diff options
Diffstat (limited to 'src/pkg/strconv/atof.go')
-rw-r--r-- | src/pkg/strconv/atof.go | 372 |
1 files changed, 372 insertions, 0 deletions
diff --git a/src/pkg/strconv/atof.go b/src/pkg/strconv/atof.go new file mode 100644 index 000000000..c257b2a33 --- /dev/null +++ b/src/pkg/strconv/atof.go @@ -0,0 +1,372 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// decimal to binary floating point conversion. +// Algorithm: +// 1) Store input in multiprecision decimal. +// 2) Multiply/divide decimal by powers of two until in range [0.5, 1) +// 3) Multiply by 2^precision and round to get mantissa. + +// The strconv package implements conversions to and from +// string representations of basic data types. +package strconv + +import ( + "math"; + "os"; + "strconv"; +) + +var optimize = true // can change for testing + +// TODO(rsc): Better truncation handling. +func stringToDecimal(s string) (neg bool, d *decimal, trunc bool, ok bool) { + i := 0; + + // optional sign + if i >= len(s) { + return; + } + switch { + case s[i] == '+': + i++; + case s[i] == '-': + neg = true; + i++; + } + + // digits + b := new(decimal); + sawdot := false; + sawdigits := false; + for ; i < len(s); i++ { + switch { + case s[i] == '.': + if sawdot { + return; + } + sawdot = true; + b.dp = b.nd; + continue; + + case '0' <= s[i] && s[i] <= '9': + sawdigits = true; + if s[i] == '0' && b.nd == 0 { // ignore leading zeros + b.dp--; + continue; + } + b.d[b.nd] = s[i]; + b.nd++; + continue; + } + break; + } + if !sawdigits { + return; + } + if !sawdot { + b.dp = b.nd; + } + + // optional exponent moves decimal point. + // if we read a very large, very long number, + // just be sure to move the decimal point by + // a lot (say, 100000). it doesn't matter if it's + // not the exact number. + if i < len(s) && s[i] == 'e' { + i++; + if i >= len(s) { + return; + } + esign := 1; + if s[i] == '+' { + i++; + } else if s[i] == '-' { + i++; + esign = -1; + } + if i >= len(s) || s[i] < '0' || s[i] > '9' { + return; + } + e := 0; + for ; i < len(s) && '0' <= s[i] && s[i] <= '9'; i++ { + if e < 10000 { + e = e*10 + int(s[i]) - '0'; + } + } + b.dp += e*esign; + } + + if i != len(s) { + return; + } + + d = b; + ok = true; + return; +} + +// decimal power of ten to binary power of two. +var powtab = []int{ + 1, 3, 6, 9, 13, 16, 19, 23, 26 +} + +func decimalToFloatBits(neg bool, d *decimal, trunc bool, flt *floatInfo) (b uint64, overflow bool) { + var exp int; + var mant uint64; + + // Zero is always a special case. + if d.nd == 0 { + mant = 0; + exp = flt.bias; + goto out; + } + + // Obvious overflow/underflow. + // These bounds are for 64-bit floats. + // Will have to change if we want to support 80-bit floats in the future. + if d.dp > 310 { + goto overflow; + } + if d.dp < -330 { + // zero + mant = 0; + exp = flt.bias; + goto out; + } + + // Scale by powers of two until in range [0.5, 1.0) + exp = 0; + for d.dp > 0 { + var n int; + if d.dp >= len(powtab) { + n = 27; + } else { + n = powtab[d.dp]; + } + d.Shift(-n); + exp += n; + } + for d.dp < 0 || d.dp == 0 && d.d[0] < '5' { + var n int; + if -d.dp >= len(powtab) { + n = 27; + } else { + n = powtab[-d.dp]; + } + d.Shift(n); + exp -= n; + } + + // Our range is [0.5,1) but floating point range is [1,2). + exp--; + + // Minimum representable exponent is flt.bias+1. + // If the exponent is smaller, move it up and + // adjust d accordingly. + if exp < flt.bias+1 { + n := flt.bias+1 - exp; + d.Shift(-n); + exp += n; + } + + if exp-flt.bias >= 1<<flt.expbits - 1 { + goto overflow; + } + + // Extract 1+flt.mantbits bits. + mant = d.Shift(int(1+flt.mantbits)).RoundedInteger(); + + // Rounding might have added a bit; shift down. + if mant == 2<<flt.mantbits { + mant >>= 1; + exp++; + if exp-flt.bias >= 1<<flt.expbits - 1 { + goto overflow; + } + } + + // Denormalized? + if mant&(1<<flt.mantbits) == 0 { + exp = flt.bias; + } + goto out; + +overflow: + // ±Inf + mant = 0; + exp = 1<<flt.expbits - 1 + flt.bias; + overflow = true; + +out: + // Assemble bits. + bits := mant & (uint64(1)<<flt.mantbits - 1); + bits |= uint64((exp-flt.bias)&(1<<flt.expbits - 1)) << flt.mantbits; + if neg { + bits |= 1<<flt.mantbits<<flt.expbits; + } + return bits, overflow; +} + +// Compute exact floating-point integer from d's digits. +// Caller is responsible for avoiding overflow. +func decimalAtof64Int(neg bool, d *decimal) float64 { + f := float64(0); + for i := 0; i < d.nd; i++ { + f = f*10 + float64(d.d[i] - '0'); + } + if neg { + f *= -1; // BUG work around 6g f = -f. + } + return f; +} + +func decimalAtof32Int(neg bool, d *decimal) float32 { + f := float32(0); + for i := 0; i < d.nd; i++ { + f = f*10 + float32(d.d[i] - '0'); + } + if neg { + f *= -1; // BUG work around 6g f = -f. + } + return f; +} + +// Exact powers of 10. +var float64pow10 = []float64 { + 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, + 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, + 1e20, 1e21, 1e22 +} +var float32pow10 = []float32 { + 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10 +} + +// If possible to convert decimal d to 64-bit float f exactly, +// entirely in floating-point math, do so, avoiding the expense of decimalToFloatBits. +// Three common cases: +// value is exact integer +// value is exact integer * exact power of ten +// value is exact integer / exact power of ten +// These all produce potentially inexact but correctly rounded answers. +func decimalAtof64(neg bool, d *decimal, trunc bool) (f float64, ok bool) { + // Exact integers are <= 10^15. + // Exact powers of ten are <= 10^22. + if d.nd > 15 { + return; + } + switch { + case d.dp == d.nd: // int + f := decimalAtof64Int(neg, d); + return f, true; + + case d.dp > d.nd && d.dp <= 15+22: // int * 10^k + f := decimalAtof64Int(neg, d); + k := d.dp - d.nd; + // If exponent is big but number of digits is not, + // can move a few zeros into the integer part. + if k > 22 { + f *= float64pow10[k-22]; + k = 22; + } + return f*float64pow10[k], true; + + case d.dp < d.nd && d.nd - d.dp <= 22: // int / 10^k + f := decimalAtof64Int(neg, d); + return f/float64pow10[d.nd - d.dp], true; + } + return; +} + +// If possible to convert decimal d to 32-bit float f exactly, +// entirely in floating-point math, do so, avoiding the machinery above. +func decimalAtof32(neg bool, d *decimal, trunc bool) (f float32, ok bool) { + // Exact integers are <= 10^7. + // Exact powers of ten are <= 10^10. + if d.nd > 7 { + return; + } + switch { + case d.dp == d.nd: // int + f := decimalAtof32Int(neg, d); + return f, true; + + case d.dp > d.nd && d.dp <= 7+10: // int * 10^k + f := decimalAtof32Int(neg, d); + k := d.dp - d.nd; + // If exponent is big but number of digits is not, + // can move a few zeros into the integer part. + if k > 10 { + f *= float32pow10[k-10]; + k = 10; + } + return f*float32pow10[k], true; + + case d.dp < d.nd && d.nd - d.dp <= 10: // int / 10^k + f := decimalAtof32Int(neg, d); + return f/float32pow10[d.nd - d.dp], true; + } + return; +} + +// Atof32 converts the string s to a 32-bit floating-point number. +// +// If s is well-formed and near a valid floating point number, +// Atof32 returns the nearest floating point number rounded +// using IEEE754 unbiased rounding. +// +// If s is not syntactically well-formed, Atof32 returns err = os.EINVAL. +// +// If s is syntactically well-formed but is more than 1/2 ULP +// away from the largest floating point number of the given size, +// Atof32 returns f = ±Inf, err = os.ERANGE. +func Atof32(s string) (f float32, err os.Error) { + neg, d, trunc, ok := stringToDecimal(s); + if !ok { + return 0, os.EINVAL; + } + if optimize { + if f, ok := decimalAtof32(neg, d, trunc); ok { + return f, nil; + } + } + b, ovf := decimalToFloatBits(neg, d, trunc, &float32info); + f = math.Float32frombits(uint32(b)); + if ovf { + err = os.ERANGE; + } + return f, err +} + +// Atof64 converts the string s to a 64-bit floating-point number. +// Except for the type of its result, its definition is the same as that +// of Atof32. +func Atof64(s string) (f float64, err os.Error) { + neg, d, trunc, ok := stringToDecimal(s); + if !ok { + return 0, os.EINVAL; + } + if optimize { + if f, ok := decimalAtof64(neg, d, trunc); ok { + return f, nil; + } + } + b, ovf := decimalToFloatBits(neg, d, trunc, &float64info); + f = math.Float64frombits(b); + if ovf { + err = os.ERANGE; + } + return f, err +} + +// Atof is like Atof32 or Atof64, depending on the size of float. +func Atof(s string) (f float, err os.Error) { + if FloatSize == 32 { + f1, err1 := Atof32(s); + return float(f1), err1; + } + f1, err1 := Atof64(s); + return float(f1), err1; +} + |