diff options
Diffstat (limited to 'src/pkg/syscall/exec_unix.go')
-rw-r--r-- | src/pkg/syscall/exec_unix.go | 312 |
1 files changed, 312 insertions, 0 deletions
diff --git a/src/pkg/syscall/exec_unix.go b/src/pkg/syscall/exec_unix.go new file mode 100644 index 000000000..c7f7893e7 --- /dev/null +++ b/src/pkg/syscall/exec_unix.go @@ -0,0 +1,312 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Fork, exec, wait, etc. + +package syscall + +import ( + "sync" + "unsafe" +) + +// Lock synchronizing creation of new file descriptors with fork. +// +// We want the child in a fork/exec sequence to inherit only the +// file descriptors we intend. To do that, we mark all file +// descriptors close-on-exec and then, in the child, explicitly +// unmark the ones we want the exec'ed program to keep. +// Unix doesn't make this easy: there is, in general, no way to +// allocate a new file descriptor close-on-exec. Instead you +// have to allocate the descriptor and then mark it close-on-exec. +// If a fork happens between those two events, the child's exec +// will inherit an unwanted file descriptor. +// +// This lock solves that race: the create new fd/mark close-on-exec +// operation is done holding ForkLock for reading, and the fork itself +// is done holding ForkLock for writing. At least, that's the idea. +// There are some complications. +// +// Some system calls that create new file descriptors can block +// for arbitrarily long times: open on a hung NFS server or named +// pipe, accept on a socket, and so on. We can't reasonably grab +// the lock across those operations. +// +// It is worse to inherit some file descriptors than others. +// If a non-malicious child accidentally inherits an open ordinary file, +// that's not a big deal. On the other hand, if a long-lived child +// accidentally inherits the write end of a pipe, then the reader +// of that pipe will not see EOF until that child exits, potentially +// causing the parent program to hang. This is a common problem +// in threaded C programs that use popen. +// +// Luckily, the file descriptors that are most important not to +// inherit are not the ones that can take an arbitrarily long time +// to create: pipe returns instantly, and the net package uses +// non-blocking I/O to accept on a listening socket. +// The rules for which file descriptor-creating operations use the +// ForkLock are as follows: +// +// 1) Pipe. Does not block. Use the ForkLock. +// 2) Socket. Does not block. Use the ForkLock. +// 3) Accept. If using non-blocking mode, use the ForkLock. +// Otherwise, live with the race. +// 4) Open. Can block. Use O_CLOEXEC if available (Linux). +// Otherwise, live with the race. +// 5) Dup. Does not block. Use the ForkLock. +// On Linux, could use fcntl F_DUPFD_CLOEXEC +// instead of the ForkLock, but only for dup(fd, -1). + +var ForkLock sync.RWMutex + +// Convert array of string to array +// of NUL-terminated byte pointer. +func StringArrayPtr(ss []string) []*byte { + bb := make([]*byte, len(ss)+1) + for i := 0; i < len(ss); i++ { + bb[i] = StringBytePtr(ss[i]) + } + bb[len(ss)] = nil + return bb +} + +func CloseOnExec(fd int) { fcntl(fd, F_SETFD, FD_CLOEXEC) } + +func SetNonblock(fd int, nonblocking bool) (errno int) { + flag, err := fcntl(fd, F_GETFL, 0) + if err != 0 { + return err + } + if nonblocking { + flag |= O_NONBLOCK + } else { + flag &= ^O_NONBLOCK + } + _, err = fcntl(fd, F_SETFL, flag) + return err +} + + +// Fork, dup fd onto 0..len(fd), and exec(argv0, argvv, envv) in child. +// If a dup or exec fails, write the errno int to pipe. +// (Pipe is close-on-exec so if exec succeeds, it will be closed.) +// In the child, this function must not acquire any locks, because +// they might have been locked at the time of the fork. This means +// no rescheduling, no malloc calls, and no new stack segments. +// The calls to RawSyscall are okay because they are assembly +// functions that do not grow the stack. +func forkAndExecInChild(argv0 *byte, argv []*byte, envv []*byte, traceme bool, dir *byte, fd []int, pipe int) (pid int, err int) { + // Declare all variables at top in case any + // declarations require heap allocation (e.g., err1). + var r1, r2, err1 uintptr + var nextfd int + var i int + + darwin := OS == "darwin" + + // About to call fork. + // No more allocation or calls of non-assembly functions. + r1, r2, err1 = RawSyscall(SYS_FORK, 0, 0, 0) + if err1 != 0 { + return 0, int(err1) + } + + // On Darwin: + // r1 = child pid in both parent and child. + // r2 = 0 in parent, 1 in child. + // Convert to normal Unix r1 = 0 in child. + if darwin && r2 == 1 { + r1 = 0 + } + + if r1 != 0 { + // parent; return PID + return int(r1), 0 + } + + // Fork succeeded, now in child. + + // Enable tracing if requested. + if traceme { + _, _, err1 = RawSyscall(SYS_PTRACE, uintptr(PTRACE_TRACEME), 0, 0) + if err1 != 0 { + goto childerror + } + } + + // Chdir + if dir != nil { + _, _, err1 = RawSyscall(SYS_CHDIR, uintptr(unsafe.Pointer(dir)), 0, 0) + if err1 != 0 { + goto childerror + } + } + + // Pass 1: look for fd[i] < i and move those up above len(fd) + // so that pass 2 won't stomp on an fd it needs later. + nextfd = int(len(fd)) + if pipe < nextfd { + _, _, err1 = RawSyscall(SYS_DUP2, uintptr(pipe), uintptr(nextfd), 0) + if err1 != 0 { + goto childerror + } + RawSyscall(SYS_FCNTL, uintptr(nextfd), F_SETFD, FD_CLOEXEC) + pipe = nextfd + nextfd++ + } + for i = 0; i < len(fd); i++ { + if fd[i] >= 0 && fd[i] < int(i) { + _, _, err1 = RawSyscall(SYS_DUP2, uintptr(fd[i]), uintptr(nextfd), 0) + if err1 != 0 { + goto childerror + } + RawSyscall(SYS_FCNTL, uintptr(nextfd), F_SETFD, FD_CLOEXEC) + fd[i] = nextfd + nextfd++ + if nextfd == pipe { // don't stomp on pipe + nextfd++ + } + } + } + + // Pass 2: dup fd[i] down onto i. + for i = 0; i < len(fd); i++ { + if fd[i] == -1 { + RawSyscall(SYS_CLOSE, uintptr(i), 0, 0) + continue + } + if fd[i] == int(i) { + // dup2(i, i) won't clear close-on-exec flag on Linux, + // probably not elsewhere either. + _, _, err1 = RawSyscall(SYS_FCNTL, uintptr(fd[i]), F_SETFD, 0) + if err1 != 0 { + goto childerror + } + continue + } + // The new fd is created NOT close-on-exec, + // which is exactly what we want. + _, _, err1 = RawSyscall(SYS_DUP2, uintptr(fd[i]), uintptr(i), 0) + if err1 != 0 { + goto childerror + } + } + + // By convention, we don't close-on-exec the fds we are + // started with, so if len(fd) < 3, close 0, 1, 2 as needed. + // Programs that know they inherit fds >= 3 will need + // to set them close-on-exec. + for i = len(fd); i < 3; i++ { + RawSyscall(SYS_CLOSE, uintptr(i), 0, 0) + } + + // Time to exec. + _, _, err1 = RawSyscall(SYS_EXECVE, + uintptr(unsafe.Pointer(argv0)), + uintptr(unsafe.Pointer(&argv[0])), + uintptr(unsafe.Pointer(&envv[0]))) + +childerror: + // send error code on pipe + RawSyscall(SYS_WRITE, uintptr(pipe), uintptr(unsafe.Pointer(&err1)), uintptr(unsafe.Sizeof(err1))) + for { + RawSyscall(SYS_EXIT, 253, 0, 0) + } + + // Calling panic is not actually safe, + // but the for loop above won't break + // and this shuts up the compiler. + panic("unreached") +} + +func forkExec(argv0 string, argv []string, envv []string, traceme bool, dir string, fd []int) (pid int, err int) { + var p [2]int + var n int + var err1 uintptr + var wstatus WaitStatus + + p[0] = -1 + p[1] = -1 + + // Convert args to C form. + argv0p := StringBytePtr(argv0) + argvp := StringArrayPtr(argv) + envvp := StringArrayPtr(envv) + var dirp *byte + if len(dir) > 0 { + dirp = StringBytePtr(dir) + } + + // Acquire the fork lock so that no other threads + // create new fds that are not yet close-on-exec + // before we fork. + ForkLock.Lock() + + // Allocate child status pipe close on exec. + if err = Pipe(p[0:]); err != 0 { + goto error + } + if _, err = fcntl(p[0], F_SETFD, FD_CLOEXEC); err != 0 { + goto error + } + if _, err = fcntl(p[1], F_SETFD, FD_CLOEXEC); err != 0 { + goto error + } + + // Kick off child. + pid, err = forkAndExecInChild(argv0p, argvp, envvp, traceme, dirp, fd, p[1]) + if err != 0 { + error: + if p[0] >= 0 { + Close(p[0]) + Close(p[1]) + } + ForkLock.Unlock() + return 0, err + } + ForkLock.Unlock() + + // Read child error status from pipe. + Close(p[1]) + n, err = read(p[0], (*byte)(unsafe.Pointer(&err1)), unsafe.Sizeof(err1)) + Close(p[0]) + if err != 0 || n != 0 { + if n == unsafe.Sizeof(err1) { + err = int(err1) + } + if err == 0 { + err = EPIPE + } + + // Child failed; wait for it to exit, to make sure + // the zombies don't accumulate. + _, err1 := Wait4(pid, &wstatus, 0, nil) + for err1 == EINTR { + _, err1 = Wait4(pid, &wstatus, 0, nil) + } + return 0, err + } + + // Read got EOF, so pipe closed on exec, so exec succeeded. + return pid, 0 +} + +// Combination of fork and exec, careful to be thread safe. +func ForkExec(argv0 string, argv []string, envv []string, dir string, fd []int) (pid int, err int) { + return forkExec(argv0, argv, envv, false, dir, fd) +} + +// PtraceForkExec is like ForkExec, but starts the child in a traced state. +func PtraceForkExec(argv0 string, argv []string, envv []string, dir string, fd []int) (pid int, err int) { + return forkExec(argv0, argv, envv, true, dir, fd) +} + +// Ordinary exec. +func Exec(argv0 string, argv []string, envv []string) (err int) { + _, _, err1 := RawSyscall(SYS_EXECVE, + uintptr(unsafe.Pointer(StringBytePtr(argv0))), + uintptr(unsafe.Pointer(&StringArrayPtr(argv)[0])), + uintptr(unsafe.Pointer(&StringArrayPtr(envv)[0]))) + return int(err1) +} |