summaryrefslogtreecommitdiff
path: root/src/pkg/syscall/exec_unix.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/syscall/exec_unix.go')
-rw-r--r--src/pkg/syscall/exec_unix.go312
1 files changed, 312 insertions, 0 deletions
diff --git a/src/pkg/syscall/exec_unix.go b/src/pkg/syscall/exec_unix.go
new file mode 100644
index 000000000..c7f7893e7
--- /dev/null
+++ b/src/pkg/syscall/exec_unix.go
@@ -0,0 +1,312 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Fork, exec, wait, etc.
+
+package syscall
+
+import (
+ "sync"
+ "unsafe"
+)
+
+// Lock synchronizing creation of new file descriptors with fork.
+//
+// We want the child in a fork/exec sequence to inherit only the
+// file descriptors we intend. To do that, we mark all file
+// descriptors close-on-exec and then, in the child, explicitly
+// unmark the ones we want the exec'ed program to keep.
+// Unix doesn't make this easy: there is, in general, no way to
+// allocate a new file descriptor close-on-exec. Instead you
+// have to allocate the descriptor and then mark it close-on-exec.
+// If a fork happens between those two events, the child's exec
+// will inherit an unwanted file descriptor.
+//
+// This lock solves that race: the create new fd/mark close-on-exec
+// operation is done holding ForkLock for reading, and the fork itself
+// is done holding ForkLock for writing. At least, that's the idea.
+// There are some complications.
+//
+// Some system calls that create new file descriptors can block
+// for arbitrarily long times: open on a hung NFS server or named
+// pipe, accept on a socket, and so on. We can't reasonably grab
+// the lock across those operations.
+//
+// It is worse to inherit some file descriptors than others.
+// If a non-malicious child accidentally inherits an open ordinary file,
+// that's not a big deal. On the other hand, if a long-lived child
+// accidentally inherits the write end of a pipe, then the reader
+// of that pipe will not see EOF until that child exits, potentially
+// causing the parent program to hang. This is a common problem
+// in threaded C programs that use popen.
+//
+// Luckily, the file descriptors that are most important not to
+// inherit are not the ones that can take an arbitrarily long time
+// to create: pipe returns instantly, and the net package uses
+// non-blocking I/O to accept on a listening socket.
+// The rules for which file descriptor-creating operations use the
+// ForkLock are as follows:
+//
+// 1) Pipe. Does not block. Use the ForkLock.
+// 2) Socket. Does not block. Use the ForkLock.
+// 3) Accept. If using non-blocking mode, use the ForkLock.
+// Otherwise, live with the race.
+// 4) Open. Can block. Use O_CLOEXEC if available (Linux).
+// Otherwise, live with the race.
+// 5) Dup. Does not block. Use the ForkLock.
+// On Linux, could use fcntl F_DUPFD_CLOEXEC
+// instead of the ForkLock, but only for dup(fd, -1).
+
+var ForkLock sync.RWMutex
+
+// Convert array of string to array
+// of NUL-terminated byte pointer.
+func StringArrayPtr(ss []string) []*byte {
+ bb := make([]*byte, len(ss)+1)
+ for i := 0; i < len(ss); i++ {
+ bb[i] = StringBytePtr(ss[i])
+ }
+ bb[len(ss)] = nil
+ return bb
+}
+
+func CloseOnExec(fd int) { fcntl(fd, F_SETFD, FD_CLOEXEC) }
+
+func SetNonblock(fd int, nonblocking bool) (errno int) {
+ flag, err := fcntl(fd, F_GETFL, 0)
+ if err != 0 {
+ return err
+ }
+ if nonblocking {
+ flag |= O_NONBLOCK
+ } else {
+ flag &= ^O_NONBLOCK
+ }
+ _, err = fcntl(fd, F_SETFL, flag)
+ return err
+}
+
+
+// Fork, dup fd onto 0..len(fd), and exec(argv0, argvv, envv) in child.
+// If a dup or exec fails, write the errno int to pipe.
+// (Pipe is close-on-exec so if exec succeeds, it will be closed.)
+// In the child, this function must not acquire any locks, because
+// they might have been locked at the time of the fork. This means
+// no rescheduling, no malloc calls, and no new stack segments.
+// The calls to RawSyscall are okay because they are assembly
+// functions that do not grow the stack.
+func forkAndExecInChild(argv0 *byte, argv []*byte, envv []*byte, traceme bool, dir *byte, fd []int, pipe int) (pid int, err int) {
+ // Declare all variables at top in case any
+ // declarations require heap allocation (e.g., err1).
+ var r1, r2, err1 uintptr
+ var nextfd int
+ var i int
+
+ darwin := OS == "darwin"
+
+ // About to call fork.
+ // No more allocation or calls of non-assembly functions.
+ r1, r2, err1 = RawSyscall(SYS_FORK, 0, 0, 0)
+ if err1 != 0 {
+ return 0, int(err1)
+ }
+
+ // On Darwin:
+ // r1 = child pid in both parent and child.
+ // r2 = 0 in parent, 1 in child.
+ // Convert to normal Unix r1 = 0 in child.
+ if darwin && r2 == 1 {
+ r1 = 0
+ }
+
+ if r1 != 0 {
+ // parent; return PID
+ return int(r1), 0
+ }
+
+ // Fork succeeded, now in child.
+
+ // Enable tracing if requested.
+ if traceme {
+ _, _, err1 = RawSyscall(SYS_PTRACE, uintptr(PTRACE_TRACEME), 0, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+
+ // Chdir
+ if dir != nil {
+ _, _, err1 = RawSyscall(SYS_CHDIR, uintptr(unsafe.Pointer(dir)), 0, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+
+ // Pass 1: look for fd[i] < i and move those up above len(fd)
+ // so that pass 2 won't stomp on an fd it needs later.
+ nextfd = int(len(fd))
+ if pipe < nextfd {
+ _, _, err1 = RawSyscall(SYS_DUP2, uintptr(pipe), uintptr(nextfd), 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ RawSyscall(SYS_FCNTL, uintptr(nextfd), F_SETFD, FD_CLOEXEC)
+ pipe = nextfd
+ nextfd++
+ }
+ for i = 0; i < len(fd); i++ {
+ if fd[i] >= 0 && fd[i] < int(i) {
+ _, _, err1 = RawSyscall(SYS_DUP2, uintptr(fd[i]), uintptr(nextfd), 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ RawSyscall(SYS_FCNTL, uintptr(nextfd), F_SETFD, FD_CLOEXEC)
+ fd[i] = nextfd
+ nextfd++
+ if nextfd == pipe { // don't stomp on pipe
+ nextfd++
+ }
+ }
+ }
+
+ // Pass 2: dup fd[i] down onto i.
+ for i = 0; i < len(fd); i++ {
+ if fd[i] == -1 {
+ RawSyscall(SYS_CLOSE, uintptr(i), 0, 0)
+ continue
+ }
+ if fd[i] == int(i) {
+ // dup2(i, i) won't clear close-on-exec flag on Linux,
+ // probably not elsewhere either.
+ _, _, err1 = RawSyscall(SYS_FCNTL, uintptr(fd[i]), F_SETFD, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ continue
+ }
+ // The new fd is created NOT close-on-exec,
+ // which is exactly what we want.
+ _, _, err1 = RawSyscall(SYS_DUP2, uintptr(fd[i]), uintptr(i), 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+
+ // By convention, we don't close-on-exec the fds we are
+ // started with, so if len(fd) < 3, close 0, 1, 2 as needed.
+ // Programs that know they inherit fds >= 3 will need
+ // to set them close-on-exec.
+ for i = len(fd); i < 3; i++ {
+ RawSyscall(SYS_CLOSE, uintptr(i), 0, 0)
+ }
+
+ // Time to exec.
+ _, _, err1 = RawSyscall(SYS_EXECVE,
+ uintptr(unsafe.Pointer(argv0)),
+ uintptr(unsafe.Pointer(&argv[0])),
+ uintptr(unsafe.Pointer(&envv[0])))
+
+childerror:
+ // send error code on pipe
+ RawSyscall(SYS_WRITE, uintptr(pipe), uintptr(unsafe.Pointer(&err1)), uintptr(unsafe.Sizeof(err1)))
+ for {
+ RawSyscall(SYS_EXIT, 253, 0, 0)
+ }
+
+ // Calling panic is not actually safe,
+ // but the for loop above won't break
+ // and this shuts up the compiler.
+ panic("unreached")
+}
+
+func forkExec(argv0 string, argv []string, envv []string, traceme bool, dir string, fd []int) (pid int, err int) {
+ var p [2]int
+ var n int
+ var err1 uintptr
+ var wstatus WaitStatus
+
+ p[0] = -1
+ p[1] = -1
+
+ // Convert args to C form.
+ argv0p := StringBytePtr(argv0)
+ argvp := StringArrayPtr(argv)
+ envvp := StringArrayPtr(envv)
+ var dirp *byte
+ if len(dir) > 0 {
+ dirp = StringBytePtr(dir)
+ }
+
+ // Acquire the fork lock so that no other threads
+ // create new fds that are not yet close-on-exec
+ // before we fork.
+ ForkLock.Lock()
+
+ // Allocate child status pipe close on exec.
+ if err = Pipe(p[0:]); err != 0 {
+ goto error
+ }
+ if _, err = fcntl(p[0], F_SETFD, FD_CLOEXEC); err != 0 {
+ goto error
+ }
+ if _, err = fcntl(p[1], F_SETFD, FD_CLOEXEC); err != 0 {
+ goto error
+ }
+
+ // Kick off child.
+ pid, err = forkAndExecInChild(argv0p, argvp, envvp, traceme, dirp, fd, p[1])
+ if err != 0 {
+ error:
+ if p[0] >= 0 {
+ Close(p[0])
+ Close(p[1])
+ }
+ ForkLock.Unlock()
+ return 0, err
+ }
+ ForkLock.Unlock()
+
+ // Read child error status from pipe.
+ Close(p[1])
+ n, err = read(p[0], (*byte)(unsafe.Pointer(&err1)), unsafe.Sizeof(err1))
+ Close(p[0])
+ if err != 0 || n != 0 {
+ if n == unsafe.Sizeof(err1) {
+ err = int(err1)
+ }
+ if err == 0 {
+ err = EPIPE
+ }
+
+ // Child failed; wait for it to exit, to make sure
+ // the zombies don't accumulate.
+ _, err1 := Wait4(pid, &wstatus, 0, nil)
+ for err1 == EINTR {
+ _, err1 = Wait4(pid, &wstatus, 0, nil)
+ }
+ return 0, err
+ }
+
+ // Read got EOF, so pipe closed on exec, so exec succeeded.
+ return pid, 0
+}
+
+// Combination of fork and exec, careful to be thread safe.
+func ForkExec(argv0 string, argv []string, envv []string, dir string, fd []int) (pid int, err int) {
+ return forkExec(argv0, argv, envv, false, dir, fd)
+}
+
+// PtraceForkExec is like ForkExec, but starts the child in a traced state.
+func PtraceForkExec(argv0 string, argv []string, envv []string, dir string, fd []int) (pid int, err int) {
+ return forkExec(argv0, argv, envv, true, dir, fd)
+}
+
+// Ordinary exec.
+func Exec(argv0 string, argv []string, envv []string) (err int) {
+ _, _, err1 := RawSyscall(SYS_EXECVE,
+ uintptr(unsafe.Pointer(StringBytePtr(argv0))),
+ uintptr(unsafe.Pointer(&StringArrayPtr(argv)[0])),
+ uintptr(unsafe.Pointer(&StringArrayPtr(envv)[0])))
+ return int(err1)
+}