diff options
Diffstat (limited to 'src/pkg/strings/strings.go')
-rw-r--r-- | src/pkg/strings/strings.go | 725 |
1 files changed, 0 insertions, 725 deletions
diff --git a/src/pkg/strings/strings.go b/src/pkg/strings/strings.go deleted file mode 100644 index 5d46211d8..000000000 --- a/src/pkg/strings/strings.go +++ /dev/null @@ -1,725 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Package strings implements simple functions to manipulate strings. -package strings - -import ( - "unicode" - "unicode/utf8" -) - -// explode splits s into an array of UTF-8 sequences, one per Unicode character (still strings) up to a maximum of n (n < 0 means no limit). -// Invalid UTF-8 sequences become correct encodings of U+FFF8. -func explode(s string, n int) []string { - if n == 0 { - return nil - } - l := utf8.RuneCountInString(s) - if n <= 0 || n > l { - n = l - } - a := make([]string, n) - var size int - var ch rune - i, cur := 0, 0 - for ; i+1 < n; i++ { - ch, size = utf8.DecodeRuneInString(s[cur:]) - if ch == utf8.RuneError { - a[i] = string(utf8.RuneError) - } else { - a[i] = s[cur : cur+size] - } - cur += size - } - // add the rest, if there is any - if cur < len(s) { - a[i] = s[cur:] - } - return a -} - -// primeRK is the prime base used in Rabin-Karp algorithm. -const primeRK = 16777619 - -// hashstr returns the hash and the appropriate multiplicative -// factor for use in Rabin-Karp algorithm. -func hashstr(sep string) (uint32, uint32) { - hash := uint32(0) - for i := 0; i < len(sep); i++ { - hash = hash*primeRK + uint32(sep[i]) - - } - var pow, sq uint32 = 1, primeRK - for i := len(sep); i > 0; i >>= 1 { - if i&1 != 0 { - pow *= sq - } - sq *= sq - } - return hash, pow -} - -// Count counts the number of non-overlapping instances of sep in s. -func Count(s, sep string) int { - n := 0 - // special cases - switch { - case len(sep) == 0: - return utf8.RuneCountInString(s) + 1 - case len(sep) == 1: - // special case worth making fast - c := sep[0] - for i := 0; i < len(s); i++ { - if s[i] == c { - n++ - } - } - return n - case len(sep) > len(s): - return 0 - case len(sep) == len(s): - if sep == s { - return 1 - } - return 0 - } - hashsep, pow := hashstr(sep) - h := uint32(0) - for i := 0; i < len(sep); i++ { - h = h*primeRK + uint32(s[i]) - } - lastmatch := 0 - if h == hashsep && s[:len(sep)] == sep { - n++ - lastmatch = len(sep) - } - for i := len(sep); i < len(s); { - h *= primeRK - h += uint32(s[i]) - h -= pow * uint32(s[i-len(sep)]) - i++ - if h == hashsep && lastmatch <= i-len(sep) && s[i-len(sep):i] == sep { - n++ - lastmatch = i - } - } - return n -} - -// Contains returns true if substr is within s. -func Contains(s, substr string) bool { - return Index(s, substr) >= 0 -} - -// ContainsAny returns true if any Unicode code points in chars are within s. -func ContainsAny(s, chars string) bool { - return IndexAny(s, chars) >= 0 -} - -// ContainsRune returns true if the Unicode code point r is within s. -func ContainsRune(s string, r rune) bool { - return IndexRune(s, r) >= 0 -} - -// Index returns the index of the first instance of sep in s, or -1 if sep is not present in s. -func Index(s, sep string) int { - n := len(sep) - switch { - case n == 0: - return 0 - case n == 1: - return IndexByte(s, sep[0]) - case n == len(s): - if sep == s { - return 0 - } - return -1 - case n > len(s): - return -1 - } - // Hash sep. - hashsep, pow := hashstr(sep) - var h uint32 - for i := 0; i < n; i++ { - h = h*primeRK + uint32(s[i]) - } - if h == hashsep && s[:n] == sep { - return 0 - } - for i := n; i < len(s); { - h *= primeRK - h += uint32(s[i]) - h -= pow * uint32(s[i-n]) - i++ - if h == hashsep && s[i-n:i] == sep { - return i - n - } - } - return -1 -} - -// LastIndex returns the index of the last instance of sep in s, or -1 if sep is not present in s. -func LastIndex(s, sep string) int { - n := len(sep) - if n == 0 { - return len(s) - } - c := sep[0] - if n == 1 { - // special case worth making fast - for i := len(s) - 1; i >= 0; i-- { - if s[i] == c { - return i - } - } - return -1 - } - // n > 1 - for i := len(s) - n; i >= 0; i-- { - if s[i] == c && s[i:i+n] == sep { - return i - } - } - return -1 -} - -// IndexRune returns the index of the first instance of the Unicode code point -// r, or -1 if rune is not present in s. -func IndexRune(s string, r rune) int { - switch { - case r < 0x80: - b := byte(r) - for i := 0; i < len(s); i++ { - if s[i] == b { - return i - } - } - default: - for i, c := range s { - if c == r { - return i - } - } - } - return -1 -} - -// IndexAny returns the index of the first instance of any Unicode code point -// from chars in s, or -1 if no Unicode code point from chars is present in s. -func IndexAny(s, chars string) int { - if len(chars) > 0 { - for i, c := range s { - for _, m := range chars { - if c == m { - return i - } - } - } - } - return -1 -} - -// LastIndexAny returns the index of the last instance of any Unicode code -// point from chars in s, or -1 if no Unicode code point from chars is -// present in s. -func LastIndexAny(s, chars string) int { - if len(chars) > 0 { - for i := len(s); i > 0; { - rune, size := utf8.DecodeLastRuneInString(s[0:i]) - i -= size - for _, m := range chars { - if rune == m { - return i - } - } - } - } - return -1 -} - -// Generic split: splits after each instance of sep, -// including sepSave bytes of sep in the subarrays. -func genSplit(s, sep string, sepSave, n int) []string { - if n == 0 { - return nil - } - if sep == "" { - return explode(s, n) - } - if n < 0 { - n = Count(s, sep) + 1 - } - c := sep[0] - start := 0 - a := make([]string, n) - na := 0 - for i := 0; i+len(sep) <= len(s) && na+1 < n; i++ { - if s[i] == c && (len(sep) == 1 || s[i:i+len(sep)] == sep) { - a[na] = s[start : i+sepSave] - na++ - start = i + len(sep) - i += len(sep) - 1 - } - } - a[na] = s[start:] - return a[0 : na+1] -} - -// SplitN slices s into substrings separated by sep and returns a slice of -// the substrings between those separators. -// If sep is empty, SplitN splits after each UTF-8 sequence. -// The count determines the number of substrings to return: -// n > 0: at most n substrings; the last substring will be the unsplit remainder. -// n == 0: the result is nil (zero substrings) -// n < 0: all substrings -func SplitN(s, sep string, n int) []string { return genSplit(s, sep, 0, n) } - -// SplitAfterN slices s into substrings after each instance of sep and -// returns a slice of those substrings. -// If sep is empty, SplitAfterN splits after each UTF-8 sequence. -// The count determines the number of substrings to return: -// n > 0: at most n substrings; the last substring will be the unsplit remainder. -// n == 0: the result is nil (zero substrings) -// n < 0: all substrings -func SplitAfterN(s, sep string, n int) []string { - return genSplit(s, sep, len(sep), n) -} - -// Split slices s into all substrings separated by sep and returns a slice of -// the substrings between those separators. -// If sep is empty, Split splits after each UTF-8 sequence. -// It is equivalent to SplitN with a count of -1. -func Split(s, sep string) []string { return genSplit(s, sep, 0, -1) } - -// SplitAfter slices s into all substrings after each instance of sep and -// returns a slice of those substrings. -// If sep is empty, SplitAfter splits after each UTF-8 sequence. -// It is equivalent to SplitAfterN with a count of -1. -func SplitAfter(s, sep string) []string { - return genSplit(s, sep, len(sep), -1) -} - -// Fields splits the string s around each instance of one or more consecutive white space -// characters, as defined by unicode.IsSpace, returning an array of substrings of s or an -// empty list if s contains only white space. -func Fields(s string) []string { - return FieldsFunc(s, unicode.IsSpace) -} - -// FieldsFunc splits the string s at each run of Unicode code points c satisfying f(c) -// and returns an array of slices of s. If all code points in s satisfy f(c) or the -// string is empty, an empty slice is returned. -func FieldsFunc(s string, f func(rune) bool) []string { - // First count the fields. - n := 0 - inField := false - for _, rune := range s { - wasInField := inField - inField = !f(rune) - if inField && !wasInField { - n++ - } - } - - // Now create them. - a := make([]string, n) - na := 0 - fieldStart := -1 // Set to -1 when looking for start of field. - for i, rune := range s { - if f(rune) { - if fieldStart >= 0 { - a[na] = s[fieldStart:i] - na++ - fieldStart = -1 - } - } else if fieldStart == -1 { - fieldStart = i - } - } - if fieldStart >= 0 { // Last field might end at EOF. - a[na] = s[fieldStart:] - } - return a -} - -// Join concatenates the elements of a to create a single string. The separator string -// sep is placed between elements in the resulting string. -func Join(a []string, sep string) string { - if len(a) == 0 { - return "" - } - if len(a) == 1 { - return a[0] - } - n := len(sep) * (len(a) - 1) - for i := 0; i < len(a); i++ { - n += len(a[i]) - } - - b := make([]byte, n) - bp := copy(b, a[0]) - for _, s := range a[1:] { - bp += copy(b[bp:], sep) - bp += copy(b[bp:], s) - } - return string(b) -} - -// HasPrefix tests whether the string s begins with prefix. -func HasPrefix(s, prefix string) bool { - return len(s) >= len(prefix) && s[0:len(prefix)] == prefix -} - -// HasSuffix tests whether the string s ends with suffix. -func HasSuffix(s, suffix string) bool { - return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix -} - -// Map returns a copy of the string s with all its characters modified -// according to the mapping function. If mapping returns a negative value, the character is -// dropped from the string with no replacement. -func Map(mapping func(rune) rune, s string) string { - // In the worst case, the string can grow when mapped, making - // things unpleasant. But it's so rare we barge in assuming it's - // fine. It could also shrink but that falls out naturally. - maxbytes := len(s) // length of b - nbytes := 0 // number of bytes encoded in b - // The output buffer b is initialized on demand, the first - // time a character differs. - var b []byte - - for i, c := range s { - r := mapping(c) - if b == nil { - if r == c { - continue - } - b = make([]byte, maxbytes) - nbytes = copy(b, s[:i]) - } - if r >= 0 { - wid := 1 - if r >= utf8.RuneSelf { - wid = utf8.RuneLen(r) - } - if nbytes+wid > maxbytes { - // Grow the buffer. - maxbytes = maxbytes*2 + utf8.UTFMax - nb := make([]byte, maxbytes) - copy(nb, b[0:nbytes]) - b = nb - } - nbytes += utf8.EncodeRune(b[nbytes:maxbytes], r) - } - } - if b == nil { - return s - } - return string(b[0:nbytes]) -} - -// Repeat returns a new string consisting of count copies of the string s. -func Repeat(s string, count int) string { - b := make([]byte, len(s)*count) - bp := 0 - for i := 0; i < count; i++ { - bp += copy(b[bp:], s) - } - return string(b) -} - -// ToUpper returns a copy of the string s with all Unicode letters mapped to their upper case. -func ToUpper(s string) string { return Map(unicode.ToUpper, s) } - -// ToLower returns a copy of the string s with all Unicode letters mapped to their lower case. -func ToLower(s string) string { return Map(unicode.ToLower, s) } - -// ToTitle returns a copy of the string s with all Unicode letters mapped to their title case. -func ToTitle(s string) string { return Map(unicode.ToTitle, s) } - -// ToUpperSpecial returns a copy of the string s with all Unicode letters mapped to their -// upper case, giving priority to the special casing rules. -func ToUpperSpecial(_case unicode.SpecialCase, s string) string { - return Map(func(r rune) rune { return _case.ToUpper(r) }, s) -} - -// ToLowerSpecial returns a copy of the string s with all Unicode letters mapped to their -// lower case, giving priority to the special casing rules. -func ToLowerSpecial(_case unicode.SpecialCase, s string) string { - return Map(func(r rune) rune { return _case.ToLower(r) }, s) -} - -// ToTitleSpecial returns a copy of the string s with all Unicode letters mapped to their -// title case, giving priority to the special casing rules. -func ToTitleSpecial(_case unicode.SpecialCase, s string) string { - return Map(func(r rune) rune { return _case.ToTitle(r) }, s) -} - -// isSeparator reports whether the rune could mark a word boundary. -// TODO: update when package unicode captures more of the properties. -func isSeparator(r rune) bool { - // ASCII alphanumerics and underscore are not separators - if r <= 0x7F { - switch { - case '0' <= r && r <= '9': - return false - case 'a' <= r && r <= 'z': - return false - case 'A' <= r && r <= 'Z': - return false - case r == '_': - return false - } - return true - } - // Letters and digits are not separators - if unicode.IsLetter(r) || unicode.IsDigit(r) { - return false - } - // Otherwise, all we can do for now is treat spaces as separators. - return unicode.IsSpace(r) -} - -// Title returns a copy of the string s with all Unicode letters that begin words -// mapped to their title case. -// -// BUG: The rule Title uses for word boundaries does not handle Unicode punctuation properly. -func Title(s string) string { - // Use a closure here to remember state. - // Hackish but effective. Depends on Map scanning in order and calling - // the closure once per rune. - prev := ' ' - return Map( - func(r rune) rune { - if isSeparator(prev) { - prev = r - return unicode.ToTitle(r) - } - prev = r - return r - }, - s) -} - -// TrimLeftFunc returns a slice of the string s with all leading -// Unicode code points c satisfying f(c) removed. -func TrimLeftFunc(s string, f func(rune) bool) string { - i := indexFunc(s, f, false) - if i == -1 { - return "" - } - return s[i:] -} - -// TrimRightFunc returns a slice of the string s with all trailing -// Unicode code points c satisfying f(c) removed. -func TrimRightFunc(s string, f func(rune) bool) string { - i := lastIndexFunc(s, f, false) - if i >= 0 && s[i] >= utf8.RuneSelf { - _, wid := utf8.DecodeRuneInString(s[i:]) - i += wid - } else { - i++ - } - return s[0:i] -} - -// TrimFunc returns a slice of the string s with all leading -// and trailing Unicode code points c satisfying f(c) removed. -func TrimFunc(s string, f func(rune) bool) string { - return TrimRightFunc(TrimLeftFunc(s, f), f) -} - -// IndexFunc returns the index into s of the first Unicode -// code point satisfying f(c), or -1 if none do. -func IndexFunc(s string, f func(rune) bool) int { - return indexFunc(s, f, true) -} - -// LastIndexFunc returns the index into s of the last -// Unicode code point satisfying f(c), or -1 if none do. -func LastIndexFunc(s string, f func(rune) bool) int { - return lastIndexFunc(s, f, true) -} - -// indexFunc is the same as IndexFunc except that if -// truth==false, the sense of the predicate function is -// inverted. -func indexFunc(s string, f func(rune) bool, truth bool) int { - start := 0 - for start < len(s) { - wid := 1 - r := rune(s[start]) - if r >= utf8.RuneSelf { - r, wid = utf8.DecodeRuneInString(s[start:]) - } - if f(r) == truth { - return start - } - start += wid - } - return -1 -} - -// lastIndexFunc is the same as LastIndexFunc except that if -// truth==false, the sense of the predicate function is -// inverted. -func lastIndexFunc(s string, f func(rune) bool, truth bool) int { - for i := len(s); i > 0; { - r, size := utf8.DecodeLastRuneInString(s[0:i]) - i -= size - if f(r) == truth { - return i - } - } - return -1 -} - -func makeCutsetFunc(cutset string) func(rune) bool { - return func(r rune) bool { return IndexRune(cutset, r) >= 0 } -} - -// Trim returns a slice of the string s with all leading and -// trailing Unicode code points contained in cutset removed. -func Trim(s string, cutset string) string { - if s == "" || cutset == "" { - return s - } - return TrimFunc(s, makeCutsetFunc(cutset)) -} - -// TrimLeft returns a slice of the string s with all leading -// Unicode code points contained in cutset removed. -func TrimLeft(s string, cutset string) string { - if s == "" || cutset == "" { - return s - } - return TrimLeftFunc(s, makeCutsetFunc(cutset)) -} - -// TrimRight returns a slice of the string s, with all trailing -// Unicode code points contained in cutset removed. -func TrimRight(s string, cutset string) string { - if s == "" || cutset == "" { - return s - } - return TrimRightFunc(s, makeCutsetFunc(cutset)) -} - -// TrimSpace returns a slice of the string s, with all leading -// and trailing white space removed, as defined by Unicode. -func TrimSpace(s string) string { - return TrimFunc(s, unicode.IsSpace) -} - -// TrimPrefix returns s without the provided leading prefix string. -// If s doesn't start with prefix, s is returned unchanged. -func TrimPrefix(s, prefix string) string { - if HasPrefix(s, prefix) { - return s[len(prefix):] - } - return s -} - -// TrimSuffix returns s without the provided trailing suffix string. -// If s doesn't end with suffix, s is returned unchanged. -func TrimSuffix(s, suffix string) string { - if HasSuffix(s, suffix) { - return s[:len(s)-len(suffix)] - } - return s -} - -// Replace returns a copy of the string s with the first n -// non-overlapping instances of old replaced by new. -// If n < 0, there is no limit on the number of replacements. -func Replace(s, old, new string, n int) string { - if old == new || n == 0 { - return s // avoid allocation - } - - // Compute number of replacements. - if m := Count(s, old); m == 0 { - return s // avoid allocation - } else if n < 0 || m < n { - n = m - } - - // Apply replacements to buffer. - t := make([]byte, len(s)+n*(len(new)-len(old))) - w := 0 - start := 0 - for i := 0; i < n; i++ { - j := start - if len(old) == 0 { - if i > 0 { - _, wid := utf8.DecodeRuneInString(s[start:]) - j += wid - } - } else { - j += Index(s[start:], old) - } - w += copy(t[w:], s[start:j]) - w += copy(t[w:], new) - start = j + len(old) - } - w += copy(t[w:], s[start:]) - return string(t[0:w]) -} - -// EqualFold reports whether s and t, interpreted as UTF-8 strings, -// are equal under Unicode case-folding. -func EqualFold(s, t string) bool { - for s != "" && t != "" { - // Extract first rune from each string. - var sr, tr rune - if s[0] < utf8.RuneSelf { - sr, s = rune(s[0]), s[1:] - } else { - r, size := utf8.DecodeRuneInString(s) - sr, s = r, s[size:] - } - if t[0] < utf8.RuneSelf { - tr, t = rune(t[0]), t[1:] - } else { - r, size := utf8.DecodeRuneInString(t) - tr, t = r, t[size:] - } - - // If they match, keep going; if not, return false. - - // Easy case. - if tr == sr { - continue - } - - // Make sr < tr to simplify what follows. - if tr < sr { - tr, sr = sr, tr - } - // Fast check for ASCII. - if tr < utf8.RuneSelf && 'A' <= sr && sr <= 'Z' { - // ASCII, and sr is upper case. tr must be lower case. - if tr == sr+'a'-'A' { - continue - } - return false - } - - // General case. SimpleFold(x) returns the next equivalent rune > x - // or wraps around to smaller values. - r := unicode.SimpleFold(sr) - for r != sr && r < tr { - r = unicode.SimpleFold(r) - } - if r == tr { - continue - } - return false - } - - // One string is empty. Are both? - return s == t -} |