From 28592ee1ea1f5cdffcf85472f9de0285d928cf12 Mon Sep 17 00:00:00 2001 From: Ondřej Surý Date: Wed, 3 Aug 2011 16:54:30 +0200 Subject: Imported Upstream version 59 --- doc/go_tutorial.html | 1049 +++++++++++++++++++++++++------------------------- 1 file changed, 525 insertions(+), 524 deletions(-) (limited to 'doc/go_tutorial.html') diff --git a/doc/go_tutorial.html b/doc/go_tutorial.html index aa85134b3..822f9626e 100644 --- a/doc/go_tutorial.html +++ b/doc/go_tutorial.html @@ -26,14 +26,14 @@ cleanliness, blank lines remain blank.

Let's start in the usual way:

-

 
-05    package main
+
package main
 
-07    import fmt "fmt"  // Package implementing formatted I/O.
+import fmt "fmt"  // Package implementing formatted I/O.
 
-09    func main() {
-10        fmt.Printf("Hello, world; or Καλημέρα κόσμε; or こんにちは 世界\n")
-11    }
+func main() {
+    fmt.Printf("Hello, world; or Καλημέρα κόσμε; or こんにちは 世界\n")
+}
 

Every Go source file declares, using a package statement, which package it's part of. @@ -51,8 +51,8 @@ String constants can contain Unicode characters, encoded in UTF-8. The comment convention is the same as in C++:

-    /* ... */
-    // ...
+/* ... */
+// ...
 

Later we'll have much more to say about printing. @@ -96,67 +96,67 @@ a more robust run-time system although gccgo is catching up. Here's how to compile and run our program. With 6g, say,

-    $ 6g helloworld.go  # compile; object goes into helloworld.6
-    $ 6l helloworld.6   # link; output goes into 6.out
-    $ 6.out
-    Hello, world; or Καλημέρα κόσμε; or こんにちは 世界
-    $
+$ 6g helloworld.go  # compile; object goes into helloworld.6
+$ 6l helloworld.6   # link; output goes into 6.out
+$ 6.out
+Hello, world; or Καλημέρα κόσμε; or こんにちは 世界
+$
 

With gccgo it looks a little more traditional.

-    $ gccgo helloworld.go
-    $ a.out
-    Hello, world; or Καλημέρα κόσμε; or こんにちは 世界
-    $
+$ gccgo helloworld.go
+$ a.out
+Hello, world; or Καλημέρα κόσμε; or こんにちは 世界
+$
 

Echo

Next up, here's a version of the Unix utility echo(1):

-

 
-05    package main
+
package main
 
-07    import (
-08        "os"
-09        "flag"  // command line option parser
-10    )
+import (
+    "os"
+    "flag"  // command line option parser
+)
 
-12    var omitNewline = flag.Bool("n", false, "don't print final newline")
+var omitNewline = flag.Bool("n", false, "don't print final newline")
 
-14    const (
-15        Space = " "
-16        Newline = "\n"
-17    )
+const (
+    Space = " "
+    Newline = "\n"
+)
 
-19    func main() {
-20        flag.Parse()   // Scans the arg list and sets up flags
-21        var s string = ""
-22        for i := 0; i < flag.NArg(); i++ {
-23            if i > 0 {
-24                s += Space
-25            }
-26            s += flag.Arg(i)
-27        }
-28        if !*omitNewline {
-29            s += Newline
-30        }
-31        os.Stdout.WriteString(s)
-32    }
+func main() {
+    flag.Parse()   // Scans the arg list and sets up flags
+    var s string = ""
+    for i := 0; i < flag.NArg(); i++ {
+        if i > 0 {
+            s += Space
+        }
+        s += flag.Arg(i)
+    }
+    if !*omitNewline {
+        s += Newline
+    }
+    os.Stdout.WriteString(s)
+}
 

This program is small but it's doing a number of new things. In the last example, we saw func introduce a function. The keywords var, const, and type (not used yet) also introduce declarations, as does import. Notice that we can group declarations of the same sort into -parenthesized lists, one item per line, as on lines 7-10 and 14-17. +parenthesized lists, one item per line, as in the import and const clauses here. But it's not necessary to do so; we could have said

-    const Space = " "
-    const Newline = "\n"
+const Space = " "
+const Newline = "\n"
 

This program imports the "os" package to access its Stdout variable, of type @@ -186,7 +186,7 @@ string variable we will use to build the output. The declaration statement has the form

-    var s string = ""
+var s string = ""
 

This is the var keyword, followed by the name of the variable, followed by @@ -197,20 +197,20 @@ string constant is of type string, we don't have to tell the compiler that. We could write

-    var s = ""
+var s = ""
 

or we could go even shorter and write the idiom

-    s := ""
+s := ""
 

The := operator is used a lot in Go to represent an initializing declaration. There's one in the for clause on the next line:

-

 
-22        for i := 0; i < flag.NArg(); i++ {
+
    for i := 0; i < flag.NArg(); i++ {
 

The flag package has parsed the arguments and left the non-flag arguments @@ -231,7 +231,7 @@ It's defined that way. Falling off the end of main.main means ''success''; if you want to signal an erroneous return, call

-    os.Exit(1)
+os.Exit(1)
 

The os package contains other essentials for getting @@ -259,20 +259,20 @@ Once you've built a string value, you can't change it, although of course you can change a string variable simply by reassigning it. This snippet from strings.go is legal code:

-

 
-10        s := "hello"
-11        if s[1] != 'e' { os.Exit(1) }
-12        s = "good bye"
-13        var p *string = &s
-14        *p = "ciao"
+
    s := "hello"
+    if s[1] != 'e' { os.Exit(1) }
+    s = "good bye"
+    var p *string = &s
+    *p = "ciao"
 

However the following statements are illegal because they would modify a string value:

-    s[0] = 'x'
-    (*p)[1] = 'y'
+s[0] = 'x'
+(*p)[1] = 'y'
 

In C++ terms, Go strings are a bit like const strings, while pointers @@ -284,7 +284,7 @@ read on. Arrays are declared like this:

-    var arrayOfInt [10]int
+var arrayOfInt [10]int
 

Arrays, like strings, are values, but they are mutable. This differs @@ -315,7 +315,7 @@ expression formed from a type followed by a brace-bounded expression like this:

-    [3]int{1,2,3}
+[3]int{1,2,3}
 

In this case the constructor builds an array of 3 ints. @@ -330,14 +330,14 @@ will slice the whole array.

Using slices one can write this function (from sum.go):

-

 
-09    func sum(a []int) int { // returns an int
-10        s := 0
-11        for i := 0; i < len(a); i++ {
-12            s += a[i]
-13        }
-14        return s
-15    }
+
func sum(a []int) int { // returns an int
+    s := 0
+    for i := 0; i < len(a); i++ {
+        s += a[i]
+    }
+    return s
+}
 

Note how the return type (int) is defined for sum by stating it @@ -348,14 +348,14 @@ a simpler way in a moment) constructs an array and slices it:

-    s := sum([3]int{1,2,3}[:])
+s := sum([3]int{1,2,3}[:])
 

If you are creating a regular array but want the compiler to count the elements for you, use ... as the array size:

-    s := sum([...]int{1,2,3}[:])
+s := sum([...]int{1,2,3}[:])
 

That's fussier than necessary, though. @@ -363,13 +363,13 @@ In practice, unless you're meticulous about storage layout within a data structure, a slice itself—using empty brackets with no size—is all you need:

-    s := sum([]int{1,2,3})
+s := sum([]int{1,2,3})
 

There are also maps, which you can initialize like this:

-    m := map[string]int{"one":1 , "two":2}
+m := map[string]int{"one":1 , "two":2}
 

The built-in function len, which returns number of elements, @@ -380,13 +380,13 @@ By the way, another thing that works on strings, arrays, slices, maps and channels is the range clause on for loops. Instead of writing

-    for i := 0; i < len(a); i++ { ... }
+for i := 0; i < len(a); i++ { ... }
 

to loop over the elements of a slice (or map or ...) , we could write

-    for i, v := range a { ... }
+for i, v := range a { ... }
 

This assigns i to the index and v to the value of the successive @@ -404,14 +404,14 @@ To allocate a new variable, use the built-in function new, which returns a pointer to the allocated storage.

-    type T struct { a, b int }
-    var t *T = new(T)
+type T struct { a, b int }
+var t *T = new(T)
 

or the more idiomatic

-    t := new(T)
+t := new(T)
 

Some types—maps, slices, and channels (see below)—have reference semantics. @@ -420,14 +420,14 @@ referencing the same underlying data will see the modification. For these three types you want to use the built-in function make:

-    m := make(map[string]int)
+m := make(map[string]int)
 

This statement initializes a new map ready to store entries. If you just declare the map, as in

-    var m map[string]int
+var m map[string]int
 

it creates a nil reference that cannot hold anything. To use the map, @@ -448,20 +448,20 @@ can overflow only when they are assigned to an integer variable with too little precision to represent the value.

-    const hardEight = (1 << 100) >> 97  // legal
+const hardEight = (1 << 100) >> 97  // legal
 

There are nuances that deserve redirection to the legalese of the language specification but here are some illustrative examples:

-    var a uint64 = 0  // a has type uint64, value 0
-    a := uint64(0)    // equivalent; uses a "conversion"
-    i := 0x1234       // i gets default type: int
-    var j int = 1e6   // legal - 1000000 is representable in an int
-    x := 1.5          // a float64, the default type for floating constants
-    i3div2 := 3/2     // integer division - result is 1
-    f3div2 := 3./2.   // floating-point division - result is 1.5
+var a uint64 = 0  // a has type uint64, value 0
+a := uint64(0)    // equivalent; uses a "conversion"
+i := 0x1234       // i gets default type: int
+var j int = 1e6   // legal - 1000000 is representable in an int
+x := 1.5          // a float64, the default type for floating constants
+i3div2 := 3/2     // integer division - result is 1
+f3div2 := 3./2.   // floating-point division - result is 1.5
 

Conversions only work for simple cases such as converting ints of one @@ -476,18 +476,18 @@ assigned to a variable. Next we'll look at a simple package for doing file I/O with an open/close/read/write interface. Here's the start of file.go:

-

 
-05    package file
+
package file
 
-07    import (
-08        "os"
-09        "syscall"
-10    )
+import (
+    "os"
+    "syscall"
+)
 
-12    type File struct {
-13        fd   int    // file descriptor number
-14        name string // file name at Open time
-15    }
+type File struct {
+    fd   int    // file descriptor number
+    name string // file name at Open time
+}
 

The first few lines declare the name of the @@ -518,13 +518,13 @@ will soon give it some exported, upper-case methods.

First, though, here is a factory to create a File:

-

 
-17    func newFile(fd int, name string) *File {
-18        if fd < 0 {
-19            return nil
-20        }
-21        return &File{fd, name}
-22    }
+
func newFile(fd int, name string) *File {
+    if fd < 0 {
+        return nil
+    }
+    return &File{fd, name}
+}
 

This returns a pointer to a new File structure with the file descriptor and name @@ -533,10 +533,10 @@ the ones used to build maps and arrays, to construct a new heap-allocated object. We could write

-    n := new(File)
-    n.fd = fd
-    n.name = name
-    return n
+n := new(File)
+n.fd = fd
+n.name = name
+return n
 

but for simple structures like File it's easier to return the address of a @@ -544,25 +544,26 @@ composite literal, as is done here on line 21.

We can use the factory to construct some familiar, exported variables of type *File:

-

 
-24    var (
-25        Stdin  = newFile(syscall.Stdin, "/dev/stdin")
-26        Stdout = newFile(syscall.Stdout, "/dev/stdout")
-27        Stderr = newFile(syscall.Stderr, "/dev/stderr")
-28    )
+
var (
+    Stdin  = newFile(syscall.Stdin, "/dev/stdin")
+    Stdout = newFile(syscall.Stdout, "/dev/stdout")
+    Stderr = newFile(syscall.Stderr, "/dev/stderr")
+)
+
 

The newFile function was not exported because it's internal. The proper, exported factory to use is OpenFile (we'll explain that name in a moment):

-

 
-30    func OpenFile(name string, mode int, perm uint32) (file *File, err os.Error) {
-31        r, e := syscall.Open(name, mode, perm)
-32        if e != 0 {
-33            err = os.Errno(e)
-34        }
-35        return newFile(r, name), err
-36    }
+
func OpenFile(name string, mode int, perm uint32) (file *File, err os.Error) {
+    r, e := syscall.Open(name, mode, perm)
+    if e != 0 {
+        err = os.Errno(e)
+    }
+    return newFile(r, name), err
+}
 

There are a number of new things in these few lines. First, OpenFile returns @@ -593,23 +594,23 @@ the implementation of our Open and Create; they're tri wrappers that eliminate common errors by capturing the tricky standard arguments to open and, especially, to create a file:

-

 
-38    const (
-39        O_RDONLY = syscall.O_RDONLY
-40        O_RDWR   = syscall.O_RDWR
-41        O_CREATE = syscall.O_CREAT
-42        O_TRUNC  = syscall.O_TRUNC
-43    )
+
const (
+    O_RDONLY = syscall.O_RDONLY
+    O_RDWR   = syscall.O_RDWR
+    O_CREATE = syscall.O_CREAT
+    O_TRUNC  = syscall.O_TRUNC
+)
 
-45    func Open(name string) (file *File, err os.Error) {
-46        return OpenFile(name, O_RDONLY, 0)
-47    }
+func Open(name string) (file *File, err os.Error) {
+    return OpenFile(name, O_RDONLY, 0)
+}
 

-

 
-49    func Create(name string) (file *File, err os.Error) {
-50        return OpenFile(name, O_RDWR|O_CREATE|O_TRUNC, 0666)
-51    }
+
func Create(name string) (file *File, err os.Error) {
+    return OpenFile(name, O_RDWR|O_CREATE|O_TRUNC, 0666)
+}
 

Back to our main story. @@ -619,44 +620,44 @@ of that type, placed in parentheses before the function name. Here are some methods for *File, each of which declares a receiver variable file.

-

 
-53    func (file *File) Close() os.Error {
-54        if file == nil {
-55            return os.EINVAL
-56        }
-57        e := syscall.Close(file.fd)
-58        file.fd = -1 // so it can't be closed again
-59        if e != 0 {
-60            return os.Errno(e)
-61        }
-62        return nil
-63    }
+
func (file *File) Close() os.Error {
+    if file == nil {
+        return os.EINVAL
+    }
+    e := syscall.Close(file.fd)
+    file.fd = -1 // so it can't be closed again
+    if e != 0 {
+        return os.Errno(e)
+    }
+    return nil
+}
 
-65    func (file *File) Read(b []byte) (ret int, err os.Error) {
-66        if file == nil {
-67            return -1, os.EINVAL
-68        }
-69        r, e := syscall.Read(file.fd, b)
-70        if e != 0 {
-71            err = os.Errno(e)
-72        }
-73        return int(r), err
-74    }
+func (file *File) Read(b []byte) (ret int, err os.Error) {
+    if file == nil {
+        return -1, os.EINVAL
+    }
+    r, e := syscall.Read(file.fd, b)
+    if e != 0 {
+        err = os.Errno(e)
+    }
+    return int(r), err
+}
 
-76    func (file *File) Write(b []byte) (ret int, err os.Error) {
-77        if file == nil {
-78            return -1, os.EINVAL
-79        }
-80        r, e := syscall.Write(file.fd, b)
-81        if e != 0 {
-82            err = os.Errno(e)
-83        }
-84        return int(r), err
-85    }
+func (file *File) Write(b []byte) (ret int, err os.Error) {
+    if file == nil {
+        return -1, os.EINVAL
+    }
+    r, e := syscall.Write(file.fd, b)
+    if e != 0 {
+        err = os.Errno(e)
+    }
+    return int(r), err
+}
 
-87    func (file *File) String() string {
-88        return file.name
-89    }
+func (file *File) String() string {
+    return file.name
+}
 

There is no implicit this and the receiver variable must be used to access @@ -674,24 +675,24 @@ set of such error values.

We can now use our new package:

-

 
-05    package main
+
package main
 
-07    import (
-08        "./file"
-09        "fmt"
-10        "os"
-11    )
+import (
+    "./file"
+    "fmt"
+    "os"
+)
 
-13    func main() {
-14        hello := []byte("hello, world\n")
-15        file.Stdout.Write(hello)
-16        f, err := file.Open("/does/not/exist")
-17        if f == nil {
-18            fmt.Printf("can't open file; err=%s\n",  err.String())
-19            os.Exit(1)
-20        }
-21    }
+func main() {
+    hello := []byte("hello, world\n")
+    file.Stdout.Write(hello)
+    f, err := file.Open("/does/not/exist")
+    if f == nil {
+        fmt.Printf("can't open file; err=%s\n",  err.String())
+        os.Exit(1)
+    }
+}
 

The ''./'' in the import of ''./file'' tells the compiler @@ -703,13 +704,13 @@ package.) Now we can compile and run the program. On Unix, this would be the result:

-    $ 6g file.go                       # compile file package
-    $ 6g helloworld3.go                # compile main package
-    $ 6l -o helloworld3 helloworld3.6  # link - no need to mention "file"
-    $ helloworld3
-    hello, world
-    can't open file; err=No such file or directory
-    $
+$ 6g file.go                       # compile file package
+$ 6g helloworld3.go                # compile main package
+$ 6l -o helloworld3 helloworld3.6  # link - no need to mention "file"
+$ helloworld3
+hello, world
+can't open file; err=No such file or directory
+$
 

Rotting cats

@@ -717,56 +718,56 @@ Now we can compile and run the program. On Unix, this would be the result: Building on the file package, here's a simple version of the Unix utility cat(1), progs/cat.go:

-

 
-05    package main
+
package main
 
-07    import (
-08        "./file"
-09        "flag"
-10        "fmt"
-11        "os"
-12    )
+import (
+    "./file"
+    "flag"
+    "fmt"
+    "os"
+)
 
-14    func cat(f *file.File) {
-15        const NBUF = 512
-16        var buf [NBUF]byte
-17        for {
-18            switch nr, er := f.Read(buf[:]); true {
-19            case nr < 0:
-20                fmt.Fprintf(os.Stderr, "cat: error reading from %s: %s\n", f.String(), er.String())
-21                os.Exit(1)
-22            case nr == 0: // EOF
-23                return
-24            case nr > 0:
-25                if nw, ew := file.Stdout.Write(buf[0:nr]); nw != nr {
-26                    fmt.Fprintf(os.Stderr, "cat: error writing from %s: %s\n", f.String(), ew.String())
-27                    os.Exit(1)
-28                }
-29            }
-30        }
-31    }
+func cat(f *file.File) {
+    const NBUF = 512
+    var buf [NBUF]byte
+    for {
+        switch nr, er := f.Read(buf[:]); true {
+        case nr < 0:
+            fmt.Fprintf(os.Stderr, "cat: error reading from %s: %s\n", f.String(), er.String())
+            os.Exit(1)
+        case nr == 0: // EOF
+            return
+        case nr > 0:
+            if nw, ew := file.Stdout.Write(buf[0:nr]); nw != nr {
+                fmt.Fprintf(os.Stderr, "cat: error writing from %s: %s\n", f.String(), ew.String())
+                os.Exit(1)
+            }
+        }
+    }
+}
 
-33    func main() {
-34        flag.Parse() // Scans the arg list and sets up flags
-35        if flag.NArg() == 0 {
-36            cat(file.Stdin)
-37        }
-38        for i := 0; i < flag.NArg(); i++ {
-39            f, err := file.Open(flag.Arg(i))
-40            if f == nil {
-41                fmt.Fprintf(os.Stderr, "cat: can't open %s: error %s\n", flag.Arg(i), err)
-42                os.Exit(1)
-43            }
-44            cat(f)
-45            f.Close()
-46        }
-47    }
+func main() {
+    flag.Parse() // Scans the arg list and sets up flags
+    if flag.NArg() == 0 {
+        cat(file.Stdin)
+    }
+    for i := 0; i < flag.NArg(); i++ {
+        f, err := file.Open(flag.Arg(i))
+        if f == nil {
+            fmt.Fprintf(os.Stderr, "cat: can't open %s: error %s\n", flag.Arg(i), err)
+            os.Exit(1)
+        }
+        cat(f)
+        f.Close()
+    }
+}
 

By now this should be easy to follow, but the switch statement introduces some new features. Like a for loop, an if or switch can include an -initialization statement. The switch on line 18 uses one to create variables -nr and er to hold the return values from the call to f.Read. (The if on line 25 +initialization statement. The switch statement in cat uses one to create variables +nr and er to hold the return values from the call to f.Read. (The if a few lines later has the same idea.) The switch statement is general: it evaluates the cases from top to bottom looking for the first case that matches the value; the case expressions don't need to be constants or even integers, as long as @@ -778,7 +779,7 @@ in a for statement, a missing value means true. In fa is a form of if-else chain. While we're here, it should be mentioned that in switch statements each case has an implicit break.

-Line 25 calls Write by slicing the incoming buffer, which is itself a slice. +The argument to file.Stdout.Write is created by slicing the array buf. Slices provide the standard Go way to handle I/O buffers.

Now let's make a variant of cat that optionally does rot13 on its input. @@ -789,11 +790,11 @@ The cat subroutine uses only two methods of f: R so let's start by defining an interface that has exactly those two methods. Here is code from progs/cat_rot13.go:

-

 
-26    type reader interface {
-27        Read(b []byte) (ret int, err os.Error)
-28        String() string
-29    }
+
type reader interface {
+    Read(b []byte) (ret int, err os.Error)
+    String() string
+}
 

Any type that has the two methods of reader—regardless of whatever @@ -806,68 +807,68 @@ existing reader and does rot13 on the data. To do this the type and implement the methods and with no other bookkeeping, we have a second implementation of the reader interface.

-

 
-31    type rotate13 struct {
-32        source reader
-33    }
+
type rotate13 struct {
+    source reader
+}
 
-35    func newRotate13(source reader) *rotate13 {
-36        return &rotate13{source}
-37    }
+func newRotate13(source reader) *rotate13 {
+    return &rotate13{source}
+}
 
-39    func (r13 *rotate13) Read(b []byte) (ret int, err os.Error) {
-40        r, e := r13.source.Read(b)
-41        for i := 0; i < r; i++ {
-42            b[i] = rot13(b[i])
-43        }
-44        return r, e
-45    }
+func (r13 *rotate13) Read(b []byte) (ret int, err os.Error) {
+    r, e := r13.source.Read(b)
+    for i := 0; i < r; i++ {
+        b[i] = rot13(b[i])
+    }
+    return r, e
+}
 
-47    func (r13 *rotate13) String() string {
-48        return r13.source.String()
-49    }
-50    // end of rotate13 implementation
+func (r13 *rotate13) String() string {
+    return r13.source.String()
+}
+// end of rotate13 implementation
 

-(The rot13 function called on line 42 is trivial and not worth reproducing here.) +(The rot13 function called in Read is trivial and not worth reproducing here.)

To use the new feature, we define a flag:

-

 
-14    var rot13Flag = flag.Bool("rot13", false, "rot13 the input")
+
var rot13Flag = flag.Bool("rot13", false, "rot13 the input")
 

and use it from within a mostly unchanged cat function:

-

 
-52    func cat(r reader) {
-53        const NBUF = 512
-54        var buf [NBUF]byte
+
func cat(r reader) {
+    const NBUF = 512
+    var buf [NBUF]byte
 
-56        if *rot13Flag {
-57            r = newRotate13(r)
-58        }
-59        for {
-60            switch nr, er := r.Read(buf[:]); {
-61            case nr < 0:
-62                fmt.Fprintf(os.Stderr, "cat: error reading from %s: %s\n", r.String(), er.String())
-63                os.Exit(1)
-64            case nr == 0: // EOF
-65                return
-66            case nr > 0:
-67                nw, ew := file.Stdout.Write(buf[0:nr])
-68                if nw != nr {
-69                    fmt.Fprintf(os.Stderr, "cat: error writing from %s: %s\n", r.String(), ew.String())
-70                    os.Exit(1)
-71                }
-72            }
-73        }
-74    }
+    if *rot13Flag {
+        r = newRotate13(r)
+    }
+    for {
+        switch nr, er := r.Read(buf[:]); {
+        case nr < 0:
+            fmt.Fprintf(os.Stderr, "cat: error reading from %s: %s\n", r.String(), er.String())
+            os.Exit(1)
+        case nr == 0: // EOF
+            return
+        case nr > 0:
+            nw, ew := file.Stdout.Write(buf[0:nr])
+            if nw != nr {
+                fmt.Fprintf(os.Stderr, "cat: error writing from %s: %s\n", r.String(), ew.String())
+                os.Exit(1)
+            }
+        }
+    }
+}
 

(We could also do the wrapping in main and leave cat mostly alone, except for changing the type of the argument; consider that an exercise.) -Lines 56 through 58 set it all up: If the rot13 flag is true, wrap the reader +The if at the top of cat sets it all up: If the rot13 flag is true, wrap the reader we received into a rotate13 and proceed. Note that the interface variables are values, not pointers: the argument is of type reader, not *reader, even though under the covers it holds a pointer to a struct. @@ -875,11 +876,11 @@ even though under the covers it holds a pointer to a struct. Here it is in action:

-    $ echo abcdefghijklmnopqrstuvwxyz | ./cat
-    abcdefghijklmnopqrstuvwxyz
-    $ echo abcdefghijklmnopqrstuvwxyz | ./cat --rot13
-    nopqrstuvwxyzabcdefghijklm
-    $
+$ echo abcdefghijklmnopqrstuvwxyz | ./cat
+abcdefghijklmnopqrstuvwxyz
+$ echo abcdefghijklmnopqrstuvwxyz | ./cat --rot13
+nopqrstuvwxyzabcdefghijklm
+$
 

Fans of dependency injection may take cheer from how easily interfaces @@ -895,7 +896,7 @@ implement a writer, or any other interface built from its methods t fits the current situation. Consider the empty interface

-    type Empty interface {}
+type Empty interface {}
 

Every type implements the empty interface, which makes it @@ -910,36 +911,36 @@ same interface variable.

As an example, consider this simple sort algorithm taken from progs/sort.go:

-

 
-13    func Sort(data Interface) {
-14        for i := 1; i < data.Len(); i++ {
-15            for j := i; j > 0 && data.Less(j, j-1); j-- {
-16                data.Swap(j, j-1)
-17            }
-18        }
-19    }
+
func Sort(data Interface) {
+    for i := 1; i < data.Len(); i++ {
+        for j := i; j > 0 && data.Less(j, j-1); j-- {
+            data.Swap(j, j-1)
+        }
+    }
+}
 

The code needs only three methods, which we wrap into sort's Interface:

-

 
-07    type Interface interface {
-08        Len() int
-09        Less(i, j int) bool
-10        Swap(i, j int)
-11    }
+
type Interface interface {
+    Len() int
+    Less(i, j int) bool
+    Swap(i, j int)
+}
 

We can apply Sort to any type that implements Len, Less, and Swap. The sort package includes the necessary methods to allow sorting of arrays of integers, strings, etc.; here's the code for arrays of int

-

 
-33    type IntArray []int
+
type IntSlice []int
 
-35    func (p IntArray) Len() int            { return len(p) }
-36    func (p IntArray) Less(i, j int) bool  { return p[i] < p[j] }
-37    func (p IntArray) Swap(i, j int)       { p[i], p[j] = p[j], p[i] }
+func (p IntSlice) Len() int            { return len(p) }
+func (p IntSlice) Less(i, j int) bool  { return p[i] < p[j] }
+func (p IntSlice) Swap(i, j int)       { p[i], p[j] = p[j], p[i] }
 

Here we see methods defined for non-struct types. You can define methods @@ -949,34 +950,34 @@ And now a routine to test it out, from progs/sortmain.go. This uses a function in the sort package, omitted here for brevity, to test that the result is sorted.

-

 
-12    func ints() {
-13        data := []int{74, 59, 238, -784, 9845, 959, 905, 0, 0, 42, 7586, -5467984, 7586}
-14        a := sort.IntArray(data)
-15        sort.Sort(a)
-16        if !sort.IsSorted(a) {
-17            panic("fail")
-18        }
-19    }
+
func ints() {
+    data := []int{74, 59, 238, -784, 9845, 959, 905, 0, 0, 42, 7586, -5467984, 7586}
+    a := sort.IntSlice(data)
+    sort.Sort(a)
+    if !sort.IsSorted(a) {
+        panic("fail")
+    }
+}
 

If we have a new type we want to be able to sort, all we need to do is to implement the three methods for that type, like this:

-

 
-30    type day struct {
-31        num        int
-32        shortName  string
-33        longName   string
-34    }
+
type day struct {
+    num        int
+    shortName  string
+    longName   string
+}
 
-36    type dayArray struct {
-37        data []*day
-38    }
+type dayArray struct {
+    data []*day
+}
 
-40    func (p *dayArray) Len() int            { return len(p.data) }
-41    func (p *dayArray) Less(i, j int) bool  { return p.data[i].num < p.data[j].num }
-42    func (p *dayArray) Swap(i, j int)       { p.data[i], p.data[j] = p.data[j], p.data[i] }
+func (p *dayArray) Len() int            { return len(p.data) }
+func (p *dayArray) Less(i, j int) bool  { return p.data[i].num < p.data[j].num }
+func (p *dayArray) Swap(i, j int)       { p.data[i], p.data[j] = p.data[j], p.data[i] }
 

@@ -990,7 +991,7 @@ implements Printf, Fprintf, and so on. Within the fmt package, Printf is declared with this signature:

-    Printf(format string, v ...interface{}) (n int, errno os.Error)
+Printf(format string, v ...interface{}) (n int, errno os.Error)
 

The token ... introduces a variable-length argument list that in C would @@ -1011,34 +1012,34 @@ argument. It's easier in many cases in Go. Instead of %llud you can just say %d; Printf knows the size and signedness of the integer and can do the right thing for you. The snippet

-

 
-10        var u64 uint64 = 1<<64-1
-11        fmt.Printf("%d %d\n", u64, int64(u64))
+
    var u64 uint64 = 1<<64-1
+    fmt.Printf("%d %d\n", u64, int64(u64))
 

prints

-    18446744073709551615 -1
+18446744073709551615 -1
 

In fact, if you're lazy the format %v will print, in a simple appropriate style, any value, even an array or structure. The output of

-

 
-14        type T struct {
-15            a int
-16            b string
-17        }
-18        t := T{77, "Sunset Strip"}
-19        a := []int{1, 2, 3, 4}
-20        fmt.Printf("%v %v %v\n", u64, t, a)
+
    type T struct {
+        a int
+        b string
+    }
+    t := T{77, "Sunset Strip"}
+    a := []int{1, 2, 3, 4}
+    fmt.Printf("%v %v %v\n", u64, t, a)
 

is

-    18446744073709551615 {77 Sunset Strip} [1 2 3 4]
+18446744073709551615 {77 Sunset Strip} [1 2 3 4]
 

You can drop the formatting altogether if you use Print or Println @@ -1048,9 +1049,9 @@ of %v while Println inserts spaces between arguments and adds a newline. The output of each of these two lines is identical to that of the Printf call above.

-

 
-21        fmt.Print(u64, " ", t, " ", a, "\n")
-22        fmt.Println(u64, t, a)
+
    fmt.Print(u64, " ", t, " ", a, "\n")
+    fmt.Println(u64, t, a)
 

If you have your own type you'd like Printf or Print to format, @@ -1059,27 +1060,27 @@ routines will examine the value to inquire whether it implements the method and if so, use it rather than some other formatting. Here's a simple example.

-

 
-09    type testType struct {
-10        a int
-11        b string
-12    }
+
type testType struct {
+    a int
+    b string
+}
 
-14    func (t *testType) String() string {
-15        return fmt.Sprint(t.a) + " " + t.b
-16    }
+func (t *testType) String() string {
+    return fmt.Sprint(t.a) + " " + t.b
+}
 
-18    func main() {
-19        t := &testType{77, "Sunset Strip"}
-20        fmt.Println(t)
-21    }
+func main() {
+    t := &testType{77, "Sunset Strip"}
+    fmt.Println(t)
+}
 

Since *testType has a String method, the default formatter for that type will use it and produce the output

-    77 Sunset Strip
+77 Sunset Strip
 

Observe that the String method calls Sprint (the obvious Go @@ -1101,18 +1102,18 @@ Schematically, given a value v, it does this:

-    type Stringer interface {
-        String() string
-    }
+type Stringer interface {
+    String() string
+}
 

-    s, ok := v.(Stringer)  // Test whether v implements "String()"
-    if ok {
-        result = s.String()
-    } else {
-        result = defaultOutput(v)
-    }
+s, ok := v.(Stringer)  // Test whether v implements "String()"
+if ok {
+    result = s.String()
+} else {
+    result = defaultOutput(v)
+}
 

The code uses a ``type assertion'' (v.(Stringer)) to test if the value stored in @@ -1133,9 +1134,9 @@ not a file. Instead, it is a variable of type io.Writer, which is interface type defined in the io library:

-    type Writer interface {
-        Write(p []byte) (n int, err os.Error)
-    }
+type Writer interface {
+    Write(p []byte) (n int, err os.Error)
+}
 

(This interface is another conventional name, this time for Write; there are also @@ -1178,13 +1179,13 @@ coordinates the communication; as with maps and slices, use

Here is the first function in progs/sieve.go:

-

 
-09    // Send the sequence 2, 3, 4, ... to channel 'ch'.
-10    func generate(ch chan int) {
-11        for i := 2; ; i++ {
-12            ch <- i  // Send 'i' to channel 'ch'.
-13        }
-14    }
+
// Send the sequence 2, 3, 4, ... to channel 'ch'.
+func generate(ch chan int) {
+    for i := 2; ; i++ {
+        ch <- i  // Send 'i' to channel 'ch'.
+    }
+}
 

The generate function sends the sequence 2, 3, 4, 5, ... to its @@ -1197,17 +1198,17 @@ channel, and a prime number. It copies values from the input to the output, discarding anything divisible by the prime. The unary communications operator <- (receive) retrieves the next value on the channel.

-

 
-16    // Copy the values from channel 'in' to channel 'out',
-17    // removing those divisible by 'prime'.
-18    func filter(in, out chan int, prime int) {
-19        for {
-20            i := <-in  // Receive value of new variable 'i' from 'in'.
-21            if i % prime != 0 {
-22                out <- i  // Send 'i' to channel 'out'.
-23            }
-24        }
-25    }
+
// Copy the values from channel 'in' to channel 'out',
+// removing those divisible by 'prime'.
+func filter(in, out chan int, prime int) {
+    for {
+        i := <-in  // Receive value of new variable 'i' from 'in'.
+        if i % prime != 0 {
+            out <- i  // Send 'i' to channel 'out'.
+        }
+    }
+}
 

The generator and filters execute concurrently. Go has @@ -1219,37 +1220,37 @@ this starts the function running in parallel with the current computation but in the same address space:

-    go sum(hugeArray) // calculate sum in the background
+go sum(hugeArray) // calculate sum in the background
 

If you want to know when the calculation is done, pass a channel on which it can report back:

-    ch := make(chan int)
-    go sum(hugeArray, ch)
-    // ... do something else for a while
-    result := <-ch  // wait for, and retrieve, result
+ch := make(chan int)
+go sum(hugeArray, ch)
+// ... do something else for a while
+result := <-ch  // wait for, and retrieve, result
 

Back to our prime sieve. Here's how the sieve pipeline is stitched together:

-

 
-28    func main() {
-29        ch := make(chan int)  // Create a new channel.
-30        go generate(ch)  // Start generate() as a goroutine.
-31        for i := 0; i < 100; i++ { // Print the first hundred primes.
-32            prime := <-ch
-33            fmt.Println(prime)
-34            ch1 := make(chan int)
-35            go filter(ch, ch1, prime)
-36            ch = ch1
-37        }
-38    }
-
-

-Line 29 creates the initial channel to pass to generate, which it +

func main() {
+    ch := make(chan int)  // Create a new channel.
+    go generate(ch)  // Start generate() as a goroutine.
+    for i := 0; i < 100; i++ { // Print the first hundred primes.
+        prime := <-ch
+        fmt.Println(prime)
+        ch1 := make(chan int)
+        go filter(ch, ch1, prime)
+        ch = ch1
+    }
+}
+
+

+The first line of main creates the initial channel to pass to generate, which it then starts up. As each prime pops out of the channel, a new filter is added to the pipeline and its output becomes the new value of ch. @@ -1258,16 +1259,16 @@ The sieve program can be tweaked to use a pattern common in this style of programming. Here is a variant version of generate, from progs/sieve1.go:

-

 
-10    func generate() chan int {
-11        ch := make(chan int)
-12        go func(){
-13            for i := 2; ; i++ {
-14                ch <- i
-15            }
-16        }()
-17        return ch
-18    }
+
func generate() chan int {
+    ch := make(chan int)
+    go func(){
+        for i := 2; ; i++ {
+            ch <- i
+        }
+    }()
+    return ch
+}
 

This version does all the setup internally. It creates the output @@ -1275,54 +1276,54 @@ channel, launches a goroutine running a function literal, and returns the channel to the caller. It is a factory for concurrent execution, starting the goroutine and returning its connection.

-The function literal notation (lines 12-16) allows us to construct an +The function literal notation used in the go statement allows us to construct an anonymous function and invoke it on the spot. Notice that the local variable ch is available to the function literal and lives on even after generate returns.

The same change can be made to filter:

-

 
-21    func filter(in chan int, prime int) chan int {
-22        out := make(chan int)
-23        go func() {
-24            for {
-25                if i := <-in; i % prime != 0 {
-26                    out <- i
-27                }
-28            }
-29        }()
-30        return out
-31    }
+
func filter(in chan int, prime int) chan int {
+    out := make(chan int)
+    go func() {
+        for {
+            if i := <-in; i % prime != 0 {
+                out <- i
+            }
+        }
+    }()
+    return out
+}
 

The sieve function's main loop becomes simpler and clearer as a result, and while we're at it let's turn it into a factory too:

-

 
-33    func sieve() chan int {
-34        out := make(chan int)
-35        go func() {
-36            ch := generate()
-37            for {
-38                prime := <-ch
-39                out <- prime
-40                ch = filter(ch, prime)
-41            }
-42        }()
-43        return out
-44    }
+
func sieve() chan int {
+    out := make(chan int)
+    go func() {
+        ch := generate()
+        for {
+            prime := <-ch
+            out <- prime
+            ch = filter(ch, prime)
+        }
+    }()
+    return out
+}
 

Now main's interface to the prime sieve is a channel of primes:

-

 
-46    func main() {
-47        primes := sieve()
-48        for i := 0; i < 100; i++ { // Print the first hundred primes.
-49            fmt.Println(<-primes)
-50        }
-51    }
+
func main() {
+    primes := sieve()
+    for i := 0; i < 100; i++ { // Print the first hundred primes.
+        fmt.Println(<-primes)
+    }
+}
 

Multiplexing

@@ -1334,102 +1335,102 @@ A realistic client-server program is a lot of code, so here is a very simple sub to illustrate the idea. It starts by defining a request type, which embeds a channel that will be used for the reply.

-

 
-09    type request struct {
-10        a, b    int
-11        replyc  chan int
-12    }
+
type request struct {
+    a, b    int
+    replyc  chan int
+}
 

The server will be trivial: it will do simple binary operations on integers. Here's the code that invokes the operation and responds to the request:

-

 
-14    type binOp func(a, b int) int
+
type binOp func(a, b int) int
 
-16    func run(op binOp, req *request) {
-17        reply := op(req.a, req.b)
-18        req.replyc <- reply
-19    }
+func run(op binOp, req *request) {
+    reply := op(req.a, req.b)
+    req.replyc <- reply
+}
 

-Line 14 defines the name binOp to be a function taking two integers and +The type declaration makes binOp represent a function taking two integers and returning a third.

The server routine loops forever, receiving requests and, to avoid blocking due to a long-running operation, starting a goroutine to do the actual work.

-

 
-21    func server(op binOp, service chan *request) {
-22        for {
-23            req := <-service
-24            go run(op, req)  // don't wait for it
-25        }
-26    }
+
func server(op binOp, service chan *request) {
+    for {
+        req := <-service
+        go run(op, req)  // don't wait for it
+    }
+}
 

We construct a server in a familiar way, starting it and returning a channel connected to it:

-

 
-28    func startServer(op binOp) chan *request {
-29        req := make(chan *request)
-30        go server(op, req)
-31        return req
-32    }
+
func startServer(op binOp) chan *request {
+    req := make(chan *request)
+    go server(op, req)
+    return req
+}
 

Here's a simple test. It starts a server with an addition operator and sends out N requests without waiting for the replies. Only after all the requests are sent does it check the results.

-

 
-34    func main() {
-35        adder := startServer(func(a, b int) int { return a + b })
-36        const N = 100
-37        var reqs [N]request
-38        for i := 0; i < N; i++ {
-39            req := &reqs[i]
-40            req.a = i
-41            req.b = i + N
-42            req.replyc = make(chan int)
-43            adder <- req
-44        }
-45        for i := N-1; i >= 0; i-- {   // doesn't matter what order
-46            if <-reqs[i].replyc != N + 2*i {
-47                fmt.Println("fail at", i)
-48            }
-49        }
-50        fmt.Println("done")
-51    }
+
func main() {
+    adder := startServer(func(a, b int) int { return a + b })
+    const N = 100
+    var reqs [N]request
+    for i := 0; i < N; i++ {
+        req := &reqs[i]
+        req.a = i
+        req.b = i + N
+        req.replyc = make(chan int)
+        adder <- req
+    }
+    for i := N-1; i >= 0; i-- {   // doesn't matter what order
+        if <-reqs[i].replyc != N + 2*i {
+            fmt.Println("fail at", i)
+        }
+    }
+    fmt.Println("done")
+}
 

One annoyance with this program is that it doesn't shut down the server cleanly; when main returns there are a number of lingering goroutines blocked on communication. To solve this, we can provide a second, quit channel to the server:

-

 
-32    func startServer(op binOp) (service chan *request, quit chan bool) {
-33        service = make(chan *request)
-34        quit = make(chan bool)
-35        go server(op, service, quit)
-36        return service, quit
-37    }
+
func startServer(op binOp) (service chan *request, quit chan bool) {
+    service = make(chan *request)
+    quit = make(chan bool)
+    go server(op, service, quit)
+    return service, quit
+}
 

It passes the quit channel to the server function, which uses it like this:

-

 
-21    func server(op binOp, service chan *request, quit chan bool) {
-22        for {
-23            select {
-24            case req := <-service:
-25                go run(op, req)  // don't wait for it
-26            case <-quit:
-27                return
-28            }
-29        }
-30    }
+
func server(op binOp, service chan *request, quit chan bool) {
+    for {
+        select {
+        case req := <-service:
+            go run(op, req)  // don't wait for it
+        case <-quit:
+            return
+        }
+    }
+}
 

Inside server, the select statement chooses which of the multiple communications @@ -1442,12 +1443,12 @@ returns, terminating its execution. All that's left is to strobe the quit channel at the end of main:

-

 
-40        adder, quit := startServer(func(a, b int) int { return a + b })
+
    adder, quit := startServer(func(a, b int) int { return a + b })
 
... -
 
-55        quit <- true
+
    quit <- true
 

There's a lot more to Go programming and concurrent programming in general but this -- cgit v1.2.3