diff options
Diffstat (limited to 'src/pkg/strconv/ftoa.go')
| -rw-r--r-- | src/pkg/strconv/ftoa.go | 263 |
1 files changed, 140 insertions, 123 deletions
diff --git a/src/pkg/strconv/ftoa.go b/src/pkg/strconv/ftoa.go index b6049c545..8eefbee79 100644 --- a/src/pkg/strconv/ftoa.go +++ b/src/pkg/strconv/ftoa.go @@ -22,8 +22,10 @@ type floatInfo struct { var float32info = floatInfo{23, 8, -127} var float64info = floatInfo{52, 11, -1023} -// Ftoa32 converts the 32-bit floating-point number f to a string, -// according to the format fmt and precision prec. +// FormatFloat converts the floating-point number f to a string, +// according to the format fmt and precision prec. It rounds the +// result assuming that the original was obtained from a floating-point +// value of bitSize bits (32 for float32, 64 for float64). // // The format fmt is one of // 'b' (-ddddp±ddd, a binary exponent), @@ -38,32 +40,31 @@ var float64info = floatInfo{52, 11, -1023} // For 'e', 'E', and 'f' it is the number of digits after the decimal point. // For 'g' and 'G' it is the total number of digits. // The special precision -1 uses the smallest number of digits -// necessary such that Atof32 will return f exactly. -// -// Ftoa32(f) is not the same as Ftoa64(float32(f)), -// because correct rounding and the number of digits -// needed to identify f depend on the precision of the representation. -func Ftoa32(f float32, fmt byte, prec int) string { - return genericFtoa(uint64(math.Float32bits(f)), fmt, prec, &float32info) +// necessary such that ParseFloat will return f exactly. +func FormatFloat(f float64, fmt byte, prec, bitSize int) string { + return string(genericFtoa(make([]byte, 0, max(prec+4, 24)), f, fmt, prec, bitSize)) } -// Ftoa64 is like Ftoa32 but converts a 64-bit floating-point number. -func Ftoa64(f float64, fmt byte, prec int) string { - return genericFtoa(math.Float64bits(f), fmt, prec, &float64info) +// AppendFloat appends the string form of the floating-point number f, +// as generated by FormatFloat, to dst and returns the extended buffer. +func AppendFloat(dst []byte, f float64, fmt byte, prec int, bitSize int) []byte { + return genericFtoa(dst, f, fmt, prec, bitSize) } -// FtoaN converts the 64-bit floating-point number f to a string, -// according to the format fmt and precision prec, but it rounds the -// result assuming that it was obtained from a floating-point value -// of n bits (32 or 64). -func FtoaN(f float64, fmt byte, prec int, n int) string { - if n == 32 { - return Ftoa32(float32(f), fmt, prec) +func genericFtoa(dst []byte, val float64, fmt byte, prec, bitSize int) []byte { + var bits uint64 + var flt *floatInfo + switch bitSize { + case 32: + bits = uint64(math.Float32bits(float32(val))) + flt = &float32info + case 64: + bits = math.Float64bits(val) + flt = &float64info + default: + panic("strconv: illegal AppendFloat/FormatFloat bitSize") } - return Ftoa64(f, fmt, prec) -} -func genericFtoa(bits uint64, fmt byte, prec int, flt *floatInfo) string { neg := bits>>(flt.expbits+flt.mantbits) != 0 exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1) mant := bits & (uint64(1)<<flt.mantbits - 1) @@ -71,13 +72,16 @@ func genericFtoa(bits uint64, fmt byte, prec int, flt *floatInfo) string { switch exp { case 1<<flt.expbits - 1: // Inf, NaN - if mant != 0 { - return "NaN" - } - if neg { - return "-Inf" + var s string + switch { + case mant != 0: + s = "NaN" + case neg: + s = "-Inf" + default: + s = "+Inf" } - return "+Inf" + return append(dst, s...) case 0: // denormalized @@ -91,30 +95,46 @@ func genericFtoa(bits uint64, fmt byte, prec int, flt *floatInfo) string { // Pick off easy binary format. if fmt == 'b' { - return fmtB(neg, mant, exp, flt) + return fmtB(dst, neg, mant, exp, flt) } - // Create exact decimal representation. - // The shift is exp - flt.mantbits because mant is a 1-bit integer - // followed by a flt.mantbits fraction, and we are treating it as - // a 1+flt.mantbits-bit integer. - d := newDecimal(mant).Shift(exp - int(flt.mantbits)) - - // Round appropriately. // Negative precision means "only as much as needed to be exact." - shortest := false - if prec < 0 { - shortest = true - roundShortest(d, mant, exp, flt) - switch fmt { - case 'e', 'E': - prec = d.nd - 1 - case 'f': - prec = max(d.nd-d.dp, 0) - case 'g', 'G': - prec = d.nd + shortest := prec < 0 + + d := new(decimal) + if shortest { + ok := false + if optimize && bitSize == 64 { + // Try Grisu3 algorithm. + f := new(extFloat) + lower, upper := f.AssignComputeBounds(val) + ok = f.ShortestDecimal(d, &lower, &upper) + } + if !ok { + // Create exact decimal representation. + // The shift is exp - flt.mantbits because mant is a 1-bit integer + // followed by a flt.mantbits fraction, and we are treating it as + // a 1+flt.mantbits-bit integer. + d.Assign(mant) + d.Shift(exp - int(flt.mantbits)) + roundShortest(d, mant, exp, flt) + } + // Precision for shortest representation mode. + if prec < 0 { + switch fmt { + case 'e', 'E': + prec = d.nd - 1 + case 'f': + prec = max(d.nd-d.dp, 0) + case 'g', 'G': + prec = d.nd + } } } else { + // Create exact decimal representation. + d.Assign(mant) + d.Shift(exp - int(flt.mantbits)) + // Round appropriately. switch fmt { case 'e', 'E': d.Round(prec + 1) @@ -130,9 +150,9 @@ func genericFtoa(bits uint64, fmt byte, prec int, flt *floatInfo) string { switch fmt { case 'e', 'E': - return fmtE(neg, d, prec, fmt) + return fmtE(dst, neg, d, prec, fmt) case 'f': - return fmtF(neg, d, prec) + return fmtF(dst, neg, d, prec) case 'g', 'G': // trailing fractional zeros in 'e' form will be trimmed. eprec := prec @@ -150,15 +170,16 @@ func genericFtoa(bits uint64, fmt byte, prec int, flt *floatInfo) string { if prec > d.nd { prec = d.nd } - return fmtE(neg, d, prec-1, fmt+'e'-'g') + return fmtE(dst, neg, d, prec-1, fmt+'e'-'g') } if prec > d.dp { prec = d.nd } - return fmtF(neg, d, max(prec-d.dp, 0)) + return fmtF(dst, neg, d, max(prec-d.dp, 0)) } - return "%" + string(fmt) + // unknown format + return append(dst, '%', fmt) } // Round d (= mant * 2^exp) to the shortest number of digits @@ -171,19 +192,32 @@ func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) { return } - // TODO(rsc): Unless exp == minexp, if the number of digits in d - // is less than 17, it seems likely that it would be - // the shortest possible number already. So maybe we can - // bail out without doing the extra multiprecision math here. - // Compute upper and lower such that any decimal number // between upper and lower (possibly inclusive) // will round to the original floating point number. + // We may see at once that the number is already shortest. + // + // Suppose d is not denormal, so that 2^exp <= d < 10^dp. + // The closest shorter number is at least 10^(dp-nd) away. + // The lower/upper bounds computed below are at distance + // at most 2^(exp-mantbits). + // + // So the number is already shortest if 10^(dp-nd) > 2^(exp-mantbits), + // or equivalently log2(10)*(dp-nd) > exp-mantbits. + // It is true if 332/100*(dp-nd) >= exp-mantbits (log2(10) > 3.32). + minexp := flt.bias + 1 // minimum possible exponent + if exp > minexp && 332*(d.dp-d.nd) >= 100*(exp-int(flt.mantbits)) { + // The number is already shortest. + return + } + // d = mant << (exp - mantbits) // Next highest floating point number is mant+1 << exp-mantbits. // Our upper bound is halfway inbetween, mant*2+1 << exp-mantbits-1. - upper := newDecimal(mant*2 + 1).Shift(exp - int(flt.mantbits) - 1) + upper := new(decimal) + upper.Assign(mant*2 + 1) + upper.Shift(exp - int(flt.mantbits) - 1) // d = mant << (exp - mantbits) // Next lowest floating point number is mant-1 << exp-mantbits, @@ -191,7 +225,6 @@ func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) { // in which case the next lowest is mant*2-1 << exp-mantbits-1. // Either way, call it mantlo << explo-mantbits. // Our lower bound is halfway inbetween, mantlo*2+1 << explo-mantbits-1. - minexp := flt.bias + 1 // minimum possible exponent var mantlo uint64 var explo int if mant > 1<<flt.mantbits || exp == minexp { @@ -201,7 +234,9 @@ func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) { mantlo = mant*2 - 1 explo = exp - 1 } - lower := newDecimal(mantlo*2 + 1).Shift(explo - int(flt.mantbits) - 1) + lower := new(decimal) + lower.Assign(mantlo*2 + 1) + lower.Shift(explo - int(flt.mantbits) - 1) // The upper and lower bounds are possible outputs only if // the original mantissa is even, so that IEEE round-to-even @@ -230,7 +265,7 @@ func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) { // Okay to round up if upper has a different digit and // either upper is inclusive or upper is bigger than the result of rounding up. - okup := m != u && (inclusive || i+1 < upper.nd) + okup := m != u && (inclusive || m+1 < u || i+1 < upper.nd) // If it's okay to do either, then round to the nearest one. // If it's okay to do only one, do it. @@ -249,121 +284,103 @@ func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) { } // %e: -d.ddddde±dd -func fmtE(neg bool, d *decimal, prec int, fmt byte) string { - buf := make([]byte, 3+max(prec, 0)+30) // "-0." + prec digits + exp - w := 0 // write index - +func fmtE(dst []byte, neg bool, d *decimal, prec int, fmt byte) []byte { // sign if neg { - buf[w] = '-' - w++ + dst = append(dst, '-') } // first digit - if d.nd == 0 { - buf[w] = '0' - } else { - buf[w] = d.d[0] + ch := byte('0') + if d.nd != 0 { + ch = d.d[0] } - w++ + dst = append(dst, ch) // .moredigits if prec > 0 { - buf[w] = '.' - w++ - for i := 0; i < prec; i++ { - if 1+i < d.nd { - buf[w] = d.d[1+i] - } else { - buf[w] = '0' + dst = append(dst, '.') + for i := 1; i <= prec; i++ { + ch = '0' + if i < d.nd { + ch = d.d[i] } - w++ + dst = append(dst, ch) } } // e± - buf[w] = fmt - w++ + dst = append(dst, fmt) exp := d.dp - 1 if d.nd == 0 { // special case: 0 has exponent 0 exp = 0 } if exp < 0 { - buf[w] = '-' + ch = '-' exp = -exp } else { - buf[w] = '+' + ch = '+' } - w++ + dst = append(dst, ch) // dddd - // count digits - n := 0 - for e := exp; e > 0; e /= 10 { - n++ - } - // leading zeros - for i := n; i < 2; i++ { - buf[w] = '0' - w++ + var buf [3]byte + i := len(buf) + for exp >= 10 { + i-- + buf[i] = byte(exp%10 + '0') + exp /= 10 } - // digits - w += n - n = 0 - for e := exp; e > 0; e /= 10 { - n++ - buf[w-n] = byte(e%10 + '0') + // exp < 10 + i-- + buf[i] = byte(exp + '0') + + // leading zeroes + if i > len(buf)-2 { + i-- + buf[i] = '0' } - return string(buf[0:w]) + return append(dst, buf[i:]...) } // %f: -ddddddd.ddddd -func fmtF(neg bool, d *decimal, prec int) string { - buf := make([]byte, 1+max(d.dp, 1)+1+max(prec, 0)) - w := 0 - +func fmtF(dst []byte, neg bool, d *decimal, prec int) []byte { // sign if neg { - buf[w] = '-' - w++ + dst = append(dst, '-') } // integer, padded with zeros as needed. if d.dp > 0 { var i int for i = 0; i < d.dp && i < d.nd; i++ { - buf[w] = d.d[i] - w++ + dst = append(dst, d.d[i]) } for ; i < d.dp; i++ { - buf[w] = '0' - w++ + dst = append(dst, '0') } } else { - buf[w] = '0' - w++ + dst = append(dst, '0') } // fraction if prec > 0 { - buf[w] = '.' - w++ + dst = append(dst, '.') for i := 0; i < prec; i++ { - if d.dp+i < 0 || d.dp+i >= d.nd { - buf[w] = '0' - } else { - buf[w] = d.d[d.dp+i] + ch := byte('0') + if j := d.dp + i; 0 <= j && j < d.nd { + ch = d.d[j] } - w++ + dst = append(dst, ch) } } - return string(buf[0:w]) + return dst } // %b: -ddddddddp+ddd -func fmtB(neg bool, mant uint64, exp int, flt *floatInfo) string { +func fmtB(dst []byte, neg bool, mant uint64, exp int, flt *floatInfo) []byte { var buf [50]byte w := len(buf) exp -= int(flt.mantbits) @@ -394,7 +411,7 @@ func fmtB(neg bool, mant uint64, exp int, flt *floatInfo) string { w-- buf[w] = '-' } - return string(buf[w:]) + return append(dst, buf[w:]...) } func max(a, b int) int { |
