summaryrefslogtreecommitdiff
path: root/src/pkg/strconv/ftoa.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/strconv/ftoa.go')
-rw-r--r--src/pkg/strconv/ftoa.go208
1 files changed, 104 insertions, 104 deletions
diff --git a/src/pkg/strconv/ftoa.go b/src/pkg/strconv/ftoa.go
index 7300cd861..86e35b399 100644
--- a/src/pkg/strconv/ftoa.go
+++ b/src/pkg/strconv/ftoa.go
@@ -14,9 +14,9 @@ import "math"
// TODO: move elsewhere?
type floatInfo struct {
- mantbits uint;
- expbits uint;
- bias int;
+ mantbits uint
+ expbits uint
+ bias int
}
var float32info = floatInfo{23, 8, -127}
@@ -26,11 +26,11 @@ func floatsize() int {
// Figure out whether float is float32 or float64.
// 1e-35 is representable in both, but 1e-70
// is too small for a float32.
- var f float = 1e-35;
+ var f float = 1e-35
if f*f == 0 {
return 32
}
- return 64;
+ return 64
}
// Floatsize gives the size of the float type, either 32 or 64.
@@ -69,13 +69,13 @@ func Ftoa(f float, fmt byte, prec int) string {
if FloatSize == 32 {
return Ftoa32(float32(f), fmt, prec)
}
- return Ftoa64(float64(f), fmt, prec);
+ return Ftoa64(float64(f), fmt, prec)
}
func genericFtoa(bits uint64, fmt byte, prec int, flt *floatInfo) string {
- neg := bits>>flt.expbits>>flt.mantbits != 0;
- exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1);
- mant := bits & (uint64(1)<<flt.mantbits - 1);
+ neg := bits>>flt.expbits>>flt.mantbits != 0
+ exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1)
+ mant := bits & (uint64(1)<<flt.mantbits - 1)
switch exp {
case 1<<flt.expbits - 1:
@@ -86,7 +86,7 @@ func genericFtoa(bits uint64, fmt byte, prec int, flt *floatInfo) string {
if neg {
return "-Inf"
}
- return "+Inf";
+ return "+Inf"
case 0:
// denormalized
@@ -96,7 +96,7 @@ func genericFtoa(bits uint64, fmt byte, prec int, flt *floatInfo) string {
// add implicit top bit
mant |= uint64(1) << flt.mantbits
}
- exp += flt.bias;
+ exp += flt.bias
// Pick off easy binary format.
if fmt == 'b' {
@@ -107,14 +107,14 @@ func genericFtoa(bits uint64, fmt byte, prec int, flt *floatInfo) string {
// The shift is exp - flt.mantbits because mant is a 1-bit integer
// followed by a flt.mantbits fraction, and we are treating it as
// a 1+flt.mantbits-bit integer.
- d := newDecimal(mant).Shift(exp - int(flt.mantbits));
+ d := newDecimal(mant).Shift(exp - int(flt.mantbits))
// Round appropriately.
// Negative precision means "only as much as needed to be exact."
- shortest := false;
+ shortest := false
if prec < 0 {
- shortest = true;
- roundShortest(d, mant, exp, flt);
+ shortest = true
+ roundShortest(d, mant, exp, flt)
switch fmt {
case 'e', 'E':
prec = d.nd - 1
@@ -133,7 +133,7 @@ func genericFtoa(bits uint64, fmt byte, prec int, flt *floatInfo) string {
if prec == 0 {
prec = 1
}
- d.Round(prec);
+ d.Round(prec)
}
}
@@ -150,18 +150,18 @@ func genericFtoa(bits uint64, fmt byte, prec int, flt *floatInfo) string {
// %e is used if the exponent from the conversion
// is less than -4 or greater than or equal to the precision.
// if precision was the shortest possible, use precision 6 for this decision.
- eprec := prec;
+ eprec := prec
if shortest {
eprec = 6
}
- exp := d.dp - 1;
+ exp := d.dp - 1
if exp < -4 || exp >= eprec {
return fmtE(neg, d, prec-1, fmt+'e'-'g')
}
- return fmtF(neg, d, max(prec-d.dp, 0));
+ return fmtF(neg, d, max(prec-d.dp, 0))
}
- return "%" + string(fmt);
+ return "%" + string(fmt)
}
// Round d (= mant * 2^exp) to the shortest number of digits
@@ -170,8 +170,8 @@ func genericFtoa(bits uint64, fmt byte, prec int, flt *floatInfo) string {
func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) {
// If mantissa is zero, the number is zero; stop now.
if mant == 0 {
- d.nd = 0;
- return;
+ d.nd = 0
+ return
}
// TODO(rsc): Unless exp == minexp, if the number of digits in d
@@ -186,7 +186,7 @@ func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) {
// d = mant << (exp - mantbits)
// Next highest floating point number is mant+1 << exp-mantbits.
// Our upper bound is halfway inbetween, mant*2+1 << exp-mantbits-1.
- upper := newDecimal(mant*2 + 1).Shift(exp - int(flt.mantbits) - 1);
+ upper := newDecimal(mant*2 + 1).Shift(exp - int(flt.mantbits) - 1)
// d = mant << (exp - mantbits)
// Next lowest floating point number is mant-1 << exp-mantbits,
@@ -194,33 +194,33 @@ func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) {
// in which case the next lowest is mant*2-1 << exp-mantbits-1.
// Either way, call it mantlo << explo-mantbits.
// Our lower bound is halfway inbetween, mantlo*2+1 << explo-mantbits-1.
- minexp := flt.bias + 1; // minimum possible exponent
- var mantlo uint64;
- var explo int;
+ minexp := flt.bias + 1 // minimum possible exponent
+ var mantlo uint64
+ var explo int
if mant > 1<<flt.mantbits || exp == minexp {
- mantlo = mant - 1;
- explo = exp;
+ mantlo = mant - 1
+ explo = exp
} else {
- mantlo = mant*2 - 1;
- explo = exp - 1;
+ mantlo = mant*2 - 1
+ explo = exp - 1
}
- lower := newDecimal(mantlo*2 + 1).Shift(explo - int(flt.mantbits) - 1);
+ lower := newDecimal(mantlo*2 + 1).Shift(explo - int(flt.mantbits) - 1)
// The upper and lower bounds are possible outputs only if
// the original mantissa is even, so that IEEE round-to-even
// would round to the original mantissa and not the neighbors.
- inclusive := mant%2 == 0;
+ inclusive := mant%2 == 0
// Now we can figure out the minimum number of digits required.
// Walk along until d has distinguished itself from upper and lower.
for i := 0; i < d.nd; i++ {
- var l, m, u byte; // lower, middle, upper digits
+ var l, m, u byte // lower, middle, upper digits
if i < lower.nd {
l = lower.d[i]
} else {
l = '0'
}
- m = d.d[i];
+ m = d.d[i]
if i < upper.nd {
u = upper.d[i]
} else {
@@ -229,37 +229,37 @@ func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) {
// Okay to round down (truncate) if lower has a different digit
// or if lower is inclusive and is exactly the result of rounding down.
- okdown := l != m || (inclusive && l == m && i+1 == lower.nd);
+ okdown := l != m || (inclusive && l == m && i+1 == lower.nd)
// Okay to round up if upper has a different digit and
// either upper is inclusive or upper is bigger than the result of rounding up.
- okup := m != u && (inclusive || i+1 < upper.nd);
+ okup := m != u && (inclusive || i+1 < upper.nd)
// If it's okay to do either, then round to the nearest one.
// If it's okay to do only one, do it.
switch {
case okdown && okup:
- d.Round(i + 1);
- return;
+ d.Round(i + 1)
+ return
case okdown:
- d.RoundDown(i + 1);
- return;
+ d.RoundDown(i + 1)
+ return
case okup:
- d.RoundUp(i + 1);
- return;
+ d.RoundUp(i + 1)
+ return
}
}
}
// %e: -d.ddddde±dd
func fmtE(neg bool, d *decimal, prec int, fmt byte) string {
- buf := make([]byte, 3+max(prec, 0)+30); // "-0." + prec digits + exp
- w := 0; // write index
+ buf := make([]byte, 3+max(prec, 0)+30) // "-0." + prec digits + exp
+ w := 0 // write index
// sign
if neg {
- buf[w] = '-';
- w++;
+ buf[w] = '-'
+ w++
}
// first digit
@@ -268,141 +268,141 @@ func fmtE(neg bool, d *decimal, prec int, fmt byte) string {
} else {
buf[w] = d.d[0]
}
- w++;
+ w++
// .moredigits
if prec > 0 {
- buf[w] = '.';
- w++;
+ buf[w] = '.'
+ w++
for i := 0; i < prec; i++ {
if 1+i < d.nd {
buf[w] = d.d[1+i]
} else {
buf[w] = '0'
}
- w++;
+ w++
}
}
// e±
- buf[w] = fmt;
- w++;
- exp := d.dp - 1;
- if d.nd == 0 { // special case: 0 has exponent 0
+ buf[w] = fmt
+ w++
+ exp := d.dp - 1
+ if d.nd == 0 { // special case: 0 has exponent 0
exp = 0
}
if exp < 0 {
- buf[w] = '-';
- exp = -exp;
+ buf[w] = '-'
+ exp = -exp
} else {
buf[w] = '+'
}
- w++;
+ w++
// dddd
// count digits
- n := 0;
+ n := 0
for e := exp; e > 0; e /= 10 {
n++
}
// leading zeros
for i := n; i < 2; i++ {
- buf[w] = '0';
- w++;
+ buf[w] = '0'
+ w++
}
// digits
- w += n;
- n = 0;
+ w += n
+ n = 0
for e := exp; e > 0; e /= 10 {
- n++;
- buf[w-n] = byte(e%10 + '0');
+ n++
+ buf[w-n] = byte(e%10 + '0')
}
- return string(buf[0:w]);
+ return string(buf[0:w])
}
// %f: -ddddddd.ddddd
func fmtF(neg bool, d *decimal, prec int) string {
- buf := make([]byte, 1+max(d.dp, 1)+1+max(prec, 0));
- w := 0;
+ buf := make([]byte, 1+max(d.dp, 1)+1+max(prec, 0))
+ w := 0
// sign
if neg {
- buf[w] = '-';
- w++;
+ buf[w] = '-'
+ w++
}
// integer, padded with zeros as needed.
if d.dp > 0 {
- var i int;
+ var i int
for i = 0; i < d.dp && i < d.nd; i++ {
- buf[w] = d.d[i];
- w++;
+ buf[w] = d.d[i]
+ w++
}
for ; i < d.dp; i++ {
- buf[w] = '0';
- w++;
+ buf[w] = '0'
+ w++
}
} else {
- buf[w] = '0';
- w++;
+ buf[w] = '0'
+ w++
}
// fraction
if prec > 0 {
- buf[w] = '.';
- w++;
+ buf[w] = '.'
+ w++
for i := 0; i < prec; i++ {
if d.dp+i < 0 || d.dp+i >= d.nd {
buf[w] = '0'
} else {
buf[w] = d.d[d.dp+i]
}
- w++;
+ w++
}
}
- return string(buf[0:w]);
+ return string(buf[0:w])
}
// %b: -ddddddddp+ddd
func fmtB(neg bool, mant uint64, exp int, flt *floatInfo) string {
- var buf [50]byte;
- w := len(buf);
- exp -= int(flt.mantbits);
- esign := byte('+');
+ var buf [50]byte
+ w := len(buf)
+ exp -= int(flt.mantbits)
+ esign := byte('+')
if exp < 0 {
- esign = '-';
- exp = -exp;
+ esign = '-'
+ exp = -exp
}
- n := 0;
+ n := 0
for exp > 0 || n < 1 {
- n++;
- w--;
- buf[w] = byte(exp%10 + '0');
- exp /= 10;
+ n++
+ w--
+ buf[w] = byte(exp%10 + '0')
+ exp /= 10
}
- w--;
- buf[w] = esign;
- w--;
- buf[w] = 'p';
- n = 0;
+ w--
+ buf[w] = esign
+ w--
+ buf[w] = 'p'
+ n = 0
for mant > 0 || n < 1 {
- n++;
- w--;
- buf[w] = byte(mant%10 + '0');
- mant /= 10;
+ n++
+ w--
+ buf[w] = byte(mant%10 + '0')
+ mant /= 10
}
if neg {
- w--;
- buf[w] = '-';
+ w--
+ buf[w] = '-'
}
- return string(buf[w:]);
+ return string(buf[w:])
}
func max(a, b int) int {
if a > b {
return a
}
- return b;
+ return b
}