
+ k = 22;
+ }
+ return f*float64pow10[k], true;
+
+ case d.dp < d.nd && d.nd - d.dp <= 22: // int / 10^k
+ f := decimalAtof64Int(neg, d);
+ return f/float64pow10[d.nd - d.dp], true;
+ }
+ return;
+}
+
+// If possible to convert decimal d to 32-bit float f exactly,
+// entirely in floating-point math, do so, avoiding the machinery above.
+func decimalAtof32(neg bool, d *decimal, trunc bool) (f float32, ok bool) {
+ // Exact integers are <= 10^7.
+ // Exact powers of ten are <= 10^10.
+ if d.nd > 7 {
+ return;
+ }
+ switch {
+ case d.dp == d.nd: // int
+ f := decimalAtof32Int(neg, d);
+ return f, true;
+
+ case d.dp > d.nd && d.dp <= 7+10: // int * 10^k
+ f := decimalAtof32Int(neg, d);
+ k := d.dp - d.nd;
+ // If exponent is big but number of digits is not,
+ // can move a few zeros into the integer part.
+ if k > 10 {
+ f *= float32pow10[k-10];
+ k = 10;
+ }
+ return f*float32pow10[k], true;
+
+ case d.dp < d.nd && d.nd - d.dp <= 10: // int / 10^k
+ f := decimalAtof32Int(neg, d);
+ return f/float32pow10[d.nd - d.dp], true;
+ }
+ return;
+}
+
+// Atof32 converts the string s to a 32-bit floating-point number.
+//
+// If s is well-formed and near a valid floating point number,
+// Atof32 returns the nearest floating point number rounded
+// using IEEE754 unbiased rounding.
+//
+// If s is not syntactically well-formed, Atof32 returns err = os.EINVAL.
+//
+// If s is syntactically well-formed but is more than 1/2 ULP
+// away from the largest floating point number of the given size,
+// Atof32 returns f = ±Inf, err = os.ERANGE.
+func Atof32(s string) (f float32, err os.Error) {
+ neg, d, trunc, ok := stringToDecimal(s);
+ if !ok {
+ return 0, os.EINVAL;
+ }
+ if optimize {
+ if f, ok := decimalAtof32(neg, d, trunc); ok {
+ return f, nil;
+ }
+ }
+ b, ovf := decimalToFloatBits(neg, d, trunc, &float32info);
+ f = math.Float32frombits(uint32(b));
+ if ovf {
+ err = os.ERANGE;
+ }
+ return f, err
+}
+
+// Atof64 converts the string s to a 64-bit floating-point number.
+// Except for the type of its result, its definition is the same as that
+// of Atof32.
+func Atof64(s string) (f float64, err os.Error) {
+ neg, d, trunc, ok := stringToDecimal(s);
+ if !ok {
+ return 0, os.EINVAL;
+ }
+ if optimize {
+ if f, ok := decimalAtof64(neg, d, trunc); ok {
+ return f, nil;
+ }
+ }
+ b, ovf := decimalToFloatBits(neg, d, trunc, &float64info);
+ f = math.Float64frombits(b);
+ if ovf {
+ err = os.ERANGE;
+ }
+ return f, err
+}
+
+// Atof is like Atof32 or Atof64, depending on the size of float.
+func Atof(s string) (f float, err os.Error) {
+ if FloatSize == 32 {
+ f1, err1 := Atof32(s);
+ return float(f1), err1;
+ }
+ f1, err1 := Atof64(s);
+ return float(f1), err1;
+}
+