summaryrefslogtreecommitdiff
path: root/src/pkg/strconv/ftoa.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/strconv/ftoa.go')
-rw-r--r--src/pkg/strconv/ftoa.go405
1 files changed, 0 insertions, 405 deletions
diff --git a/src/pkg/strconv/ftoa.go b/src/pkg/strconv/ftoa.go
deleted file mode 100644
index b6049c545..000000000
--- a/src/pkg/strconv/ftoa.go
+++ /dev/null
@@ -1,405 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Binary to decimal floating point conversion.
-// Algorithm:
-// 1) store mantissa in multiprecision decimal
-// 2) shift decimal by exponent
-// 3) read digits out & format
-
-package strconv
-
-import "math"
-
-// TODO: move elsewhere?
-type floatInfo struct {
- mantbits uint
- expbits uint
- bias int
-}
-
-var float32info = floatInfo{23, 8, -127}
-var float64info = floatInfo{52, 11, -1023}
-
-// Ftoa32 converts the 32-bit floating-point number f to a string,
-// according to the format fmt and precision prec.
-//
-// The format fmt is one of
-// 'b' (-ddddp±ddd, a binary exponent),
-// 'e' (-d.dddde±dd, a decimal exponent),
-// 'E' (-d.ddddE±dd, a decimal exponent),
-// 'f' (-ddd.dddd, no exponent),
-// 'g' ('e' for large exponents, 'f' otherwise), or
-// 'G' ('E' for large exponents, 'f' otherwise).
-//
-// The precision prec controls the number of digits
-// (excluding the exponent) printed by the 'e', 'E', 'f', 'g', and 'G' formats.
-// For 'e', 'E', and 'f' it is the number of digits after the decimal point.
-// For 'g' and 'G' it is the total number of digits.
-// The special precision -1 uses the smallest number of digits
-// necessary such that Atof32 will return f exactly.
-//
-// Ftoa32(f) is not the same as Ftoa64(float32(f)),
-// because correct rounding and the number of digits
-// needed to identify f depend on the precision of the representation.
-func Ftoa32(f float32, fmt byte, prec int) string {
- return genericFtoa(uint64(math.Float32bits(f)), fmt, prec, &float32info)
-}
-
-// Ftoa64 is like Ftoa32 but converts a 64-bit floating-point number.
-func Ftoa64(f float64, fmt byte, prec int) string {
- return genericFtoa(math.Float64bits(f), fmt, prec, &float64info)
-}
-
-// FtoaN converts the 64-bit floating-point number f to a string,
-// according to the format fmt and precision prec, but it rounds the
-// result assuming that it was obtained from a floating-point value
-// of n bits (32 or 64).
-func FtoaN(f float64, fmt byte, prec int, n int) string {
- if n == 32 {
- return Ftoa32(float32(f), fmt, prec)
- }
- return Ftoa64(f, fmt, prec)
-}
-
-func genericFtoa(bits uint64, fmt byte, prec int, flt *floatInfo) string {
- neg := bits>>(flt.expbits+flt.mantbits) != 0
- exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1)
- mant := bits & (uint64(1)<<flt.mantbits - 1)
-
- switch exp {
- case 1<<flt.expbits - 1:
- // Inf, NaN
- if mant != 0 {
- return "NaN"
- }
- if neg {
- return "-Inf"
- }
- return "+Inf"
-
- case 0:
- // denormalized
- exp++
-
- default:
- // add implicit top bit
- mant |= uint64(1) << flt.mantbits
- }
- exp += flt.bias
-
- // Pick off easy binary format.
- if fmt == 'b' {
- return fmtB(neg, mant, exp, flt)
- }
-
- // Create exact decimal representation.
- // The shift is exp - flt.mantbits because mant is a 1-bit integer
- // followed by a flt.mantbits fraction, and we are treating it as
- // a 1+flt.mantbits-bit integer.
- d := newDecimal(mant).Shift(exp - int(flt.mantbits))
-
- // Round appropriately.
- // Negative precision means "only as much as needed to be exact."
- shortest := false
- if prec < 0 {
- shortest = true
- roundShortest(d, mant, exp, flt)
- switch fmt {
- case 'e', 'E':
- prec = d.nd - 1
- case 'f':
- prec = max(d.nd-d.dp, 0)
- case 'g', 'G':
- prec = d.nd
- }
- } else {
- switch fmt {
- case 'e', 'E':
- d.Round(prec + 1)
- case 'f':
- d.Round(d.dp + prec)
- case 'g', 'G':
- if prec == 0 {
- prec = 1
- }
- d.Round(prec)
- }
- }
-
- switch fmt {
- case 'e', 'E':
- return fmtE(neg, d, prec, fmt)
- case 'f':
- return fmtF(neg, d, prec)
- case 'g', 'G':
- // trailing fractional zeros in 'e' form will be trimmed.
- eprec := prec
- if eprec > d.nd && d.nd >= d.dp {
- eprec = d.nd
- }
- // %e is used if the exponent from the conversion
- // is less than -4 or greater than or equal to the precision.
- // if precision was the shortest possible, use precision 6 for this decision.
- if shortest {
- eprec = 6
- }
- exp := d.dp - 1
- if exp < -4 || exp >= eprec {
- if prec > d.nd {
- prec = d.nd
- }
- return fmtE(neg, d, prec-1, fmt+'e'-'g')
- }
- if prec > d.dp {
- prec = d.nd
- }
- return fmtF(neg, d, max(prec-d.dp, 0))
- }
-
- return "%" + string(fmt)
-}
-
-// Round d (= mant * 2^exp) to the shortest number of digits
-// that will let the original floating point value be precisely
-// reconstructed. Size is original floating point size (64 or 32).
-func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) {
- // If mantissa is zero, the number is zero; stop now.
- if mant == 0 {
- d.nd = 0
- return
- }
-
- // TODO(rsc): Unless exp == minexp, if the number of digits in d
- // is less than 17, it seems likely that it would be
- // the shortest possible number already. So maybe we can
- // bail out without doing the extra multiprecision math here.
-
- // Compute upper and lower such that any decimal number
- // between upper and lower (possibly inclusive)
- // will round to the original floating point number.
-
- // d = mant << (exp - mantbits)
- // Next highest floating point number is mant+1 << exp-mantbits.
- // Our upper bound is halfway inbetween, mant*2+1 << exp-mantbits-1.
- upper := newDecimal(mant*2 + 1).Shift(exp - int(flt.mantbits) - 1)
-
- // d = mant << (exp - mantbits)
- // Next lowest floating point number is mant-1 << exp-mantbits,
- // unless mant-1 drops the significant bit and exp is not the minimum exp,
- // in which case the next lowest is mant*2-1 << exp-mantbits-1.
- // Either way, call it mantlo << explo-mantbits.
- // Our lower bound is halfway inbetween, mantlo*2+1 << explo-mantbits-1.
- minexp := flt.bias + 1 // minimum possible exponent
- var mantlo uint64
- var explo int
- if mant > 1<<flt.mantbits || exp == minexp {
- mantlo = mant - 1
- explo = exp
- } else {
- mantlo = mant*2 - 1
- explo = exp - 1
- }
- lower := newDecimal(mantlo*2 + 1).Shift(explo - int(flt.mantbits) - 1)
-
- // The upper and lower bounds are possible outputs only if
- // the original mantissa is even, so that IEEE round-to-even
- // would round to the original mantissa and not the neighbors.
- inclusive := mant%2 == 0
-
- // Now we can figure out the minimum number of digits required.
- // Walk along until d has distinguished itself from upper and lower.
- for i := 0; i < d.nd; i++ {
- var l, m, u byte // lower, middle, upper digits
- if i < lower.nd {
- l = lower.d[i]
- } else {
- l = '0'
- }
- m = d.d[i]
- if i < upper.nd {
- u = upper.d[i]
- } else {
- u = '0'
- }
-
- // Okay to round down (truncate) if lower has a different digit
- // or if lower is inclusive and is exactly the result of rounding down.
- okdown := l != m || (inclusive && l == m && i+1 == lower.nd)
-
- // Okay to round up if upper has a different digit and
- // either upper is inclusive or upper is bigger than the result of rounding up.
- okup := m != u && (inclusive || i+1 < upper.nd)
-
- // If it's okay to do either, then round to the nearest one.
- // If it's okay to do only one, do it.
- switch {
- case okdown && okup:
- d.Round(i + 1)
- return
- case okdown:
- d.RoundDown(i + 1)
- return
- case okup:
- d.RoundUp(i + 1)
- return
- }
- }
-}
-
-// %e: -d.ddddde±dd
-func fmtE(neg bool, d *decimal, prec int, fmt byte) string {
- buf := make([]byte, 3+max(prec, 0)+30) // "-0." + prec digits + exp
- w := 0 // write index
-
- // sign
- if neg {
- buf[w] = '-'
- w++
- }
-
- // first digit
- if d.nd == 0 {
- buf[w] = '0'
- } else {
- buf[w] = d.d[0]
- }
- w++
-
- // .moredigits
- if prec > 0 {
- buf[w] = '.'
- w++
- for i := 0; i < prec; i++ {
- if 1+i < d.nd {
- buf[w] = d.d[1+i]
- } else {
- buf[w] = '0'
- }
- w++
- }
- }
-
- // e±
- buf[w] = fmt
- w++
- exp := d.dp - 1
- if d.nd == 0 { // special case: 0 has exponent 0
- exp = 0
- }
- if exp < 0 {
- buf[w] = '-'
- exp = -exp
- } else {
- buf[w] = '+'
- }
- w++
-
- // dddd
- // count digits
- n := 0
- for e := exp; e > 0; e /= 10 {
- n++
- }
- // leading zeros
- for i := n; i < 2; i++ {
- buf[w] = '0'
- w++
- }
- // digits
- w += n
- n = 0
- for e := exp; e > 0; e /= 10 {
- n++
- buf[w-n] = byte(e%10 + '0')
- }
-
- return string(buf[0:w])
-}
-
-// %f: -ddddddd.ddddd
-func fmtF(neg bool, d *decimal, prec int) string {
- buf := make([]byte, 1+max(d.dp, 1)+1+max(prec, 0))
- w := 0
-
- // sign
- if neg {
- buf[w] = '-'
- w++
- }
-
- // integer, padded with zeros as needed.
- if d.dp > 0 {
- var i int
- for i = 0; i < d.dp && i < d.nd; i++ {
- buf[w] = d.d[i]
- w++
- }
- for ; i < d.dp; i++ {
- buf[w] = '0'
- w++
- }
- } else {
- buf[w] = '0'
- w++
- }
-
- // fraction
- if prec > 0 {
- buf[w] = '.'
- w++
- for i := 0; i < prec; i++ {
- if d.dp+i < 0 || d.dp+i >= d.nd {
- buf[w] = '0'
- } else {
- buf[w] = d.d[d.dp+i]
- }
- w++
- }
- }
-
- return string(buf[0:w])
-}
-
-// %b: -ddddddddp+ddd
-func fmtB(neg bool, mant uint64, exp int, flt *floatInfo) string {
- var buf [50]byte
- w := len(buf)
- exp -= int(flt.mantbits)
- esign := byte('+')
- if exp < 0 {
- esign = '-'
- exp = -exp
- }
- n := 0
- for exp > 0 || n < 1 {
- n++
- w--
- buf[w] = byte(exp%10 + '0')
- exp /= 10
- }
- w--
- buf[w] = esign
- w--
- buf[w] = 'p'
- n = 0
- for mant > 0 || n < 1 {
- n++
- w--
- buf[w] = byte(mant%10 + '0')
- mant /= 10
- }
- if neg {
- w--
- buf[w] = '-'
- }
- return string(buf[w:])
-}
-
-func max(a, b int) int {
- if a > b {
- return a
- }
- return b
-}