// Derived from Inferno utils/6c/reg.c // http://code.google.com/p/inferno-os/source/browse/utils/6c/reg.c // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) // Portions Copyright © 1997-1999 Vita Nuova Limited // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) // Portions Copyright © 2004,2006 Bruce Ellis // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others // Portions Copyright © 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. #include "gg.h" #undef EXTERN #define EXTERN #include "opt.h" #define NREGVAR 32 /* 16 general + 16 floating */ #define REGBITS ((uint32)0xffffffff) #define P2R(p) (Reg*)(p->reg) static int first = 1; Reg* rega(void) { Reg *r; r = freer; if(r == R) { r = mal(sizeof(*r)); } else freer = r->link; *r = zreg; return r; } int rcmp(const void *a1, const void *a2) { Rgn *p1, *p2; int c1, c2; p1 = (Rgn*)a1; p2 = (Rgn*)a2; c1 = p2->cost; c2 = p1->cost; if(c1 -= c2) return c1; return p2->varno - p1->varno; } static void setoutvar(void) { Type *t; Node *n; Addr a; Iter save; Bits bit; int z; t = structfirst(&save, getoutarg(curfn->type)); while(t != T) { n = nodarg(t, 1); a = zprog.from; naddr(n, &a, 0); bit = mkvar(R, &a); for(z=0; zsym == s && v->name == n) v->addr = 2; } } } static char* regname[] = { ".AX", ".CX", ".DX", ".BX", ".SP", ".BP", ".SI", ".DI", ".R8", ".R9", ".R10", ".R11", ".R12", ".R13", ".R14", ".R15", ".X0", ".X1", ".X2", ".X3", ".X4", ".X5", ".X6", ".X7", ".X8", ".X9", ".X10", ".X11", ".X12", ".X13", ".X14", ".X15", }; void regopt(Prog *firstp) { Reg *r, *r1; Prog *p; int i, z, nr; uint32 vreg; Bits bit; if(first) { fmtinstall('Q', Qconv); exregoffset = D_R13; // R14,R15 are external first = 0; } // count instructions nr = 0; for(p=firstp; p!=P; p=p->link) nr++; // if too big dont bother if(nr >= 10000) { // print("********** %S is too big (%d)\n", curfn->nname->sym, nr); return; } r1 = R; firstr = R; lastr = R; nvar = 0; /* * control flow is more complicated in generated go code * than in generated c code. define pseudo-variables for * registers, so we have complete register usage information. */ nvar = NREGVAR; memset(var, 0, NREGVAR*sizeof var[0]); for(i=0; ilink) { switch(p->as) { case ADATA: case AGLOBL: case ANAME: case ASIGNAME: continue; } r = rega(); nr++; if(firstr == R) { firstr = r; lastr = r; } else { lastr->link = r; r->p1 = lastr; lastr->s1 = r; lastr = r; } r->prog = p; p->reg = r; r1 = r->p1; if(r1 != R) { switch(r1->prog->as) { case ARET: case AJMP: case AIRETL: case AIRETQ: r->p1 = R; r1->s1 = R; } } bit = mkvar(r, &p->from); if(bany(&bit)) switch(p->as) { /* * funny */ case ALEAL: case ALEAQ: setaddrs(bit); break; /* * left side read */ default: for(z=0; zuse1.b[z] |= bit.b[z]; break; /* * left side read+write */ case AXCHGB: case AXCHGW: case AXCHGL: case AXCHGQ: for(z=0; zuse1.b[z] |= bit.b[z]; r->set.b[z] |= bit.b[z]; } break; } bit = mkvar(r, &p->to); if(bany(&bit)) switch(p->as) { default: yyerror("reg: unknown op: %A", p->as); break; /* * right side read */ case ACMPB: case ACMPL: case ACMPQ: case ACMPW: case ACOMISS: case ACOMISD: case AUCOMISS: case AUCOMISD: case ATESTB: case ATESTL: case ATESTQ: for(z=0; zuse2.b[z] |= bit.b[z]; break; /* * right side write */ case ALEAQ: case ANOP: case AMOVL: case AMOVQ: case AMOVB: case AMOVW: case AMOVBLSX: case AMOVBLZX: case AMOVBWSX: case AMOVBWZX: case AMOVBQSX: case AMOVBQZX: case AMOVLQSX: case AMOVLQZX: case AMOVWLSX: case AMOVWLZX: case AMOVWQSX: case AMOVWQZX: case APOPQ: case AMOVSS: case AMOVSD: case ACVTSD2SL: case ACVTSD2SQ: case ACVTSD2SS: case ACVTSL2SD: case ACVTSL2SS: case ACVTSQ2SD: case ACVTSQ2SS: case ACVTSS2SD: case ACVTSS2SL: case ACVTSS2SQ: case ACVTTSD2SL: case ACVTTSD2SQ: case ACVTTSS2SL: case ACVTTSS2SQ: for(z=0; zset.b[z] |= bit.b[z]; break; /* * right side read+write */ case AINCB: case AINCL: case AINCQ: case AINCW: case ADECB: case ADECL: case ADECQ: case ADECW: case AADDB: case AADDL: case AADDQ: case AADDW: case AANDB: case AANDL: case AANDQ: case AANDW: case ASUBB: case ASUBL: case ASUBQ: case ASUBW: case AORB: case AORL: case AORQ: case AORW: case AXORB: case AXORL: case AXORQ: case AXORW: case ASALB: case ASALL: case ASALQ: case ASALW: case ASARB: case ASARL: case ASARQ: case ASARW: case ARCLB: case ARCLL: case ARCLQ: case ARCLW: case ARCRB: case ARCRL: case ARCRQ: case ARCRW: case AROLB: case AROLL: case AROLQ: case AROLW: case ARORB: case ARORL: case ARORQ: case ARORW: case ASHLB: case ASHLL: case ASHLQ: case ASHLW: case ASHRB: case ASHRL: case ASHRQ: case ASHRW: case AIMULL: case AIMULQ: case AIMULW: case ANEGB: case ANEGW: case ANEGL: case ANEGQ: case ANOTL: case ANOTQ: case AADCL: case AADCQ: case ASBBL: case ASBBQ: case ASETCC: case ASETCS: case ASETEQ: case ASETGE: case ASETGT: case ASETHI: case ASETLE: case ASETLS: case ASETLT: case ASETMI: case ASETNE: case ASETOC: case ASETOS: case ASETPC: case ASETPL: case ASETPS: case AXCHGB: case AXCHGW: case AXCHGL: case AXCHGQ: case AADDSD: case AADDSS: case ACMPSD: case ACMPSS: case ADIVSD: case ADIVSS: case AMAXSD: case AMAXSS: case AMINSD: case AMINSS: case AMULSD: case AMULSS: case ARCPSS: case ARSQRTSS: case ASQRTSD: case ASQRTSS: case ASUBSD: case ASUBSS: case AXORPD: for(z=0; zset.b[z] |= bit.b[z]; r->use2.b[z] |= bit.b[z]; } break; /* * funny */ case ACALL: setaddrs(bit); break; } switch(p->as) { case AIMULL: case AIMULQ: case AIMULW: if(p->to.type != D_NONE) break; case AIDIVL: case AIDIVW: case AIDIVQ: case ADIVL: case ADIVW: case ADIVQ: case AMULL: case AMULW: case AMULQ: r->set.b[0] |= RtoB(D_AX) | RtoB(D_DX); r->use1.b[0] |= RtoB(D_AX) | RtoB(D_DX); break; case AIDIVB: case AIMULB: case ADIVB: case AMULB: r->set.b[0] |= RtoB(D_AX); r->use1.b[0] |= RtoB(D_AX); break; case ACWD: r->set.b[0] |= RtoB(D_AX) | RtoB(D_DX); r->use1.b[0] |= RtoB(D_AX); break; case ACDQ: r->set.b[0] |= RtoB(D_DX); r->use1.b[0] |= RtoB(D_AX); break; case AREP: case AREPN: case ALOOP: case ALOOPEQ: case ALOOPNE: r->set.b[0] |= RtoB(D_CX); r->use1.b[0] |= RtoB(D_CX); break; case AMOVSB: case AMOVSL: case AMOVSQ: case AMOVSW: case ACMPSB: case ACMPSL: case ACMPSQ: case ACMPSW: r->set.b[0] |= RtoB(D_SI) | RtoB(D_DI); r->use1.b[0] |= RtoB(D_SI) | RtoB(D_DI); break; case ASTOSB: case ASTOSL: case ASTOSQ: case ASTOSW: case ASCASB: case ASCASL: case ASCASQ: case ASCASW: r->set.b[0] |= RtoB(D_DI); r->use1.b[0] |= RtoB(D_AX) | RtoB(D_DI); break; case AINSB: case AINSL: case AINSW: r->set.b[0] |= RtoB(D_DX) | RtoB(D_DI); r->use1.b[0] |= RtoB(D_DI); break; case AOUTSB: case AOUTSL: case AOUTSW: r->set.b[0] |= RtoB(D_DI); r->use1.b[0] |= RtoB(D_DX) | RtoB(D_DI); break; } } if(firstr == R) return; for(i=0; iaddr) { bit = blsh(i); for(z=0; zaddr, v->etype, v->width, v->sym, v->offset); } if(debug['R'] && debug['v']) dumpit("pass1", firstr); /* * pass 2 * turn branch references to pointers * build back pointers */ for(r=firstr; r!=R; r=r->link) { p = r->prog; if(p->to.type == D_BRANCH) { if(p->to.branch == P) fatal("pnil %P", p); r1 = p->to.branch->reg; if(r1 == R) fatal("rnil %P", p); if(r1 == r) { //fatal("ref to self %P", p); continue; } r->s2 = r1; r->p2link = r1->p2; r1->p2 = r; } } if(debug['R'] && debug['v']) dumpit("pass2", firstr); /* * pass 2.5 * find looping structure */ for(r = firstr; r != R; r = r->link) r->active = 0; change = 0; loopit(firstr, nr); if(debug['R'] && debug['v']) dumpit("pass2.5", firstr); /* * pass 3 * iterate propagating usage * back until flow graph is complete */ loop1: change = 0; for(r = firstr; r != R; r = r->link) r->active = 0; for(r = firstr; r != R; r = r->link) if(r->prog->as == ARET) prop(r, zbits, zbits); loop11: /* pick up unreachable code */ i = 0; for(r = firstr; r != R; r = r1) { r1 = r->link; if(r1 && r1->active && !r->active) { prop(r, zbits, zbits); i = 1; } } if(i) goto loop11; if(change) goto loop1; if(debug['R'] && debug['v']) dumpit("pass3", firstr); /* * pass 4 * iterate propagating register/variable synchrony * forward until graph is complete */ loop2: change = 0; for(r = firstr; r != R; r = r->link) r->active = 0; synch(firstr, zbits); if(change) goto loop2; if(debug['R'] && debug['v']) dumpit("pass4", firstr); /* * pass 4.5 * move register pseudo-variables into regu. */ for(r = firstr; r != R; r = r->link) { r->regu = (r->refbehind.b[0] | r->set.b[0]) & REGBITS; r->set.b[0] &= ~REGBITS; r->use1.b[0] &= ~REGBITS; r->use2.b[0] &= ~REGBITS; r->refbehind.b[0] &= ~REGBITS; r->refahead.b[0] &= ~REGBITS; r->calbehind.b[0] &= ~REGBITS; r->calahead.b[0] &= ~REGBITS; r->regdiff.b[0] &= ~REGBITS; r->act.b[0] &= ~REGBITS; } /* * pass 5 * isolate regions * calculate costs (paint1) */ r = firstr; if(r) { for(z=0; zrefahead.b[z] | r->calahead.b[z]) & ~(externs.b[z] | params.b[z] | addrs.b[z] | consts.b[z]); if(bany(&bit) && !r->refset) { // should never happen - all variables are preset if(debug['w']) print("%L: used and not set: %Q\n", r->prog->lineno, bit); r->refset = 1; } } for(r = firstr; r != R; r = r->link) r->act = zbits; rgp = region; nregion = 0; for(r = firstr; r != R; r = r->link) { for(z=0; zset.b[z] & ~(r->refahead.b[z] | r->calahead.b[z] | addrs.b[z]); if(bany(&bit) && !r->refset) { if(debug['w']) print("%L: set and not used: %Q\n", r->prog->lineno, bit); r->refset = 1; excise(r); } for(z=0; zact.b[z] | addrs.b[z]); while(bany(&bit)) { i = bnum(bit); rgp->enter = r; rgp->varno = i; change = 0; paint1(r, i); bit.b[i/32] &= ~(1L<<(i%32)); if(change <= 0) continue; rgp->cost = change; nregion++; if(nregion >= NRGN) { if(debug['R'] && debug['v']) print("too many regions\n"); goto brk; } rgp++; } } brk: qsort(region, nregion, sizeof(region[0]), rcmp); /* * pass 6 * determine used registers (paint2) * replace code (paint3) */ rgp = region; for(i=0; ivarno); vreg = paint2(rgp->enter, rgp->varno); vreg = allreg(vreg, rgp); if(rgp->regno != 0) paint3(rgp->enter, rgp->varno, vreg, rgp->regno); rgp++; } if(debug['R'] && debug['v']) dumpit("pass6", firstr); /* * pass 7 * peep-hole on basic block */ if(!debug['R'] || debug['P']) { peep(); } /* * eliminate nops * free aux structures */ for(p=firstp; p!=P; p=p->link) { while(p->link != P && p->link->as == ANOP) p->link = p->link->link; if(p->to.type == D_BRANCH) while(p->to.branch != P && p->to.branch->as == ANOP) p->to.branch = p->to.branch->link; } if(r1 != R) { r1->link = freer; freer = firstr; } if(debug['R']) { if(ostats.ncvtreg || ostats.nspill || ostats.nreload || ostats.ndelmov || ostats.nvar || ostats.naddr || 0) print("\nstats\n"); if(ostats.ncvtreg) print(" %4d cvtreg\n", ostats.ncvtreg); if(ostats.nspill) print(" %4d spill\n", ostats.nspill); if(ostats.nreload) print(" %4d reload\n", ostats.nreload); if(ostats.ndelmov) print(" %4d delmov\n", ostats.ndelmov); if(ostats.nvar) print(" %4d delmov\n", ostats.nvar); if(ostats.naddr) print(" %4d delmov\n", ostats.naddr); memset(&ostats, 0, sizeof(ostats)); } } /* * add mov b,rn * just after r */ void addmove(Reg *r, int bn, int rn, int f) { Prog *p, *p1; Adr *a; Var *v; p1 = mal(sizeof(*p1)); clearp(p1); p1->loc = 9999; p = r->prog; p1->link = p->link; p->link = p1; p1->lineno = p->lineno; v = var + bn; a = &p1->to; a->sym = v->sym; a->offset = v->offset; a->etype = v->etype; a->type = v->name; a->gotype = v->gotype; a->node = v->node; // need to clean this up with wptr and // some of the defaults p1->as = AMOVL; switch(v->etype) { default: fatal("unknown type\n"); case TINT8: case TUINT8: case TBOOL: p1->as = AMOVB; break; case TINT16: case TUINT16: p1->as = AMOVW; break; case TINT64: case TUINT64: case TUINTPTR: case TPTR64: p1->as = AMOVQ; break; case TFLOAT32: p1->as = AMOVSS; break; case TFLOAT64: p1->as = AMOVSD; break; case TINT: case TUINT: case TINT32: case TUINT32: case TPTR32: break; } p1->from.type = rn; if(!f) { p1->from = *a; *a = zprog.from; a->type = rn; if(v->etype == TUINT8) p1->as = AMOVB; if(v->etype == TUINT16) p1->as = AMOVW; } if(debug['R'] && debug['v']) print("%P ===add=== %P\n", p, p1); ostats.nspill++; } uint32 doregbits(int r) { uint32 b; b = 0; if(r >= D_INDIR) r -= D_INDIR; if(r >= D_AX && r <= D_R15) b |= RtoB(r); else if(r >= D_AL && r <= D_R15B) b |= RtoB(r-D_AL+D_AX); else if(r >= D_AH && r <= D_BH) b |= RtoB(r-D_AH+D_AX); else if(r >= D_X0 && r <= D_X0+15) b |= FtoB(r); return b; } static int overlap(int32 o1, int w1, int32 o2, int w2) { int32 t1, t2; t1 = o1+w1; t2 = o2+w2; if(!(t1 > o2 && t2 > o1)) return 0; return 1; } Bits mkvar(Reg *r, Adr *a) { Var *v; int i, t, n, et, z, w, flag; uint32 regu; int32 o; Bits bit; Sym *s; /* * mark registers used */ t = a->type; if(t == D_NONE) goto none; if(r != R) r->use1.b[0] |= doregbits(a->index); switch(t) { default: regu = doregbits(t); if(regu == 0) goto none; bit = zbits; bit.b[0] = regu; return bit; case D_ADDR: a->type = a->index; bit = mkvar(r, a); setaddrs(bit); a->type = t; ostats.naddr++; goto none; case D_EXTERN: case D_STATIC: case D_PARAM: case D_AUTO: n = t; break; } s = a->sym; if(s == S) goto none; if(s->name[0] == '.') goto none; et = a->etype; o = a->offset; w = a->width; flag = 0; for(i=0; isym == s && v->name == n) { if(v->offset == o) if(v->etype == et) if(v->width == w) return blsh(i); // if they overlaps, disable both if(overlap(v->offset, v->width, o, w)) { // print("disable overlap %s %d %d %d %d, %E != %E\n", s->name, v->offset, v->width, o, w, v->etype, et); v->addr = 1; flag = 1; } } } if(a->pun) { // print("disable pun %s\n", s->name); flag = 1; } switch(et) { case 0: case TFUNC: goto none; } if(nvar >= NVAR) { if(debug['w'] > 1 && s) fatal("variable not optimized: %D", a); goto none; } i = nvar; nvar++; v = var+i; v->sym = s; v->offset = o; v->name = n; v->gotype = a->gotype; v->etype = et; v->width = w; v->addr = flag; // funny punning v->node = a->node; if(debug['R']) print("bit=%2d et=%2d w=%d %S %D\n", i, et, w, s, a); ostats.nvar++; bit = blsh(i); if(n == D_EXTERN || n == D_STATIC) for(z=0; zp1) { for(z=0; zrefahead.b[z]; if(ref.b[z] != r1->refahead.b[z]) { r1->refahead.b[z] = ref.b[z]; change++; } cal.b[z] |= r1->calahead.b[z]; if(cal.b[z] != r1->calahead.b[z]) { r1->calahead.b[z] = cal.b[z]; change++; } } switch(r1->prog->as) { case ACALL: if(noreturn(r1->prog)) break; for(z=0; zset.b[z]) | r1->use1.b[z] | r1->use2.b[z]; cal.b[z] &= ~(r1->set.b[z] | r1->use1.b[z] | r1->use2.b[z]); r1->refbehind.b[z] = ref.b[z]; r1->calbehind.b[z] = cal.b[z]; } if(r1->active) break; r1->active = 1; } for(; r != r1; r = r->p1) for(r2 = r->p2; r2 != R; r2 = r2->p2link) prop(r2, r->refbehind, r->calbehind); } /* * find looping structure * * 1) find reverse postordering * 2) find approximate dominators, * the actual dominators if the flow graph is reducible * otherwise, dominators plus some other non-dominators. * See Matthew S. Hecht and Jeffrey D. Ullman, * "Analysis of a Simple Algorithm for Global Data Flow Problems", * Conf. Record of ACM Symp. on Principles of Prog. Langs, Boston, Massachusetts, * Oct. 1-3, 1973, pp. 207-217. * 3) find all nodes with a predecessor dominated by the current node. * such a node is a loop head. * recursively, all preds with a greater rpo number are in the loop */ int32 postorder(Reg *r, Reg **rpo2r, int32 n) { Reg *r1; r->rpo = 1; r1 = r->s1; if(r1 && !r1->rpo) n = postorder(r1, rpo2r, n); r1 = r->s2; if(r1 && !r1->rpo) n = postorder(r1, rpo2r, n); rpo2r[n] = r; n++; return n; } int32 rpolca(int32 *idom, int32 rpo1, int32 rpo2) { int32 t; if(rpo1 == -1) return rpo2; while(rpo1 != rpo2){ if(rpo1 > rpo2){ t = rpo2; rpo2 = rpo1; rpo1 = t; } while(rpo1 < rpo2){ t = idom[rpo2]; if(t >= rpo2) fatal("bad idom"); rpo2 = t; } } return rpo1; } int doms(int32 *idom, int32 r, int32 s) { while(s > r) s = idom[s]; return s == r; } int loophead(int32 *idom, Reg *r) { int32 src; src = r->rpo; if(r->p1 != R && doms(idom, src, r->p1->rpo)) return 1; for(r = r->p2; r != R; r = r->p2link) if(doms(idom, src, r->rpo)) return 1; return 0; } void loopmark(Reg **rpo2r, int32 head, Reg *r) { if(r->rpo < head || r->active == head) return; r->active = head; r->loop += LOOP; if(r->p1 != R) loopmark(rpo2r, head, r->p1); for(r = r->p2; r != R; r = r->p2link) loopmark(rpo2r, head, r); } void loopit(Reg *r, int32 nr) { Reg *r1; int32 i, d, me; if(nr > maxnr) { rpo2r = mal(nr * sizeof(Reg*)); idom = mal(nr * sizeof(int32)); maxnr = nr; } d = postorder(r, rpo2r, 0); if(d > nr) fatal("too many reg nodes %d %d", d, nr); nr = d; for(i = 0; i < nr / 2; i++) { r1 = rpo2r[i]; rpo2r[i] = rpo2r[nr - 1 - i]; rpo2r[nr - 1 - i] = r1; } for(i = 0; i < nr; i++) rpo2r[i]->rpo = i; idom[0] = 0; for(i = 0; i < nr; i++) { r1 = rpo2r[i]; me = r1->rpo; d = -1; if(r1->p1 != R && r1->p1->rpo < me) d = r1->p1->rpo; for(r1 = r1->p2; r1 != nil; r1 = r1->p2link) if(r1->rpo < me) d = rpolca(idom, d, r1->rpo); idom[i] = d; } for(i = 0; i < nr; i++) { r1 = rpo2r[i]; r1->loop++; if(r1->p2 != R && loophead(idom, r1)) loopmark(rpo2r, i, r1); } } void synch(Reg *r, Bits dif) { Reg *r1; int z; for(r1 = r; r1 != R; r1 = r1->s1) { for(z=0; zrefbehind.b[z] & r1->refahead.b[z])) | r1->set.b[z] | r1->regdiff.b[z]; if(dif.b[z] != r1->regdiff.b[z]) { r1->regdiff.b[z] = dif.b[z]; change++; } } if(r1->active) break; r1->active = 1; for(z=0; zcalbehind.b[z] & r1->calahead.b[z]); if(r1->s2 != R) synch(r1->s2, dif); } } uint32 allreg(uint32 b, Rgn *r) { Var *v; int i; v = var + r->varno; r->regno = 0; switch(v->etype) { default: fatal("unknown etype %d/%E", bitno(b), v->etype); break; case TINT8: case TUINT8: case TINT16: case TUINT16: case TINT32: case TUINT32: case TINT64: case TUINT64: case TINT: case TUINT: case TUINTPTR: case TBOOL: case TPTR32: case TPTR64: i = BtoR(~b); if(i && r->cost > 0) { r->regno = i; return RtoB(i); } break; case TFLOAT32: case TFLOAT64: i = BtoF(~b); if(i && r->cost > 0) { r->regno = i; return FtoB(i); } break; } return 0; } void paint1(Reg *r, int bn) { Reg *r1; int z; uint32 bb; z = bn/32; bb = 1L<<(bn%32); if(r->act.b[z] & bb) return; for(;;) { if(!(r->refbehind.b[z] & bb)) break; r1 = r->p1; if(r1 == R) break; if(!(r1->refahead.b[z] & bb)) break; if(r1->act.b[z] & bb) break; r = r1; } if(LOAD(r) & ~(r->set.b[z]&~(r->use1.b[z]|r->use2.b[z])) & bb) { change -= CLOAD * r->loop; } for(;;) { r->act.b[z] |= bb; if(r->use1.b[z] & bb) { change += CREF * r->loop; } if((r->use2.b[z]|r->set.b[z]) & bb) { change += CREF * r->loop; } if(STORE(r) & r->regdiff.b[z] & bb) { change -= CLOAD * r->loop; } if(r->refbehind.b[z] & bb) for(r1 = r->p2; r1 != R; r1 = r1->p2link) if(r1->refahead.b[z] & bb) paint1(r1, bn); if(!(r->refahead.b[z] & bb)) break; r1 = r->s2; if(r1 != R) if(r1->refbehind.b[z] & bb) paint1(r1, bn); r = r->s1; if(r == R) break; if(r->act.b[z] & bb) break; if(!(r->refbehind.b[z] & bb)) break; } } uint32 regset(Reg *r, uint32 bb) { uint32 b, set; Adr v; int c; set = 0; v = zprog.from; while(b = bb & ~(bb-1)) { v.type = b & 0xFFFF? BtoR(b): BtoF(b); if(v.type == 0) fatal("zero v.type for %#ux", b); c = copyu(r->prog, &v, A); if(c == 3) set |= b; bb &= ~b; } return set; } uint32 reguse(Reg *r, uint32 bb) { uint32 b, set; Adr v; int c; set = 0; v = zprog.from; while(b = bb & ~(bb-1)) { v.type = b & 0xFFFF? BtoR(b): BtoF(b); c = copyu(r->prog, &v, A); if(c == 1 || c == 2 || c == 4) set |= b; bb &= ~b; } return set; } uint32 paint2(Reg *r, int bn) { Reg *r1; int z; uint32 bb, vreg, x; z = bn/32; bb = 1L << (bn%32); vreg = regbits; if(!(r->act.b[z] & bb)) return vreg; for(;;) { if(!(r->refbehind.b[z] & bb)) break; r1 = r->p1; if(r1 == R) break; if(!(r1->refahead.b[z] & bb)) break; if(!(r1->act.b[z] & bb)) break; r = r1; } for(;;) { r->act.b[z] &= ~bb; vreg |= r->regu; if(r->refbehind.b[z] & bb) for(r1 = r->p2; r1 != R; r1 = r1->p2link) if(r1->refahead.b[z] & bb) vreg |= paint2(r1, bn); if(!(r->refahead.b[z] & bb)) break; r1 = r->s2; if(r1 != R) if(r1->refbehind.b[z] & bb) vreg |= paint2(r1, bn); r = r->s1; if(r == R) break; if(!(r->act.b[z] & bb)) break; if(!(r->refbehind.b[z] & bb)) break; } bb = vreg; for(; r; r=r->s1) { x = r->regu & ~bb; if(x) { vreg |= reguse(r, x); bb |= regset(r, x); } } return vreg; } void paint3(Reg *r, int bn, int32 rb, int rn) { Reg *r1; Prog *p; int z; uint32 bb; z = bn/32; bb = 1L << (bn%32); if(r->act.b[z] & bb) return; for(;;) { if(!(r->refbehind.b[z] & bb)) break; r1 = r->p1; if(r1 == R) break; if(!(r1->refahead.b[z] & bb)) break; if(r1->act.b[z] & bb) break; r = r1; } if(LOAD(r) & ~(r->set.b[z] & ~(r->use1.b[z]|r->use2.b[z])) & bb) addmove(r, bn, rn, 0); for(;;) { r->act.b[z] |= bb; p = r->prog; if(r->use1.b[z] & bb) { if(debug['R'] && debug['v']) print("%P", p); addreg(&p->from, rn); if(debug['R'] && debug['v']) print(" ===change== %P\n", p); } if((r->use2.b[z]|r->set.b[z]) & bb) { if(debug['R'] && debug['v']) print("%P", p); addreg(&p->to, rn); if(debug['R'] && debug['v']) print(" ===change== %P\n", p); } if(STORE(r) & r->regdiff.b[z] & bb) addmove(r, bn, rn, 1); r->regu |= rb; if(r->refbehind.b[z] & bb) for(r1 = r->p2; r1 != R; r1 = r1->p2link) if(r1->refahead.b[z] & bb) paint3(r1, bn, rb, rn); if(!(r->refahead.b[z] & bb)) break; r1 = r->s2; if(r1 != R) if(r1->refbehind.b[z] & bb) paint3(r1, bn, rb, rn); r = r->s1; if(r == R) break; if(r->act.b[z] & bb) break; if(!(r->refbehind.b[z] & bb)) break; } } void addreg(Adr *a, int rn) { a->sym = 0; a->offset = 0; a->type = rn; ostats.ncvtreg++; } int32 RtoB(int r) { if(r < D_AX || r > D_R15) return 0; return 1L << (r-D_AX); } int BtoR(int32 b) { b &= 0x3fffL; // no R14 or R15 if(b == 0) return 0; return bitno(b) + D_AX; } /* * bit reg * 16 X5 (FREGMIN) * ... * 26 X15 (FREGEXT) */ int32 FtoB(int f) { if(f < FREGMIN || f > FREGEXT) return 0; return 1L << (f - FREGMIN + 16); } int BtoF(int32 b) { b &= 0xFF0000L; if(b == 0) return 0; return bitno(b) - 16 + FREGMIN; } void dumpone(Reg *r) { int z; Bits bit; print("%d:%P", r->loop, r->prog); for(z=0; zset.b[z] | r->use1.b[z] | r->use2.b[z] | r->refbehind.b[z] | r->refahead.b[z] | r->calbehind.b[z] | r->calahead.b[z] | r->regdiff.b[z] | r->act.b[z] | 0; if(bany(&bit)) { print("\t"); if(bany(&r->set)) print(" s:%Q", r->set); if(bany(&r->use1)) print(" u1:%Q", r->use1); if(bany(&r->use2)) print(" u2:%Q", r->use2); if(bany(&r->refbehind)) print(" rb:%Q ", r->refbehind); if(bany(&r->refahead)) print(" ra:%Q ", r->refahead); if(bany(&r->calbehind)) print("cb:%Q ", r->calbehind); if(bany(&r->calahead)) print(" ca:%Q ", r->calahead); if(bany(&r->regdiff)) print(" d:%Q ", r->regdiff); if(bany(&r->act)) print(" a:%Q ", r->act); } print("\n"); } void dumpit(char *str, Reg *r0) { Reg *r, *r1; print("\n%s\n", str); for(r = r0; r != R; r = r->link) { dumpone(r); r1 = r->p2; if(r1 != R) { print(" pred:"); for(; r1 != R; r1 = r1->p2link) print(" %.4ud", r1->prog->loc); print("\n"); } // r1 = r->s1; // if(r1 != R) { // print(" succ:"); // for(; r1 != R; r1 = r1->s1) // print(" %.4ud", r1->prog->loc); // print("\n"); // } } } static Sym* symlist[10]; int noreturn(Prog *p) { Sym *s; int i; if(symlist[0] == S) { symlist[0] = pkglookup("panicindex", runtimepkg); symlist[1] = pkglookup("panicslice", runtimepkg); symlist[2] = pkglookup("throwinit", runtimepkg); symlist[3] = pkglookup("panic", runtimepkg); symlist[4] = pkglookup("panicwrap", runtimepkg); } s = p->to.sym; if(s == S) return 0; for(i=0; symlist[i]!=S; i++) if(s == symlist[i]) return 1; return 0; }