diff options
Diffstat (limited to 'src/pkg/strconv/ftoa.go')
| -rw-r--r-- | src/pkg/strconv/ftoa.go | 405 |
1 files changed, 0 insertions, 405 deletions
diff --git a/src/pkg/strconv/ftoa.go b/src/pkg/strconv/ftoa.go deleted file mode 100644 index b6049c545..000000000 --- a/src/pkg/strconv/ftoa.go +++ /dev/null @@ -1,405 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Binary to decimal floating point conversion. -// Algorithm: -// 1) store mantissa in multiprecision decimal -// 2) shift decimal by exponent -// 3) read digits out & format - -package strconv - -import "math" - -// TODO: move elsewhere? -type floatInfo struct { - mantbits uint - expbits uint - bias int -} - -var float32info = floatInfo{23, 8, -127} -var float64info = floatInfo{52, 11, -1023} - -// Ftoa32 converts the 32-bit floating-point number f to a string, -// according to the format fmt and precision prec. -// -// The format fmt is one of -// 'b' (-ddddp±ddd, a binary exponent), -// 'e' (-d.dddde±dd, a decimal exponent), -// 'E' (-d.ddddE±dd, a decimal exponent), -// 'f' (-ddd.dddd, no exponent), -// 'g' ('e' for large exponents, 'f' otherwise), or -// 'G' ('E' for large exponents, 'f' otherwise). -// -// The precision prec controls the number of digits -// (excluding the exponent) printed by the 'e', 'E', 'f', 'g', and 'G' formats. -// For 'e', 'E', and 'f' it is the number of digits after the decimal point. -// For 'g' and 'G' it is the total number of digits. -// The special precision -1 uses the smallest number of digits -// necessary such that Atof32 will return f exactly. -// -// Ftoa32(f) is not the same as Ftoa64(float32(f)), -// because correct rounding and the number of digits -// needed to identify f depend on the precision of the representation. -func Ftoa32(f float32, fmt byte, prec int) string { - return genericFtoa(uint64(math.Float32bits(f)), fmt, prec, &float32info) -} - -// Ftoa64 is like Ftoa32 but converts a 64-bit floating-point number. -func Ftoa64(f float64, fmt byte, prec int) string { - return genericFtoa(math.Float64bits(f), fmt, prec, &float64info) -} - -// FtoaN converts the 64-bit floating-point number f to a string, -// according to the format fmt and precision prec, but it rounds the -// result assuming that it was obtained from a floating-point value -// of n bits (32 or 64). -func FtoaN(f float64, fmt byte, prec int, n int) string { - if n == 32 { - return Ftoa32(float32(f), fmt, prec) - } - return Ftoa64(f, fmt, prec) -} - -func genericFtoa(bits uint64, fmt byte, prec int, flt *floatInfo) string { - neg := bits>>(flt.expbits+flt.mantbits) != 0 - exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1) - mant := bits & (uint64(1)<<flt.mantbits - 1) - - switch exp { - case 1<<flt.expbits - 1: - // Inf, NaN - if mant != 0 { - return "NaN" - } - if neg { - return "-Inf" - } - return "+Inf" - - case 0: - // denormalized - exp++ - - default: - // add implicit top bit - mant |= uint64(1) << flt.mantbits - } - exp += flt.bias - - // Pick off easy binary format. - if fmt == 'b' { - return fmtB(neg, mant, exp, flt) - } - - // Create exact decimal representation. - // The shift is exp - flt.mantbits because mant is a 1-bit integer - // followed by a flt.mantbits fraction, and we are treating it as - // a 1+flt.mantbits-bit integer. - d := newDecimal(mant).Shift(exp - int(flt.mantbits)) - - // Round appropriately. - // Negative precision means "only as much as needed to be exact." - shortest := false - if prec < 0 { - shortest = true - roundShortest(d, mant, exp, flt) - switch fmt { - case 'e', 'E': - prec = d.nd - 1 - case 'f': - prec = max(d.nd-d.dp, 0) - case 'g', 'G': - prec = d.nd - } - } else { - switch fmt { - case 'e', 'E': - d.Round(prec + 1) - case 'f': - d.Round(d.dp + prec) - case 'g', 'G': - if prec == 0 { - prec = 1 - } - d.Round(prec) - } - } - - switch fmt { - case 'e', 'E': - return fmtE(neg, d, prec, fmt) - case 'f': - return fmtF(neg, d, prec) - case 'g', 'G': - // trailing fractional zeros in 'e' form will be trimmed. - eprec := prec - if eprec > d.nd && d.nd >= d.dp { - eprec = d.nd - } - // %e is used if the exponent from the conversion - // is less than -4 or greater than or equal to the precision. - // if precision was the shortest possible, use precision 6 for this decision. - if shortest { - eprec = 6 - } - exp := d.dp - 1 - if exp < -4 || exp >= eprec { - if prec > d.nd { - prec = d.nd - } - return fmtE(neg, d, prec-1, fmt+'e'-'g') - } - if prec > d.dp { - prec = d.nd - } - return fmtF(neg, d, max(prec-d.dp, 0)) - } - - return "%" + string(fmt) -} - -// Round d (= mant * 2^exp) to the shortest number of digits -// that will let the original floating point value be precisely -// reconstructed. Size is original floating point size (64 or 32). -func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) { - // If mantissa is zero, the number is zero; stop now. - if mant == 0 { - d.nd = 0 - return - } - - // TODO(rsc): Unless exp == minexp, if the number of digits in d - // is less than 17, it seems likely that it would be - // the shortest possible number already. So maybe we can - // bail out without doing the extra multiprecision math here. - - // Compute upper and lower such that any decimal number - // between upper and lower (possibly inclusive) - // will round to the original floating point number. - - // d = mant << (exp - mantbits) - // Next highest floating point number is mant+1 << exp-mantbits. - // Our upper bound is halfway inbetween, mant*2+1 << exp-mantbits-1. - upper := newDecimal(mant*2 + 1).Shift(exp - int(flt.mantbits) - 1) - - // d = mant << (exp - mantbits) - // Next lowest floating point number is mant-1 << exp-mantbits, - // unless mant-1 drops the significant bit and exp is not the minimum exp, - // in which case the next lowest is mant*2-1 << exp-mantbits-1. - // Either way, call it mantlo << explo-mantbits. - // Our lower bound is halfway inbetween, mantlo*2+1 << explo-mantbits-1. - minexp := flt.bias + 1 // minimum possible exponent - var mantlo uint64 - var explo int - if mant > 1<<flt.mantbits || exp == minexp { - mantlo = mant - 1 - explo = exp - } else { - mantlo = mant*2 - 1 - explo = exp - 1 - } - lower := newDecimal(mantlo*2 + 1).Shift(explo - int(flt.mantbits) - 1) - - // The upper and lower bounds are possible outputs only if - // the original mantissa is even, so that IEEE round-to-even - // would round to the original mantissa and not the neighbors. - inclusive := mant%2 == 0 - - // Now we can figure out the minimum number of digits required. - // Walk along until d has distinguished itself from upper and lower. - for i := 0; i < d.nd; i++ { - var l, m, u byte // lower, middle, upper digits - if i < lower.nd { - l = lower.d[i] - } else { - l = '0' - } - m = d.d[i] - if i < upper.nd { - u = upper.d[i] - } else { - u = '0' - } - - // Okay to round down (truncate) if lower has a different digit - // or if lower is inclusive and is exactly the result of rounding down. - okdown := l != m || (inclusive && l == m && i+1 == lower.nd) - - // Okay to round up if upper has a different digit and - // either upper is inclusive or upper is bigger than the result of rounding up. - okup := m != u && (inclusive || i+1 < upper.nd) - - // If it's okay to do either, then round to the nearest one. - // If it's okay to do only one, do it. - switch { - case okdown && okup: - d.Round(i + 1) - return - case okdown: - d.RoundDown(i + 1) - return - case okup: - d.RoundUp(i + 1) - return - } - } -} - -// %e: -d.ddddde±dd -func fmtE(neg bool, d *decimal, prec int, fmt byte) string { - buf := make([]byte, 3+max(prec, 0)+30) // "-0." + prec digits + exp - w := 0 // write index - - // sign - if neg { - buf[w] = '-' - w++ - } - - // first digit - if d.nd == 0 { - buf[w] = '0' - } else { - buf[w] = d.d[0] - } - w++ - - // .moredigits - if prec > 0 { - buf[w] = '.' - w++ - for i := 0; i < prec; i++ { - if 1+i < d.nd { - buf[w] = d.d[1+i] - } else { - buf[w] = '0' - } - w++ - } - } - - // e± - buf[w] = fmt - w++ - exp := d.dp - 1 - if d.nd == 0 { // special case: 0 has exponent 0 - exp = 0 - } - if exp < 0 { - buf[w] = '-' - exp = -exp - } else { - buf[w] = '+' - } - w++ - - // dddd - // count digits - n := 0 - for e := exp; e > 0; e /= 10 { - n++ - } - // leading zeros - for i := n; i < 2; i++ { - buf[w] = '0' - w++ - } - // digits - w += n - n = 0 - for e := exp; e > 0; e /= 10 { - n++ - buf[w-n] = byte(e%10 + '0') - } - - return string(buf[0:w]) -} - -// %f: -ddddddd.ddddd -func fmtF(neg bool, d *decimal, prec int) string { - buf := make([]byte, 1+max(d.dp, 1)+1+max(prec, 0)) - w := 0 - - // sign - if neg { - buf[w] = '-' - w++ - } - - // integer, padded with zeros as needed. - if d.dp > 0 { - var i int - for i = 0; i < d.dp && i < d.nd; i++ { - buf[w] = d.d[i] - w++ - } - for ; i < d.dp; i++ { - buf[w] = '0' - w++ - } - } else { - buf[w] = '0' - w++ - } - - // fraction - if prec > 0 { - buf[w] = '.' - w++ - for i := 0; i < prec; i++ { - if d.dp+i < 0 || d.dp+i >= d.nd { - buf[w] = '0' - } else { - buf[w] = d.d[d.dp+i] - } - w++ - } - } - - return string(buf[0:w]) -} - -// %b: -ddddddddp+ddd -func fmtB(neg bool, mant uint64, exp int, flt *floatInfo) string { - var buf [50]byte - w := len(buf) - exp -= int(flt.mantbits) - esign := byte('+') - if exp < 0 { - esign = '-' - exp = -exp - } - n := 0 - for exp > 0 || n < 1 { - n++ - w-- - buf[w] = byte(exp%10 + '0') - exp /= 10 - } - w-- - buf[w] = esign - w-- - buf[w] = 'p' - n = 0 - for mant > 0 || n < 1 { - n++ - w-- - buf[w] = byte(mant%10 + '0') - mant /= 10 - } - if neg { - w-- - buf[w] = '-' - } - return string(buf[w:]) -} - -func max(a, b int) int { - if a > b { - return a - } - return b -} |
