summaryrefslogtreecommitdiff
path: root/src/pkg/time/time.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/time/time.go')
-rw-r--r--src/pkg/time/time.go173
1 files changed, 166 insertions, 7 deletions
diff --git a/src/pkg/time/time.go b/src/pkg/time/time.go
index 2461dac06..d291672af 100644
--- a/src/pkg/time/time.go
+++ b/src/pkg/time/time.go
@@ -241,10 +241,10 @@ func (t Time) IsZero() bool {
// It is called when computing a presentation property like Month or Hour.
func (t Time) abs() uint64 {
l := t.loc
- if l == nil {
- l = &utcLoc
+ // Avoid function calls when possible.
+ if l == nil || l == &localLoc {
+ l = l.get()
}
- // Avoid function call if we hit the local time cache.
sec := t.sec + internalToUnix
if l != &utcLoc {
if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
@@ -257,6 +257,30 @@ func (t Time) abs() uint64 {
return uint64(sec + (unixToInternal + internalToAbsolute))
}
+// locabs is a combination of the Zone and abs methods,
+// extracting both return values from a single zone lookup.
+func (t Time) locabs() (name string, offset int, abs uint64) {
+ l := t.loc
+ if l == nil || l == &localLoc {
+ l = l.get()
+ }
+ // Avoid function call if we hit the local time cache.
+ sec := t.sec + internalToUnix
+ if l != &utcLoc {
+ if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
+ name = l.cacheZone.name
+ offset = l.cacheZone.offset
+ } else {
+ name, offset, _, _, _ = l.lookup(sec)
+ }
+ sec += int64(offset)
+ } else {
+ name = "UTC"
+ }
+ abs = uint64(sec + (unixToInternal + internalToAbsolute))
+ return
+}
+
// Date returns the year, month, and day in which t occurs.
func (t Time) Date() (year int, month Month, day int) {
year, month, day, _ = t.date(true)
@@ -283,8 +307,13 @@ func (t Time) Day() int {
// Weekday returns the day of the week specified by t.
func (t Time) Weekday() Weekday {
+ return absWeekday(t.abs())
+}
+
+// absWeekday is like Weekday but operates on an absolute time.
+func absWeekday(abs uint64) Weekday {
// January 1 of the absolute year, like January 1 of 2001, was a Monday.
- sec := (t.abs() + uint64(Monday)*secondsPerDay) % secondsPerWeek
+ sec := (abs + uint64(Monday)*secondsPerDay) % secondsPerWeek
return Weekday(int(sec) / secondsPerDay)
}
@@ -349,7 +378,12 @@ func (t Time) ISOWeek() (year, week int) {
// Clock returns the hour, minute, and second within the day specified by t.
func (t Time) Clock() (hour, min, sec int) {
- sec = int(t.abs() % secondsPerDay)
+ return absClock(t.abs())
+}
+
+// absClock is like clock but operates on an absolute time.
+func absClock(abs uint64) (hour, min, sec int) {
+ sec = int(abs % secondsPerDay)
hour = sec / secondsPerHour
sec -= hour * secondsPerHour
min = sec / secondsPerMinute
@@ -378,6 +412,13 @@ func (t Time) Nanosecond() int {
return int(t.nsec)
}
+// YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years,
+// and [1,366] in leap years.
+func (t Time) YearDay() int {
+ _, _, _, yday := t.date(false)
+ return yday + 1
+}
+
// A Duration represents the elapsed time between two instants
// as an int64 nanosecond count. The representation limits the
// largest representable duration to approximately 290 years.
@@ -607,11 +648,16 @@ const (
days1970To2001 = 31*365 + 8
)
-// date computes the year and, only when full=true,
+// date computes the year, day of year, and when full=true,
// the month and day in which t occurs.
func (t Time) date(full bool) (year int, month Month, day int, yday int) {
+ return absDate(t.abs(), full)
+}
+
+// absDate is like date but operates on an absolute time.
+func absDate(abs uint64, full bool) (year int, month Month, day int, yday int) {
// Split into time and day.
- d := t.abs() / secondsPerDay
+ d := abs / secondsPerDay
// Account for 400 year cycles.
n := d / daysPer400Years
@@ -987,3 +1033,116 @@ func Date(year int, month Month, day, hour, min, sec, nsec int, loc *Location) T
return Time{unix + unixToInternal, int32(nsec), loc}
}
+
+// Truncate returns the result of rounding t down to a multiple of d (since the zero time).
+// If d <= 0, Truncate returns t unchanged.
+func (t Time) Truncate(d Duration) Time {
+ if d <= 0 {
+ return t
+ }
+ _, r := div(t, d)
+ return t.Add(-r)
+}
+
+// Round returns the result of rounding t to the nearest multiple of d (since the zero time).
+// The rounding behavior for halfway values is to round up.
+// If d <= 0, Round returns t unchanged.
+func (t Time) Round(d Duration) Time {
+ if d <= 0 {
+ return t
+ }
+ _, r := div(t, d)
+ if r+r < d {
+ return t.Add(-r)
+ }
+ return t.Add(d - r)
+}
+
+// div divides t by d and returns the quotient parity and remainder.
+// We don't use the quotient parity anymore (round half up instead of round to even)
+// but it's still here in case we change our minds.
+func div(t Time, d Duration) (qmod2 int, r Duration) {
+ neg := false
+ if t.sec < 0 {
+ // Operate on absolute value.
+ neg = true
+ t.sec = -t.sec
+ t.nsec = -t.nsec
+ if t.nsec < 0 {
+ t.nsec += 1e9
+ t.sec-- // t.sec >= 1 before the -- so safe
+ }
+ }
+
+ switch {
+ // Special case: 2d divides 1 second.
+ case d < Second && Second%(d+d) == 0:
+ qmod2 = int(t.nsec/int32(d)) & 1
+ r = Duration(t.nsec % int32(d))
+
+ // Special case: d is a multiple of 1 second.
+ case d%Second == 0:
+ d1 := int64(d / Second)
+ qmod2 = int(t.sec/d1) & 1
+ r = Duration(t.sec%d1)*Second + Duration(t.nsec)
+
+ // General case.
+ // This could be faster if more cleverness were applied,
+ // but it's really only here to avoid special case restrictions in the API.
+ // No one will care about these cases.
+ default:
+ // Compute nanoseconds as 128-bit number.
+ sec := uint64(t.sec)
+ tmp := (sec >> 32) * 1e9
+ u1 := tmp >> 32
+ u0 := tmp << 32
+ tmp = uint64(sec&0xFFFFFFFF) * 1e9
+ u0x, u0 := u0, u0+tmp
+ if u0 < u0x {
+ u1++
+ }
+ u0x, u0 = u0, u0+uint64(t.nsec)
+ if u0 < u0x {
+ u1++
+ }
+
+ // Compute remainder by subtracting r<<k for decreasing k.
+ // Quotient parity is whether we subtract on last round.
+ d1 := uint64(d)
+ for d1>>63 != 1 {
+ d1 <<= 1
+ }
+ d0 := uint64(0)
+ for {
+ qmod2 = 0
+ if u1 > d1 || u1 == d1 && u0 >= d0 {
+ // subtract
+ qmod2 = 1
+ u0x, u0 = u0, u0-d0
+ if u0 > u0x {
+ u1--
+ }
+ u1 -= d1
+ }
+ if d1 == 0 && d0 == uint64(d) {
+ break
+ }
+ d0 >>= 1
+ d0 |= (d1 & 1) << 63
+ d1 >>= 1
+ }
+ r = Duration(u0)
+ }
+
+ if neg && r != 0 {
+ // If input was negative and not an exact multiple of d, we computed q, r such that
+ // q*d + r = -t
+ // But the right answers are given by -(q-1), d-r:
+ // q*d + r = -t
+ // -q*d - r = t
+ // -(q-1)*d + (d - r) = t
+ qmod2 ^= 1
+ r = d - r
+ }
+ return
+}