diff options
Diffstat (limited to 'src/pkg/syscall/exec.go')
-rw-r--r-- | src/pkg/syscall/exec.go | 305 |
1 files changed, 305 insertions, 0 deletions
diff --git a/src/pkg/syscall/exec.go b/src/pkg/syscall/exec.go new file mode 100644 index 000000000..58fb05863 --- /dev/null +++ b/src/pkg/syscall/exec.go @@ -0,0 +1,305 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Fork, exec, wait, etc. + +package syscall + +import ( + "sync"; + "syscall"; + "unsafe"; +) + +// Lock synchronizing creation of new file descriptors with fork. +// +// We want the child in a fork/exec sequence to inherit only the +// file descriptors we intend. To do that, we mark all file +// descriptors close-on-exec and then, in the child, explicitly +// unmark the ones we want the exec'ed program to keep. +// Unix doesn't make this easy: there is, in general, no way to +// allocate a new file descriptor close-on-exec. Instead you +// have to allocate the descriptor and then mark it close-on-exec. +// If a fork happens between those two events, the child's exec +// will inherit an unwanted file descriptor. +// +// This lock solves that race: the create new fd/mark close-on-exec +// operation is done holding ForkLock for reading, and the fork itself +// is done holding ForkLock for writing. At least, that's the idea. +// There are some complications. +// +// Some system calls that create new file descriptors can block +// for arbitrarily long times: open on a hung NFS server or named +// pipe, accept on a socket, and so on. We can't reasonably grab +// the lock across those operations. +// +// It is worse to inherit some file descriptors than others. +// If a non-malicious child accidentally inherits an open ordinary file, +// that's not a big deal. On the other hand, if a long-lived child +// accidentally inherits the write end of a pipe, then the reader +// of that pipe will not see EOF until that child exits, potentially +// causing the parent program to hang. This is a common problem +// in threaded C programs that use popen. +// +// Luckily, the file descriptors that are most important not to +// inherit are not the ones that can take an arbitrarily long time +// to create: pipe returns instantly, and the net package uses +// non-blocking I/O to accept on a listening socket. +// The rules for which file descriptor-creating operations use the +// ForkLock are as follows: +// +// 1) Pipe. Does not block. Use the ForkLock. +// 2) Socket. Does not block. Use the ForkLock. +// 3) Accept. If using non-blocking mode, use the ForkLock. +// Otherwise, live with the race. +// 4) Open. Can block. Use O_CLOEXEC if available (Linux). +// Otherwise, live with the race. +// 5) Dup. Does not block. Use the ForkLock. +// On Linux, could use fcntl F_DUPFD_CLOEXEC +// instead of the ForkLock, but only for dup(fd, -1). + +var ForkLock sync.RWMutex + +// Convert array of string to array +// of NUL-terminated byte pointer. +func StringArrayPtr(ss []string) []*byte { + bb := make([]*byte, len(ss)+1); + for i := 0; i < len(ss); i++ { + bb[i] = StringBytePtr(ss[i]); + } + bb[len(ss)] = nil; + return bb; +} + +func CloseOnExec(fd int) { + fcntl(fd, F_SETFD, FD_CLOEXEC); +} + +func SetNonblock(fd int, nonblocking bool) (errno int) { + flag, err := fcntl(fd, F_GETFL, 0); + if err != 0 { + return err; + } + if nonblocking { + flag |= O_NONBLOCK; + } else { + flag &= ^O_NONBLOCK; + } + flag, err = fcntl(fd, F_SETFL, flag); + return err; +} + + +// Fork, dup fd onto 0..len(fd), and exec(argv0, argvv, envv) in child. +// If a dup or exec fails, write the errno int to pipe. +// (Pipe is close-on-exec so if exec succeeds, it will be closed.) +// In the child, this function must not acquire any locks, because +// they might have been locked at the time of the fork. This means +// no rescheduling, no malloc calls, and no new stack segments. +// The calls to RawSyscall are okay because they are assembly +// functions that do not grow the stack. +func forkAndExecInChild(argv0 *byte, argv []*byte, envv []*byte, dir *byte, fd []int, pipe int) + (pid int, err int) +{ + // Declare all variables at top in case any + // declarations require heap allocation (e.g., err1). + var r1, r2, err1 uintptr; + var nextfd int; + var i int; + + darwin := OS == "darwin"; + + // About to call fork. + // No more allocation or calls of non-assembly functions. + r1, r2, err1 = RawSyscall(SYS_FORK, 0, 0, 0); + if err1 != 0 { + return 0, int(err1) + } + + // On Darwin: + // r1 = child pid in both parent and child. + // r2 = 0 in parent, 1 in child. + // Convert to normal Unix r1 = 0 in child. + if darwin && r2 == 1 { + r1 = 0; + } + + if r1 != 0 { + // parent; return PID + return int(r1), 0 + } + + // Fork succeeded, now in child. + + // Chdir + if dir != nil { + r1, r2, err1 = RawSyscall(SYS_CHDIR, uintptr(unsafe.Pointer(dir)), 0, 0); + if err1 != 0 { + goto childerror; + } + } + + // Pass 1: look for fd[i] < i and move those up above len(fd) + // so that pass 2 won't stomp on an fd it needs later. + nextfd = int(len(fd)); + if pipe < nextfd { + r1, r2, err1 = RawSyscall(SYS_DUP2, uintptr(pipe), uintptr(nextfd), 0); + if err1 != 0 { + goto childerror; + } + RawSyscall(SYS_FCNTL, uintptr(nextfd), F_SETFD, FD_CLOEXEC); + pipe = nextfd; + nextfd++; + } + for i = 0; i < len(fd); i++ { + if fd[i] >= 0 && fd[i] < int(i) { + r1, r2, err1 = RawSyscall(SYS_DUP2, uintptr(fd[i]), uintptr(nextfd), 0); + if err1 != 0 { + goto childerror; + } + RawSyscall(SYS_FCNTL, uintptr(nextfd), F_SETFD, FD_CLOEXEC); + fd[i] = nextfd; + nextfd++; + if nextfd == pipe { // don't stomp on pipe + nextfd++; + } + } + } + + // Pass 2: dup fd[i] down onto i. + for i = 0; i < len(fd); i++ { + if fd[i] == -1 { + RawSyscall(SYS_CLOSE, uintptr(i), 0, 0); + continue; + } + if fd[i] == int(i) { + // dup2(i, i) won't clear close-on-exec flag on Linux, + // probably not elsewhere either. + r1, r2, err1 = RawSyscall(SYS_FCNTL, uintptr(fd[i]), F_SETFD, 0); + if err1 != 0 { + goto childerror; + } + continue; + } + // The new fd is created NOT close-on-exec, + // which is exactly what we want. + r1, r2, err1 = RawSyscall(SYS_DUP2, uintptr(fd[i]), uintptr(i), 0); + if err1 != 0 { + goto childerror; + } + } + + // By convention, we don't close-on-exec the fds we are + // started with, so if len(fd) < 3, close 0, 1, 2 as needed. + // Programs that know they inherit fds >= 3 will need + // to set them close-on-exec. + for i = len(fd); i < 3; i++ { + RawSyscall(SYS_CLOSE, uintptr(i), 0, 0); + } + + // Time to exec. + r1, r2, err1 = RawSyscall(SYS_EXECVE, + uintptr(unsafe.Pointer(argv0)), + uintptr(unsafe.Pointer(&argv[0])), + uintptr(unsafe.Pointer(&envv[0]))); + +childerror: + // send error code on pipe + RawSyscall(SYS_WRITE, uintptr(pipe), uintptr(unsafe.Pointer(&err1)), uintptr(unsafe.Sizeof(err1))); + for { + RawSyscall(SYS_EXIT, 253, 0, 0); + } + + // Calling panic is not actually safe, + // but the for loop above won't break + // and this shuts up the compiler. + panic("unreached"); +} + +// Combination of fork and exec, careful to be thread safe. +func ForkExec(argv0 string, argv []string, envv []string, dir string, fd []int) + (pid int, err int) +{ + var p [2]int; + var r1 int; + var n int; + var err1 uintptr; + var wstatus WaitStatus; + + p[0] = -1; + p[1] = -1; + + // Convert args to C form. + argv0p := StringBytePtr(argv0); + argvp := StringArrayPtr(argv); + envvp := StringArrayPtr(envv); + var dirp *byte; + if len(dir) > 0 { + dirp = StringBytePtr(dir); + } + + // Acquire the fork lock so that no other threads + // create new fds that are not yet close-on-exec + // before we fork. + ForkLock.Lock(); + + // Allocate child status pipe close on exec. + if err = Pipe(&p); err != 0 { + goto error; + } + var val int; + if val, err = fcntl(p[0], F_SETFD, FD_CLOEXEC); err != 0 { + goto error; + } + if val, err = fcntl(p[1], F_SETFD, FD_CLOEXEC); err != 0 { + goto error; + } + + // Kick off child. + pid, err = forkAndExecInChild(argv0p, argvp, envvp, dirp, fd, p[1]); + if err != 0 { + error: + if p[0] >= 0 { + Close(p[0]); + Close(p[1]); + } + ForkLock.Unlock(); + return 0, err + } + ForkLock.Unlock(); + + // Read child error status from pipe. + Close(p[1]); + n, err = read(p[0], (*byte)(unsafe.Pointer(&err1)), unsafe.Sizeof(err1)); + Close(p[0]); + if err != 0 || n != 0 { + if n == unsafe.Sizeof(err1) { + err = int(err1); + } + if err == 0 { + err = EPIPE; + } + + // Child failed; wait for it to exit, to make sure + // the zombies don't accumulate. + pid1, err1 := Wait4(pid, &wstatus, 0, nil); + for err1 == EINTR { + pid1, err1 = Wait4(pid, &wstatus, 0, nil); + } + return 0, err + } + + // Read got EOF, so pipe closed on exec, so exec succeeded. + return pid, 0 +} + +// Ordinary exec. +func Exec(argv0 string, argv []string, envv []string) (err int) { + r1, r2, err1 := RawSyscall(SYS_EXECVE, + uintptr(unsafe.Pointer(StringBytePtr(argv0))), + uintptr(unsafe.Pointer(&StringArrayPtr(argv)[0])), + uintptr(unsafe.Pointer(&StringArrayPtr(envv)[0]))); + return int(err1); +} + |