summaryrefslogtreecommitdiff
path: root/src/runtime/vlop_arm.s
diff options
context:
space:
mode:
Diffstat (limited to 'src/runtime/vlop_arm.s')
-rw-r--r--src/runtime/vlop_arm.s317
1 files changed, 317 insertions, 0 deletions
diff --git a/src/runtime/vlop_arm.s b/src/runtime/vlop_arm.s
new file mode 100644
index 000000000..b4b905bb7
--- /dev/null
+++ b/src/runtime/vlop_arm.s
@@ -0,0 +1,317 @@
+// Inferno's libkern/vlop-arm.s
+// http://code.google.com/p/inferno-os/source/browse/libkern/vlop-arm.s
+//
+// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
+// Revisions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com). All rights reserved.
+// Portions Copyright 2009 The Go Authors. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+#include "zasm_GOOS_GOARCH.h"
+#include "textflag.h"
+
+arg=0
+
+/* replaced use of R10 by R11 because the former can be the data segment base register */
+
+TEXT _mulv(SB), NOSPLIT, $0
+ MOVW l0+0(FP), R2 /* l0 */
+ MOVW h0+4(FP), R11 /* h0 */
+ MOVW l1+8(FP), R4 /* l1 */
+ MOVW h1+12(FP), R5 /* h1 */
+ MULLU R4, R2, (R7,R6)
+ MUL R11, R4, R8
+ ADD R8, R7
+ MUL R2, R5, R8
+ ADD R8, R7
+ MOVW R6, ret_lo+16(FP)
+ MOVW R7, ret_hi+20(FP)
+ RET
+
+// trampoline for _sfloat2. passes LR as arg0 and
+// saves registers R0-R13 and CPSR on the stack. R0-R12 and CPSR flags can
+// be changed by _sfloat2.
+TEXT _sfloat(SB), NOSPLIT, $68-0 // 4 arg + 14*4 saved regs + cpsr + return value
+ MOVW R14, 4(R13)
+ MOVW R0, 8(R13)
+ MOVW $12(R13), R0
+ MOVM.IA.W [R1-R12], (R0)
+ MOVW $72(R13), R1 // correct for frame size
+ MOVW R1, 60(R13)
+ WORD $0xe10f1000 // mrs r1, cpsr
+ MOVW R1, 64(R13)
+ // Disable preemption of this goroutine during _sfloat2 by
+ // m->locks++ and m->locks-- around the call.
+ // Rescheduling this goroutine may cause the loss of the
+ // contents of the software floating point registers in
+ // m->freghi, m->freglo, m->fflag, if the goroutine is moved
+ // to a different m or another goroutine runs on this m.
+ // Rescheduling at ordinary function calls is okay because
+ // all registers are caller save, but _sfloat2 and the things
+ // that it runs are simulating the execution of individual
+ // program instructions, and those instructions do not expect
+ // the floating point registers to be lost.
+ // An alternative would be to move the software floating point
+ // registers into G, but they do not need to be kept at the
+ // usual places a goroutine reschedules (at function calls),
+ // so it would be a waste of 132 bytes per G.
+ MOVW g_m(g), R8
+ MOVW m_locks(R8), R1
+ ADD $1, R1
+ MOVW R1, m_locks(R8)
+ MOVW $1, R1
+ MOVW R1, m_softfloat(R8)
+ BL runtime·_sfloat2(SB)
+ MOVW 68(R13), R0
+ MOVW g_m(g), R8
+ MOVW m_locks(R8), R1
+ SUB $1, R1
+ MOVW R1, m_locks(R8)
+ MOVW $0, R1
+ MOVW R1, m_softfloat(R8)
+ MOVW R0, 0(R13)
+ MOVW 64(R13), R1
+ WORD $0xe128f001 // msr cpsr_f, r1
+ MOVW $12(R13), R0
+ // Restore R1-R12, R0.
+ MOVM.IA.W (R0), [R1-R12]
+ MOVW 8(R13), R0
+ RET
+
+// trampoline for _sfloat2 panic.
+// _sfloat2 instructs _sfloat to return here.
+// We need to push a fake saved LR onto the stack,
+// load the signal fault address into LR, and jump
+// to the real sigpanic.
+// This simulates what sighandler does for a memory fault.
+TEXT _sfloatpanic(SB),NOSPLIT,$-4
+ MOVW $0, R0
+ MOVW.W R0, -4(R13)
+ MOVW g_sigpc(g), LR
+ B runtime·sigpanic(SB)
+
+// func udiv(n, d uint32) (q, r uint32)
+// Reference:
+// Sloss, Andrew et. al; ARM System Developer's Guide: Designing and Optimizing System Software
+// Morgan Kaufmann; 1 edition (April 8, 2004), ISBN 978-1558608740
+q = 0 // input d, output q
+r = 1 // input n, output r
+s = 2 // three temporary variables
+M = 3
+a = 11
+// Be careful: R(a) == R11 will be used by the linker for synthesized instructions.
+TEXT udiv<>(SB),NOSPLIT,$-4
+ CLZ R(q), R(s) // find normalizing shift
+ MOVW.S R(q)<<R(s), R(a)
+ MOVW $fast_udiv_tab<>-64(SB), R(M)
+ ADD.NE R(a)>>25, R(M), R(a) // index by most significant 7 bits of divisor
+ MOVBU.NE (R(a)), R(a)
+
+ SUB.S $7, R(s)
+ RSB $0, R(q), R(M) // M = -q
+ MOVW.PL R(a)<<R(s), R(q)
+
+ // 1st Newton iteration
+ MUL.PL R(M), R(q), R(a) // a = -q*d
+ BMI udiv_by_large_d
+ MULAWT R(a), R(q), R(q), R(q) // q approx q-(q*q*d>>32)
+ TEQ R(M)->1, R(M) // check for d=0 or d=1
+
+ // 2nd Newton iteration
+ MUL.NE R(M), R(q), R(a)
+ MOVW.NE $0, R(s)
+ MULAL.NE R(q), R(a), (R(q),R(s))
+ BEQ udiv_by_0_or_1
+
+ // q now accurate enough for a remainder r, 0<=r<3*d
+ MULLU R(q), R(r), (R(q),R(s)) // q = (r * q) >> 32
+ ADD R(M), R(r), R(r) // r = n - d
+ MULA R(M), R(q), R(r), R(r) // r = n - (q+1)*d
+
+ // since 0 <= n-q*d < 3*d; thus -d <= r < 2*d
+ CMN R(M), R(r) // t = r-d
+ SUB.CS R(M), R(r), R(r) // if (t<-d || t>=0) r=r+d
+ ADD.CC $1, R(q)
+ ADD.PL R(M)<<1, R(r)
+ ADD.PL $2, R(q)
+ RET
+
+udiv_by_large_d:
+ // at this point we know d>=2^(31-6)=2^25
+ SUB $4, R(a), R(a)
+ RSB $0, R(s), R(s)
+ MOVW R(a)>>R(s), R(q)
+ MULLU R(q), R(r), (R(q),R(s))
+ MULA R(M), R(q), R(r), R(r)
+
+ // q now accurate enough for a remainder r, 0<=r<4*d
+ CMN R(r)>>1, R(M) // if(r/2 >= d)
+ ADD.CS R(M)<<1, R(r)
+ ADD.CS $2, R(q)
+ CMN R(r), R(M)
+ ADD.CS R(M), R(r)
+ ADD.CS $1, R(q)
+ RET
+
+udiv_by_0_or_1:
+ // carry set if d==1, carry clear if d==0
+ BCC udiv_by_0
+ MOVW R(r), R(q)
+ MOVW $0, R(r)
+ RET
+
+udiv_by_0:
+ // The ARM toolchain expects it can emit references to DIV and MOD
+ // instructions. The linker rewrites each pseudo-instruction into
+ // a sequence that pushes two values onto the stack and then calls
+ // _divu, _modu, _div, or _mod (below), all of which have a 16-byte
+ // frame plus the saved LR. The traceback routine knows the expanded
+ // stack frame size at the pseudo-instruction call site, but it
+ // doesn't know that the frame has a non-standard layout. In particular,
+ // it expects to find a saved LR in the bottom word of the frame.
+ // Unwind the stack back to the pseudo-instruction call site, copy the
+ // saved LR where the traceback routine will look for it, and make it
+ // appear that panicdivide was called from that PC.
+ MOVW 0(R13), LR
+ ADD $20, R13
+ MOVW 8(R13), R1 // actual saved LR
+ MOVW R1, 0(R13) // expected here for traceback
+ B runtime·panicdivide(SB)
+
+// var tab [64]byte
+// tab[0] = 255; for i := 1; i <= 63; i++ { tab[i] = (1<<14)/(64+i) }
+// laid out here as little-endian uint32s
+DATA fast_udiv_tab<>+0x00(SB)/4, $0xf4f8fcff
+DATA fast_udiv_tab<>+0x04(SB)/4, $0xe6eaedf0
+DATA fast_udiv_tab<>+0x08(SB)/4, $0xdadde0e3
+DATA fast_udiv_tab<>+0x0c(SB)/4, $0xcfd2d4d7
+DATA fast_udiv_tab<>+0x10(SB)/4, $0xc5c7cacc
+DATA fast_udiv_tab<>+0x14(SB)/4, $0xbcbec0c3
+DATA fast_udiv_tab<>+0x18(SB)/4, $0xb4b6b8ba
+DATA fast_udiv_tab<>+0x1c(SB)/4, $0xacaeb0b2
+DATA fast_udiv_tab<>+0x20(SB)/4, $0xa5a7a8aa
+DATA fast_udiv_tab<>+0x24(SB)/4, $0x9fa0a2a3
+DATA fast_udiv_tab<>+0x28(SB)/4, $0x999a9c9d
+DATA fast_udiv_tab<>+0x2c(SB)/4, $0x93949697
+DATA fast_udiv_tab<>+0x30(SB)/4, $0x8e8f9092
+DATA fast_udiv_tab<>+0x34(SB)/4, $0x898a8c8d
+DATA fast_udiv_tab<>+0x38(SB)/4, $0x85868788
+DATA fast_udiv_tab<>+0x3c(SB)/4, $0x81828384
+GLOBL fast_udiv_tab<>(SB), RODATA, $64
+
+// The linker will pass numerator in R(TMP), and it also
+// expects the result in R(TMP)
+TMP = 11
+
+TEXT _divu(SB), NOSPLIT, $16
+ MOVW R(q), 4(R13)
+ MOVW R(r), 8(R13)
+ MOVW R(s), 12(R13)
+ MOVW R(M), 16(R13)
+
+ MOVW R(TMP), R(r) /* numerator */
+ MOVW 0(FP), R(q) /* denominator */
+ BL udiv<>(SB)
+ MOVW R(q), R(TMP)
+ MOVW 4(R13), R(q)
+ MOVW 8(R13), R(r)
+ MOVW 12(R13), R(s)
+ MOVW 16(R13), R(M)
+ RET
+
+TEXT _modu(SB), NOSPLIT, $16
+ MOVW R(q), 4(R13)
+ MOVW R(r), 8(R13)
+ MOVW R(s), 12(R13)
+ MOVW R(M), 16(R13)
+
+ MOVW R(TMP), R(r) /* numerator */
+ MOVW 0(FP), R(q) /* denominator */
+ BL udiv<>(SB)
+ MOVW R(r), R(TMP)
+ MOVW 4(R13), R(q)
+ MOVW 8(R13), R(r)
+ MOVW 12(R13), R(s)
+ MOVW 16(R13), R(M)
+ RET
+
+TEXT _div(SB),NOSPLIT,$16
+ MOVW R(q), 4(R13)
+ MOVW R(r), 8(R13)
+ MOVW R(s), 12(R13)
+ MOVW R(M), 16(R13)
+ MOVW R(TMP), R(r) /* numerator */
+ MOVW 0(FP), R(q) /* denominator */
+ CMP $0, R(r)
+ BGE d1
+ RSB $0, R(r), R(r)
+ CMP $0, R(q)
+ BGE d2
+ RSB $0, R(q), R(q)
+d0:
+ BL udiv<>(SB) /* none/both neg */
+ MOVW R(q), R(TMP)
+ B out1
+d1:
+ CMP $0, R(q)
+ BGE d0
+ RSB $0, R(q), R(q)
+d2:
+ BL udiv<>(SB) /* one neg */
+ RSB $0, R(q), R(TMP)
+out1:
+ MOVW 4(R13), R(q)
+ MOVW 8(R13), R(r)
+ MOVW 12(R13), R(s)
+ MOVW 16(R13), R(M)
+ RET
+
+TEXT _mod(SB),NOSPLIT,$16
+ MOVW R(q), 4(R13)
+ MOVW R(r), 8(R13)
+ MOVW R(s), 12(R13)
+ MOVW R(M), 16(R13)
+ MOVW R(TMP), R(r) /* numerator */
+ MOVW 0(FP), R(q) /* denominator */
+ CMP $0, R(q)
+ RSB.LT $0, R(q), R(q)
+ CMP $0, R(r)
+ BGE m1
+ RSB $0, R(r), R(r)
+ BL udiv<>(SB) /* neg numerator */
+ RSB $0, R(r), R(TMP)
+ B out
+m1:
+ BL udiv<>(SB) /* pos numerator */
+ MOVW R(r), R(TMP)
+out:
+ MOVW 4(R13), R(q)
+ MOVW 8(R13), R(r)
+ MOVW 12(R13), R(s)
+ MOVW 16(R13), R(M)
+ RET
+
+// _mul64by32 and _div64by32 not implemented on arm
+TEXT runtime·_mul64by32(SB), NOSPLIT, $0
+ MOVW $0, R0
+ MOVW (R0), R1 // crash
+
+TEXT runtime·_div64by32(SB), NOSPLIT, $0
+ MOVW $0, R0
+ MOVW (R0), R1 // crash