summaryrefslogtreecommitdiff
path: root/src/pkg/strconv/ftoa.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/strconv/ftoa.go')
-rw-r--r--src/pkg/strconv/ftoa.go418
1 files changed, 418 insertions, 0 deletions
diff --git a/src/pkg/strconv/ftoa.go b/src/pkg/strconv/ftoa.go
new file mode 100644
index 000000000..b17115175
--- /dev/null
+++ b/src/pkg/strconv/ftoa.go
@@ -0,0 +1,418 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Binary to decimal floating point conversion.
+// Algorithm:
+// 1) store mantissa in multiprecision decimal
+// 2) shift decimal by exponent
+// 3) read digits out & format
+
+package strconv
+
+import (
+ "math";
+ "strconv";
+)
+
+// TODO: move elsewhere?
+type floatInfo struct {
+ mantbits uint;
+ expbits uint;
+ bias int;
+}
+var float32info = floatInfo{ 23, 8, -127 }
+var float64info = floatInfo{ 52, 11, -1023 }
+
+func fmtB(neg bool, mant uint64, exp int, flt *floatInfo) string
+func fmtE(neg bool, d *decimal, prec int) string
+func fmtF(neg bool, d *decimal, prec int) string
+func genericFtoa(bits uint64, fmt byte, prec int, flt *floatInfo) string
+func max(a, b int) int
+func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo)
+
+func floatsize() int {
+ // Figure out whether float is float32 or float64.
+ // 1e-35 is representable in both, but 1e-70
+ // is too small for a float32.
+ var f float = 1e-35;
+ if f*f == 0 {
+ return 32;
+ }
+ return 64;
+}
+
+// Floatsize gives the size of the float type, either 32 or 64.
+var FloatSize = floatsize()
+
+// Ftoa32 converts the 32-bit floating-point number f to a string,
+// according to the format fmt and precision prec.
+//
+// The format fmt is one of
+// 'b' (-ddddp±ddd, a binary exponent),
+// 'e' (-d.dddde±dd, a decimal exponent),
+// 'f' (-ddd.dddd, no exponent), or
+// 'g' ('e' for large exponents, 'f' otherwise).
+//
+// The precision prec controls the number of digits
+// (excluding the exponent) printed by the 'e', 'f', and 'g' formats.
+// For 'e' and 'f' it is the number of digits after the decimal point.
+// For 'g' it is the total number of digits.
+// The special precision -1 uses the smallest number of digits
+// necessary such that Atof32 will return f exactly.
+//
+// Ftoa32(f) is not the same as Ftoa64(float32(f)),
+// because correct rounding and the number of digits
+// needed to identify f depend on the precision of the representation.
+func Ftoa32(f float32, fmt byte, prec int) string {
+ return genericFtoa(uint64(math.Float32bits(f)), fmt, prec, &float32info);
+}
+
+// Ftoa64 is like Ftoa32 but converts a 64-bit floating-point number.
+func Ftoa64(f float64, fmt byte, prec int) string {
+ return genericFtoa(math.Float64bits(f), fmt, prec, &float64info);
+}
+
+// Ftoa behaves as Ftoa32 or Ftoa64, depending on the size of the float type.
+func Ftoa(f float, fmt byte, prec int) string {
+ if FloatSize == 32 {
+ return Ftoa32(float32(f), fmt, prec);
+ }
+ return Ftoa64(float64(f), fmt, prec);
+}
+
+func genericFtoa(bits uint64, fmt byte, prec int, flt *floatInfo) string {
+ neg := bits>>flt.expbits>>flt.mantbits != 0;
+ exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1);
+ mant := bits & (uint64(1)<<flt.mantbits - 1);
+
+ switch exp {
+ case 1<<flt.expbits - 1:
+ // Inf, NaN
+ if mant != 0 {
+ return "NaN";
+ }
+ if neg {
+ return "-Inf";
+ }
+ return "+Inf";
+
+ case 0:
+ // denormalized
+ exp++;
+
+ default:
+ // add implicit top bit
+ mant |= uint64(1)<<flt.mantbits;
+ }
+ exp += flt.bias;
+
+ // Pick off easy binary format.
+ if fmt == 'b' {
+ return fmtB(neg, mant, exp, flt);
+ }
+
+ // Create exact decimal representation.
+ // The shift is exp - flt.mantbits because mant is a 1-bit integer
+ // followed by a flt.mantbits fraction, and we are treating it as
+ // a 1+flt.mantbits-bit integer.
+ d := newDecimal(mant).Shift(exp - int(flt.mantbits));
+
+ // Round appropriately.
+ // Negative precision means "only as much as needed to be exact."
+ shortest := false;
+ if prec < 0 {
+ shortest = true;
+ roundShortest(d, mant, exp, flt);
+ switch fmt {
+ case 'e':
+ prec = d.nd - 1;
+ case 'f':
+ prec = max(d.nd - d.dp, 0);
+ case 'g':
+ prec = d.nd;
+ }
+ } else {
+ switch fmt {
+ case 'e':
+ d.Round(prec+1);
+ case 'f':
+ d.Round(d.dp+prec);
+ case 'g':
+ if prec == 0 {
+ prec = 1;
+ }
+ d.Round(prec);
+ }
+ }
+
+ switch fmt {
+ case 'e':
+ return fmtE(neg, d, prec);
+ case 'f':
+ return fmtF(neg, d, prec);
+ case 'g':
+ // trailing zeros are removed.
+ if prec > d.nd {
+ prec = d.nd;
+ }
+ // %e is used if the exponent from the conversion
+ // is less than -4 or greater than or equal to the precision.
+ // if precision was the shortest possible, use precision 6 for this decision.
+ eprec := prec;
+ if shortest {
+ eprec = 6
+ }
+ exp := d.dp - 1;
+ if exp < -4 || exp >= eprec {
+ return fmtE(neg, d, prec - 1);
+ }
+ return fmtF(neg, d, max(prec - d.dp, 0));
+ }
+
+ return "%" + string(fmt);
+}
+
+// Round d (= mant * 2^exp) to the shortest number of digits
+// that will let the original floating point value be precisely
+// reconstructed. Size is original floating point size (64 or 32).
+func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) {
+ // If mantissa is zero, the number is zero; stop now.
+ if mant == 0 {
+ d.nd = 0;
+ return;
+ }
+
+ // TODO: Unless exp == minexp, if the number of digits in d
+ // is less than 17, it seems unlikely that it could not be
+ // the shortest possible number already. So maybe we can
+ // bail out without doing the extra multiprecision math here.
+
+ // Compute upper and lower such that any decimal number
+ // between upper and lower (possibly inclusive)
+ // will round to the original floating point number.
+
+ // d = mant << (exp - mantbits)
+ // Next highest floating point number is mant+1 << exp-mantbits.
+ // Our upper bound is halfway inbetween, mant*2+1 << exp-mantbits-1.
+ upper := newDecimal(mant*2+1).Shift(exp-int(flt.mantbits)-1);
+
+ // d = mant << (exp - mantbits)
+ // Next lowest floating point number is mant-1 << exp-mantbits,
+ // unless mant-1 drops the significant bit and exp is not the minimum exp,
+ // in which case the next lowest is mant*2-1 << exp-mantbits-1.
+ // Either way, call it mantlo << explo-mantbits.
+ // Our lower bound is halfway inbetween, mantlo*2+1 << explo-mantbits-1.
+ minexp := flt.bias + 1; // minimum possible exponent
+ var mantlo uint64;
+ var explo int;
+ if mant > 1<<flt.mantbits || exp == minexp {
+ mantlo = mant - 1;
+ explo = exp;
+ } else {
+ mantlo = mant*2-1;
+ explo = exp-1;
+ }
+ lower := newDecimal(mantlo*2+1).Shift(explo-int(flt.mantbits)-1);
+
+ // The upper and lower bounds are possible outputs only if
+ // the original mantissa is even, so that IEEE round-to-even
+ // would round to the original mantissa and not the neighbors.
+ inclusive := mant%2 == 0;
+
+ // Now we can figure out the minimum number of digits required.
+ // Walk along until d has distinguished itself from upper and lower.
+ for i := 0; i < d.nd; i++ {
+ var l, m, u byte; // lower, middle, upper digits
+ if i < lower.nd {
+ l = lower.d[i];
+ } else {
+ l = '0';
+ }
+ m = d.d[i];
+ if i < upper.nd {
+ u = upper.d[i];
+ } else {
+ u = '0';
+ }
+
+ // Okay to round down (truncate) if lower has a different digit
+ // or if lower is inclusive and is exactly the result of rounding down.
+ okdown := l != m || (inclusive && l == m && i+1 == lower.nd);
+
+ // Okay to round up if upper has a different digit and
+ // either upper is inclusive or upper is bigger than the result of rounding up.
+ okup := m != u && (inclusive || i+1 < upper.nd);
+
+ // If it's okay to do either, then round to the nearest one.
+ // If it's okay to do only one, do it.
+ switch {
+ case okdown && okup:
+ d.Round(i+1);
+ return;
+ case okdown:
+ d.RoundDown(i+1);
+ return;
+ case okup:
+ d.RoundUp(i+1);
+ return;
+ }
+ }
+}
+
+// %e: -d.ddddde±dd
+func fmtE(neg bool, d *decimal, prec int) string {
+ buf := make([]byte, 3+max(prec, 0)+30); // "-0." + prec digits + exp
+ w := 0; // write index
+
+ // sign
+ if neg {
+ buf[w] = '-';
+ w++;
+ }
+
+ // first digit
+ if d.nd == 0 {
+ buf[w] = '0';
+ } else {
+ buf[w] = d.d[0];
+ }
+ w++;
+
+ // .moredigits
+ if prec > 0 {
+ buf[w] = '.';
+ w++;
+ for i := 0; i < prec; i++ {
+ if 1+i < d.nd {
+ buf[w] = d.d[1+i];
+ } else {
+ buf[w] = '0';
+ }
+ w++;
+ }
+ }
+
+ // e±
+ buf[w] = 'e';
+ w++;
+ exp := d.dp - 1;
+ if d.nd == 0 { // special case: 0 has exponent 0
+ exp = 0;
+ }
+ if exp < 0 {
+ buf[w] = '-';
+ exp = -exp;
+ } else {
+ buf[w] = '+';
+ }
+ w++;
+
+ // dddd
+ // count digits
+ n := 0;
+ for e := exp; e > 0; e /= 10 {
+ n++;
+ }
+ // leading zeros
+ for i := n; i < 2; i++ {
+ buf[w] = '0';
+ w++;
+ }
+ // digits
+ w += n;
+ n = 0;
+ for e := exp; e > 0; e /= 10 {
+ n++;
+ buf[w-n] = byte(e%10 + '0');
+ }
+
+ return string(buf[0:w]);
+}
+
+// %f: -ddddddd.ddddd
+func fmtF(neg bool, d *decimal, prec int) string {
+ buf := make([]byte, 1+max(d.dp, 1)+1+max(prec, 0));
+ w := 0;
+
+ // sign
+ if neg {
+ buf[w] = '-';
+ w++;
+ }
+
+ // integer, padded with zeros as needed.
+ if d.dp > 0 {
+ var i int;
+ for i = 0; i < d.dp && i < d.nd; i++ {
+ buf[w] = d.d[i];
+ w++;
+ }
+ for ; i < d.dp; i++ {
+ buf[w] = '0';
+ w++;
+ }
+ } else {
+ buf[w] = '0';
+ w++;
+ }
+
+ // fraction
+ if prec > 0 {
+ buf[w] = '.';
+ w++;
+ for i := 0; i < prec; i++ {
+ if d.dp+i < 0 || d.dp+i >= d.nd {
+ buf[w] = '0';
+ } else {
+ buf[w] = d.d[d.dp+i];
+ }
+ w++;
+ }
+ }
+
+ return string(buf[0:w]);
+}
+
+// %b: -ddddddddp+ddd
+func fmtB(neg bool, mant uint64, exp int, flt *floatInfo) string {
+ var buf [50]byte;
+ w := len(buf);
+ exp -= int(flt.mantbits);
+ esign := byte('+');
+ if exp < 0 {
+ esign = '-';
+ exp = -exp;
+ }
+ n := 0;
+ for exp > 0 || n < 1 {
+ n++;
+ w--;
+ buf[w] = byte(exp%10 + '0');
+ exp /= 10
+ }
+ w--;
+ buf[w] = esign;
+ w--;
+ buf[w] = 'p';
+ n = 0;
+ for mant > 0 || n < 1 {
+ n++;
+ w--;
+ buf[w] = byte(mant%10 + '0');
+ mant /= 10;
+ }
+ if neg {
+ w--;
+ buf[w] = '-';
+ }
+ return string(buf[w:len(buf)]);
+}
+
+func max(a, b int) int {
+ if a > b {
+ return a;
+ }
+ return b;
+}
+